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Matroid Bundles
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ABSTRACT. Combinatorial vector bundles, or matroid bundles, are a com-
binatorial analog to real vector bundles. Combinatorial objects called ori-
ented matroids play the role of real vector spaces. This combinatorial anal-
ogy is remarkably strong, and has led to combinatorial results in topology
and bundle-theoretic proofs in combinatorics. This paper surveys recent
results on matroid bundles, and describes a canonical functor from real
vector bundles to matroid bundles.

1. Introduction

Matroid bundles are combinatorial objects that mimic real vector bundles.
They were first defined in [MacPherson 1993] in connection with combinatorial
differential manifolds, or CD manifolds. Matroid bundles generalize the notion
of the “combinatorial tangent bundle” of a CD manifold. Since the appearance
of McPherson’s article, the theory has filled out considerably; in particular, ma-
troid bundles have proved to provide a beautiful combinatorial formulation for
characteristic classes.

We will recapitulate many of the ideas introduced by McPherson, both for the
sake of a self-contained exposition and to describe them in terms more suited
to our present context. However, we refer the reader to [MacPherson 1993] for
background not given here. We recommend the same paper, as well as [Mnév
and Ziegler 1993] on the combinatorial Grassmannian, for related discussions.

We begin with a key intuitive point of the theory: the notion of an oriented
matroid as a combinatorial analog to a vector space. From this we develop
matroid bundles as a combinatorial bundle theory with oriented matroids as
fibers. Section 2 will describe the category of matroid bundles and its relation to
the category of real vector bundles. Section 3 gives examples of matroid bundles
arising in both combinatorial and topological contexts, and Section 4 outlines
some of the techniques that have been developed to study matroid bundles.
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Figure 1. An arrangement of oriented hyperplanes in R? and some of the
resulting sign vectors.

Acknowledgements. This paper drew great inspiration from Robert MacPher-
son’s 1997 Chern Symposium lecture at Berkeley. Section 4B was written with
the help of Eric Babson. The author would like to thank MacPherson, Babson,
and James Davis for helpful discussions.

1A. Oriented matroids. We give a brief introduction to oriented matroids,
particularly to the idea of oriented matroids as “combinatorial vector spaces”.
See [Bjorner et al. 1993] for a more complete introduction to oriented matroids,
and [MacPherson 1993, Appendix] for specific notions of importance here.

A rank-n oriented matroid can be considered as a combinatorial analog to
an arrangement {r;};cg of vectors in R™, or equivalently, to an arrangement
{ri}icp of oriented hyperplanes. (Here we allow the “degenerate hyperplane”
0+ = R™.) The idea is as follows. An arrangement {r;};cg of oriented hyper-
planes in R™ partitions R™ into cones. Each cone C can be identified by a sign
vector v € {—,0,+}¥, where v; indicates on which side of r;- the cone C lies.
(See Figure 1).

The set E together with the collection of sign vectors resulting from this
arrangement is called a realizable oriented matroid. The sign vectors are called
covectors of the oriented matroid. Every realizable oriented matroid has 0 as a
covector. The hyperplanes describe a cell decomposition of the unit sphere in
R"™, with each cell labeled by a nonzero covector.

More generally, an oriented matroid M is a finite set F together with a collec-
tion V*(M) of signed sets in {—,0, +}¥, satisfying certain combinatorial axioms
inspired by the case of realizable oriented matroids. (For a complete definition,
see [Bjorner et al. 1993, Section 4.1].) In this more general context, we still have
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Figure 2. A rank-3 arrangement of five oriented pseudospheres.

a notion of the rank of an oriented matroid [MacPherson 1993, Section 5.3], and
a beautiful theorem that gives this notion topological meaning.

The Topological Representation Theorem of Folkman and Lawrence [Bjorner
et al. 1993, Section 1.4; Folkman and Lawrence 1978] says that the set of nonzero
covectors of a rank-n oriented matroid describe a cell decomposition of S™~!.
More precisely: a pseudosphere in S®~1 is a subset S such that some homeomor-
phism of S™~! takes S to an equator. Thus, a pseudosphere must partition S™~1
into two pseudohemispheres. An oriented pseudosphere is a pseudosphere to-
gether with a choice of positive pseudohemisphere. An arrangement of oriented
pseudospheres is a set of oriented pseudospheres on S™~! whose intersections
behave topologically like intersections of equators. (For a precise definition, see
[Bjorner et al. 1993, Definition 5.1.3].) For an example, see Figure 2.

An arrangement {S;};cg of oriented psuedospheres in S"~! determines a col-
lection of signed sets in {—,0,+}¥ in the same way that an arrangement of ori-
ented hyperplanes in R™ does. The Topological Representation Theorem states
that any collection of signed sets arising in this way is the set of nonzero covectors
of an oriented matroid, and that every oriented matroid arises in this way.

1B. Oriented matroids as “combinatorial vector spaces”. A strong map
image of an oriented matroid M is an oriented matroid N such that V*(N) C
V*(M). (Strong maps are called strong quotients in [Gelfand and MacPherson
1992]. See [Bjorner et al. 1993, Section 7.7] for more on strong maps.)

Consider a realizable rank-n oriented matroid M, realized as a set R =
{ri,red,...,r=} C R™ If V is a rank-k subspace in R™, consider the rank-k
oriented matroid yg(V) given by the intersections {V Nrt:i¢€ {1,...,m}}. In
terms of the vector picture of oriented matroids, yg (V) is given by the orthogonal
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Figure 3. A strong map of realizable oriented matroids.

projections of the elements {ri,...,7,} onto V. The oriented matroid vg(V)
is a strong map image of M, and encodes considerable geometric data about V.
For instance, the loops in yg(V') are exactly those r; such that V' C T;L, and the
cell decomposition of the unit sphere Sy in V given by the equators Sy Nr:- is
canonically isomorphic to the cell complex of nonzero covectors of yg(V). We
will think of yr(V) as a combinatorial model for V, and as a combinatorial
“subspace” of M. Figure 3 shows a realization of a rank-2 oriented matroid, a
1-dimensional subspace V of R%, and the resulting oriented matroid yg(V).

If M is not realizable, we will still use M as a combinatorial analog to R",
with the nonzero covectors in V*(M) playing the role of the unit sphere. Strong
map images will be viewed as “pseudosubspaces”.

1C. Matroid bundles. Consider a real rank-k vector bundle £ : F — B over
a compact base space. Choose a collection {ej,...,e,} of continuous sections
of £ such that at each point b in B, the vectors {e;(b),...,e,(b)} span the
space £71(b). The vectors {e;(b),...,e,(b)} determine a rank-k oriented matroid
M (b) with elements the integers {1,...,n}. Note that any b € B has an open
neighborhood U, such that M(b') weak maps to M(b) for all ¥’ € U,. (See
[Bjorner et al. 1993, Section 7.7] for a definition of weak maps. Weak maps are
called specializations in [MacPherson 1993] and weak specializations in [Gelfand
and MacPherson 1992].)

PROPOSITION 1.1. Let &€ : E — B be a real vector bundle with B finite-
dimensional and let p : |T| — B be a triangulation of B. Then there ezists
a simplicial subdivision T' of T and a spanning collection of sections of & such
that for every simplex o of T', the function M is constant on the relative interior

of p(lol)-

This is a corollary to the Combinatorialization Theorem in Section 2C.

ExAMPLE. Figure 4 shows the Mobius strip as a line bundle over S!, and a
triangulation of S! with vertices a,b,c. The sections {p1, p2} associate a single
oriented matroid to the interior of each simplex.
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Figure 4. A spanning collection of sections for the Mdbius strip.

Such a simplicial complex and the association of an oriented matroid to each cell
give the motivating example of a matroid bundle:

DEFINITION 1.2. A rank-k matroid bundle is a partially ordered set B (e.g., a
simplicial complex with simplices ordered by inclusion) and a rank-k oriented
matroid M(b) associated to each element b, so that M(b) weak maps to M (V')
whenever b > b’.

This is a simplification of the definition which appears in [MacPherson 1993].
Any matroid bundle in the sense of MacPherson gives a matroid bundle in the
present sense. Conversely, given a matroid bundle (B, M) in our current sense,
consider the order complex AB of B, i.e., the simplicial complex of all chains in
the partial order. The map associating to each simplex b; < --- < b,, in AB the
oriented matroid M(b,,) defines a matroid bundle in the sense of MacPherson.

A matroid bundle need not arise from a real vector bundle. For instance, a
matroid bundle may include non-realizable oriented matroids as fibers. Section 3
will give examples of matroid bundles arising in combinatorics that do not cor-
respond to any real vector bundles.

1D. What do we want from matroid bundles? The hope is that the cate-
gory of matroid bundles is closely related to the category of real vector bundles,
or perhaps to one of its weaker cousins, such as the category of piecewise-linear
microbundles or the category of spherical quasifibrations. (These categories are
described below.) Relating bundle theory to oriented matroids promises both
combinatorial techniques for bundle theory and bundle-theoretic techniques for
combinatorics.
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We describe these categories very briefly here. Good sources for a more ex-
tended look at bundles are [Milnor and Stasheff 1974; Husemoller 1996]. The
loose idea is as follows: a (topological) bundle is a map £ : E — B of topological
spaces such that for some open cover {U;}ic; of B, each restriction £|¢-1(y,)
“looks like” a projection p : U; x F' — U;, for some space F. Different bundle
theories arise from different notions of “looking like a projection”. FE is the total
space of the bundle, and B is the base space. For any b € B, the preimage £ ~1(b)
is the fiber of £ over b. A morphism from a bundle & : F; — B; to a bundle
&> 1 By — Bs is a commutative diagram

Fi FEy
511 lﬁz
B By

such that the map of total spaces preserves appropriate structure on fibers.
Three progressively weaker categories of bundles are of particular interest.

The strongest is the category Bun of real vector bundles, in which F' & R* and

for each U; we must have a homeomorphism h : U; x R¥ — ¢-1(U;) such that

U; x R*

\/

commutes and h restricts to a linear isomorphism on each fiber. In the weaker
category PL of piecewise-linear microbundles, F' is still R*, but the maps h
need only be piecewise-linear homeomorphisms with compatible 0 cross-sections.
(See [Milnor 1961] for a precise definition.) A still weaker notion is that of a
quasifibration, which must only “look like” a projection in that for each = € U;,
y €.£7(z), and j € N, the map of homotopy groups

l(U

Dx - 7'rj(p—_l(U'i)ap_l(:l:)’ y) — Wj(Ui,iE)

is an isomorphism; see [Dold and Thom 1958, §§1.1, and 2.1]. From this con-
dition it follows that each fiber has the same weak homotopy type. We will
be interested in the category Fib of quasifibrations whose fibers are homotopy
spheres. Any real vector bundle or PL microbundle has a canonical associated
sphere bundle — essentially by taking a sphere around 0 in each fiber — which is
a spherical quasifibration.

Associated to any good bundle theory is a universal bundle — that is, a bundle
: B — By such that

[1]

—

. for any bundle £ : E — B there exists a morphism from £ to =, and
if ¢, : By = By and &3 : E2 — By are bundles and F': §; = &2, C1: & — &,
and Cs : {3 — = are morphisms, then there exists a bundle homotopy from

.
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Ci to Cy 0 F, i.e., a morphism H from &; xid : F; x [ — By x I to E such
that HI&X{O} = (7 x *x and H|§1X{1} = (C2 o F) x .

In this situation By is called a classifying space for the category. For any bundle
£ and bundle map from £ to the universal bundle, the map of base spaces is called
a classifying map. It follows from the properties above that the universal bundle
is unique up to bundle homotopy, and that for a fixed universal bundle and
fixed real vector bundle, the classifying map is unique up to homotopy. In fact,
every vector bundle over a base space B is characterized up to isomorphism by
a homotopy class of maps from B to B.,. Specifically, a bundle £ over B with
classifying map c(£)is isomorphic to the pullback of = by ¢(§), i.e., the bundle
w1 : {(b,v) : b € B, v € 271(c(¢)(b))} — B. In this way isomorphism classes of
bundles over a space B are in bijection with homotopy classes of maps B — B.
Thus if G; and G5 are two categories of bundles with classifying spaces Bl and
B2, then any map Bl — B2 gives a functor from isomorphism classes in G; to
isomorphism classes in Gs.

For rank-k real vector bundles over paracompact base spaces, the classifying
space (often called BOg) is G(k,R>), the space of all k-dimensional subspaces
of R*. The universal bundle is the tautological bundle

Ew={(V,z):V € G(k,R®), z € V} — G(k,R™),
(V,z) — \74

(See [Milnor and Stasheff 1974, Chapter 5] for details.) The classifying spaces
BPLg for PL microbundles and BFiby for spherical quasifibrations are harder to
describe explicitly, and we won’t attempt it here. (See [Milnor 1961, Chapter 5;
Stasheff 1963] for constructions. We note in passing that BFiby is isomorphic
to the classifying space for rank-k spherical fibrations [Stasheff 1963] —see the
related discussion in [Anderson and Davis > 1999].) Since BOy has a natural
PL microbundle structure and BPLj has an associated spherical quasifibration,
there are canonical (up to homotopy) classifying maps BOy — BPL; — BFiby,
giving canonical functors from real vector bundles to PL bundles to spherical
quasifibrations.

How do matroid bundles fit into this picture? In Section 2A we will define mor-
phisms of matroid bundles, leading to a category MBy of matroid bundles. This
category has a universal bundle, whose classifying space is called the MacPher-
sonian MacP(k, c0). We can relate matroid bundles to other bundle theories by
finding nice maps between MacP(k, c0) and other classifying spaces.

Topologically, the category of matroid bundles is awkward in that the fibers
are combinatorial objects — oriented matroids — which form no topological total
space. In Section 4 we will discuss how the Topological Representation Theo-
rem allows us to associate a spherical quasifibration (easily) and even a PL mi-
crobundle (gruelingly) to a matroid bundle, giving maps MacP(k, c0) — BFiby
and MacP(k, c0) — BPLj, and hence giving functors of bundle theories. Another
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8 LAURA ANDERSON

key result is the Combinatorialization Theorem described in Section 2C, which
implies a map BO}, — MacP(k, 00) and another functor.

Much of the progress on matroid bundles has been in the area of characteristic
classes. A characteristic class for a bundle theory is a rule assigning to each
bundle £ : E — B an element u(§) of H*(B) such that if

B, Es
€11 lfz
B, f B;

is a bundle map, then u(§1) = f*(u(€2)). (See [Milnor and Stasheff 1974] for
much more on characteristic classes.) From the definition of universal bundles,
it follows that if B, is the classifying space for a bundle theory, then the charac-
teristic classes are in bijection with the elements of H*(By,). (Note we have not
specified coefficients for cohomology: different coefficients give different interest-
ing characteristic classes.) Thus the maps BOy — MacP(k, c0), MacP(k, 00) —
BPLy, and MacP(k,00) — BFiby give maps H*(BFiby) — H*(MacP(k, 00)),
H*(BPL) — H*(MacP(k, 00)), and H*(MacP(k,00)) = H*(BOy) between the
characteristic classes of the respective bundle theories. In various cases (e.g.,
with Zs coefficients) these maps can be shown to be surjective. This gives new
results on the topology of MacP(k,c0) and connects matroid bundles to the
many areas of topology that can be described in terms of characteristic classes.

2. Categories of Matroid Bundles and PL Vector Bundles

2A. The category of matroid bundles. Let B be the poset of cells in a PL
cell complex B. Any matroid bundle (B, M) on B induces a canonical matroid
bundle structure on the poset of cells of any PL subdivision of B, by associating
the oriented matroid M(c) to each cell in the relative interior of a cell o € B.
Two matroid bundles on PL cell complexes are defined to be equivalent if there
exists a common PL subdivision of the cell complexes such that the resulting
matroid bundles on this subdivision are identical.

For B an arbitrary poset, a matroid bundle (B, M) induces a matroid bundle
structure (AB,M') on the cell complex ||AB|| by defining

M ({by < bz <+ <bm}) = M(bm).

We extend the above notion of equivalence by defining (B, M) to be equivalent
to (AB,M').

DEFINITION 2.1. If (B, M;) and (B2, M32) are two matroid bundles, a morphism
from (By, M) to (B2, M) is a pair (f, [C'f, My]), where f is a PL map from AB,;
to AB; and [Cy,My]| is an equivalence class of matroid bundle structures on the
mapping cylinder of f that restrict to structures equivalent to (B, M;) and
(B2, M3) at either end.
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The composition of a morphism (f, [Cf, My]) from (By,M;) to (B2, Mz) and a
morphism (g, [Cy, Mgy]) from (Ba, M) to (Bs,M3s) is (go f, [Cgos, Mgos]), where
Moy is determined by M3 on the simplices of Bz and by M on the rest of the
cells of Cyo .

The set of rank-k matroid bundles and their morphisms form a category.

DEFINITION 2.2. A morphism from (B, M;) to (B2, Mz) is an isomorphism if
there exists a morphism from (By,Ms) to (B1,M;) such that the composition
of these maps is the identity morphism.

We get a better relation to the category of rank-k real vector bundles by consid-
ering only isomorphism classes of matroid bundles:

DEFINITION 2.3. M By, will denote the category of isomorphism classes of rank-k
matroid bundles and their morphisms.

The classifying space for matroid bundles. MBj has a classifying space very
similar in spirit (and, as we shall later see, in topology) to the classifying space
G(k,R™) for real rank-k vector bundles. Just as G(k,R*) is the space of all
rank-k subspaces of any R", the classifying space for M By will be the set of all
strong map images of any combinatorial model for any R".

DEFINITION 2.4. If M™ is a rank-n oriented matroid then define the combina-
torial Grassmannian I'(k, M™) to be the poset of all rank-k strong map images
of M™, with the partial order M; > M, if and only if M; weak maps to Ms.

In some papers the combinatorial Grassmannian is defined to be the order com-
plex AT'(k, M™) of T'(k, M™).

The combinatorial Grassmannian was first introduced in [MacPherson 1993]
and was the subject of a previous survey article [Mnév and Ziegler 1993], to
which we refer the reader for further discussion.

A particularly useful case is when M™ is the coordinate oriented matroid:

DEFINITION 2.5. Let M, be the coordinate oriented matroid with elements
{1,2,...,n}, i.e., the oriented matroid realized by the coordinate hyperplanes in
R"™. Then I'(k, M,,) is a standard combinatorial Grassmannian, or MacPherso-
nian, denoted MacP(k,n).

This case is especially important because of a nice alternate description:

PROPOSITION 2.6 [Mnév and Ziegler 1993]. MacP(k,n) is the poset of all rank-k
oriented matroids with elements {1,2,...,n}, ordered by weak maps.

Note that if M; strong maps to My then I'(k,M3) C T'(k,M;) (and hence
ATD'(k, M) is a subcomplex of AT'(k, M;)). In particular:

o If {1,...,n} is the set of elements of M, I'(k, M) is a subposet of MacP(k, n).

e If M, is obtained from M; by deleting some elements, there is a natural embed-
ding of I'(k, M>) into I'(k, M;). In particular, MacP(k,n) < MacP(k,n + 1)
for any k and n.
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Thus the direct limit lim, o, I'(k, M™) in the category of posets and inclusions
is | J,, MacP(k,n), denoted MacP(k, c0).
We can now rephrase the definition of matroid bundles:

DEFINITION 2.7. A rank-k matroid bundle is a poset B and a poset map M :
B — MacP(k, 00).

Modifying definitions appropriately (to accomodate our combinatorial notion of
bundles and bundle morphisms), we see:

PROPOSITION 2.8. The map id : MacP(k,00) — MacP(k, 00) is the universal
bundle for M By.

PROOF. A matroid bundle M : B — MacP(k, c0) determines a simplicial map
from AB to A MacP(k,o0), and M induces a matroid bundle structure on the
mapping cylinder, giving a classifying map. If (f,[Cy, My]) is a matroid bundle
morphism, then (Cy, My) determines a homotopy between the respective classi-
fying maps. |

Thus MacP(k, 00) is the classifying space for rank-k matroid bundles.
The cohomology of a poset P is defined to be the cohomology of its order
complex AP. Thus we have:

COROLLARY 2.9. The characteristic classes for M By with coefficients in R are
the elements of the cohomology ring H*(A MacP(k, ); R).

The finite combinatorial Grassmannians are of interest in their own right from
several perspectives. The spaces AT'(k, M™) arise as the fibers of a combinatorial
Grassmannian bundle in [MacPherson 1993], for instance, and AI'(n—1, M™) is
closely related to the extension space E(M™) discussed in Section 3.

2B. Relations between the real and combinatorial Grassmannians. We
consider more closely the map

vk : G(k,R") = T'(k,M™)

introduced in Section 1B. The set of preimages of this map give a stratification
of G(k,R™) which is semialgebraic. This stratification has the property that if
the closure of v5" (M) intersects 75" (M) then M; weak maps to Ma.

By the semi-algebraic triangulation theorem [Hironaka 1975], there exists a
triangulation of G(k,R"™) refining this stratification, giving a simplicial map

4R : G(k,R™) — AT(k, M™).

(This is described further in [MacPherson 1993] for MacP(k,n) and in [Anderson
and Davis > 1999] for more general M™.) In the direct limit this gives a map
7 : G(k,R*) - AMacP(k, 00) of classifying spaces, and hence describes a map
from the theory of real vector bundles to the theory of matroid bundles.
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