Practical Physics

G. L. SQUIRES

Emeritus Lecturer in Physics at the University of Cambridge and Fellow of Trinity College, Cambridge

FOURTH EDITION

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

First two editions © McGraw-Hill Book Company (UK) Limited 1968, 1976 Third edition © Cambridge University Press 1985 Fourth edition © Gordon L. Squires 2001

The book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

Fourth edition published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeset in Times 10/13.5pt System 3b2 [CE]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Squires, G. L. (Gordon Leslie) Practical physics / G. L. Squires – 4th ed.
p. cm. Includes bibliographical references and index. ISBN 0 521 77045 9 – ISBN 0 521 77940 5 (pb.)
1. Physics – Experiments. 2. Physics – Methodology. I. Title.
QC33.S68 2001
530'.028-dc21 2001025559

ISBN 0 521 77045 9 hardback ISBN 0 521 77940 5 paperback

CONTENTS

	Prej Prej	face to the fourth edition face to the first edition	ix x
1	The	object of practical physics	1
	PAR	T 1 STATISTICAL TREATMENT OF DATA	
2	Intr	oduction to errors	5
	2.1	The importance of estimating errors	5
	2.2	Systematic and random errors	6
	2.3	Systematic errors	8
3	Tre	atment of a single variable	9
	3.1	Introduction	9
	3.2	Set of measurements	10
	3.3	Distribution of measurements	10
	3.4	Estimation of σ and $\sigma_{\rm m}$	14
	3.5	The Gaussian distribution	18
	3.6	The integral function	19
	3.7	The error in the error	22
	3.8	Discussion of the Gaussian distribution	22
	Summary of symbols, nomenclature, and important formulae		24
	Exe	rcises	26
4	Fur	ther topics in statistical theory	27
	4.1	The treatment of functions	27
	4.2	The straight line – method of least squares	30
	4.3	The straight line – points in pairs	36
	4.4	Weighting of results	37
	Summary of equations for the best straight line by the method		
	of le	east squares	39
	Exe	rcises	41

5	Common sense in errors		43
	5.1	Error calculations in practice	43
	5.2	Complicated functions	46
	5.3	Errors and experimental procedure	48
Summary of treatment of		nmary of treatment of errors	50
	Exercises		51

PART 2 EXPERIMENTAL METHODS

6	Som	e laboratory instruments and methods	55
	6.1	Introduction	55
	6.2	Metre rule	55
	6.3	Micrometer screw gauge	57
	6.4	Measurement of length - choice of method	58
	6.5	Measurement of length – temperature effect	61
	6.6	The beat method of measuring frequency	62
	6.7	Negative feedback amplifier	64
	6.8	Servo systems	67
	6.9	Natural limits of measurement	69
	Exer	cises	71
7	Some experimental techniques		73
	7.1	Rayleigh refractometer	73
	7.2	Measurement of resistivity	79
	7.3	Absolute measurement of the acceleration due to the Earth's	
		gravity	86
	7.4	Measurement of frequency and time	94
	7.5	The Global Positioning System	98
	Exer	cises	101
8	Expe	erimental logic	102
	8.1	Introduction	102
	8.2	Apparent symmetry in apparatus	102
	8.3	Sequence of measurements	103
	8.4	Intentional and unintentional changes	104
	8.5	Drift	105
	8.6	Systematic variations	106
	8.7	Calculated and empirical corrections	109
	8.8	Relative methods	111
	8.9	Null methods	113
	8.10	Why make precise measurements?	114

Contents

9	Com	mon sense in experiments	117
	9.1	Preliminary experiment	117
	9.2	Checking the obvious	118
	9.3	Personal errors	119
	9.4	Repetition of measurements	119
	9.5	Working out results	121
	9.6	Design of apparatus	122

PART 3 RECORD AND CALCULATIONS

125
125
125
126
126
127
129
130
gueness 131
133
133
137
137
138
138
141
142
144
144
144
145
145
148
150
152
152
152
152
153

vii

Contents

13.5	Sections of paper	153
13.6	Diagrams, graphs, and tables	155
13.7	Instructions to authors	155
13.8	Clarity	156
13.9	Good English	156
13.10	Conclusion	158

APPENDICES

А	Evaluation of some integrals connected with the Gaussian		
	function	161	
В	The variance of s^2 for a Gaussian distribution	164	
С	The straight line – the standard error in the slope and intercept	166	
	Comment on the dependence of m , c , and b	170	
D	The binomial and Poisson distributions	171	
	Binomial distribution	171	
	Poisson distribution	173	
Е	The χ^2 distribution – test of goodness of fit	176	
	Introduction	176	
	Derivation of χ^2 distribution	177	
	The function $P_n(\chi^2)$	180	
	Degrees of freedom	181	
	Test of goodness of fit	182	
	Worked examples	184	
	Comments	186	
F	SI units	188	
	Names and symbols	189	
	Decimal factors	190	
	Relation to c.g.s. units	190	
	Definitions of the SI base units	191	
G	Values of physical constants	192	
Η	Mathematical tables	193	
	Values of the Gaussian function and the Gaussian		
	integral function	193	
	Values of χ^2 for given ν and P	194	
Sol	Solutions to exercises		
Sor	Some useful books		
Rej	References		
Ina	Index		

1 The object of practical physics

This book is intended to help you to do practical physics at college or university: its aim is to make the laboratory work more useful and profitable. We may start by asking what is the object of laboratory work in a university physics course. There are several possible objects. Laboratory work may serve

- (a) to demonstrate *theoretical ideas* in physics,
- (b) to provide a familiarity with *apparatus*,
- (c) to provide a training in how to do experiments.

Let us consider each of these in turn.

Seeing something demonstrated in practice is often a great help in understanding it. For example, interference in light is not an intuitive concept. The idea that two beams of light can cancel each other and give darkness takes a little swallowing, and most people find it helpful to be given a visual demonstration. A demonstration is useful for another reason – it gives an idea of orders of magnitude. The interference fringes are in general close together, which indicates that the wavelength of light is small compared with everyday objects. But the demonstration is no substitute for a proper explanation, which goes into the details of geometry and phase relations. So the first object, the demonstration of theoretical ideas, has a definite but limited usefulness.

The second object is perhaps more important, but it is necessary to say exactly what is meant by 'apparatus' in this context. In any practical course you will handle a number of instruments, such as oscilloscopes, timers, thermometers, and so on, and the experience you gain from using them should prove useful. However, if you eventually do scientific work of some kind, the range of instruments you could conceivably work with is enormous. No practical course could possibly teach you to use them all. What the course should do is to train you to use instruments *in general*. There is a certain attitude of mind that an experimenter should adopt when handling any instrument, and this the course should try to instil. But this is part of the third object which is the most important of all.

The phrase 'how to do experiments' may sound vague, so let us try to be more specific. The primary object – or set of objects – of practical physics is to train you to

- (a) plan an experiment whose precision is appropriate to its purpose,
- (b) be aware of and take steps to eliminate systematic errors in methods and instruments,
- (c) analyse the results in order to draw correct conclusions,
- (d) estimate the precision of the final result,
- (e) record the measurements and calculations accurately, clearly, and concisely.

All this adds up to saying that the main object of a course in practical physics is to train you to be a competent experimenter. But the course can do still more. It can show the way physics works.

Physics is one of the natural sciences, that is to say, it is part of our attempt to understand the natural world. When we are confronted by a situation in the natural world, the way we proceed in physics is to select what we think are the essential features. For example, the Greeks saw that a moving body came to rest and they therefore said that a force is necessary to keep a body moving. Galileo and Newton observed the same phenomenon, but they said that the coming to rest of the body is not an essential feature of the situation. In depends on friction; in the absence of friction a body keeps moving. If we try to do an experiment to test this view, we find that we cannot completely eliminate friction or other retarding forces, but we can make such forces small, and the smaller we make them the farther the body goes before coming to rest. So it is reasonable to believe that in the limiting case of zero friction the motion will remain unchanged as stated in Newton's first law.

This is the way physics works. We select what we think are the essential features in an actual physical situation. From them we make a generalization, or theory, and from the theory, deductions. We test a deduction by doing an experiment. But the deduction refers to an idealized or theoretically simple situation. In order to test it we have to create this simple situation in the messy, complicated, natural world, which is often a difficult thing to do.

In lectures you are taught the theory of the subject. The physical world is described in terms of the features which the current theories say are essential. These features tend to be the only ones you hear about, and you may well come to feel that they constitute the entire world, instead of a specially selected part of it. Moreover, everything fits together so smoothly that you can easily lose sight of the genius and effort that went into creating the subject. The most effective antidote to this is going into the laboratory and seeing the complications of real life.

By doing practical physics, then, you learn at first hand some of the obstacles to testing a theory, to measuring what you want to measure and not something else, and you learn how to overcome them. But above all you get an insight into physics as a whole, into the way experiment and theory interact, which is the very essence of the subject.