Contents

Preface ... ix

1 Overview of Modular Forms 1
 1.1 Hecke Characters ... 7
 1.1.1 Hecke characters of finite order 7
 1.1.2 Arithmetic Hecke characters 9
 1.1.3 A theorem of Weil 11
 1.2 Introduction to Modular Forms 14
 1.2.1 Modular forms 14
 1.2.2 Abelian modular forms and abelian deformation ... 19

2 Representations of a Group 23
 2.1 Group Representations 23
 2.1.1 Coefficient rings 23
 2.1.2 Topological and profinite groups 24
 2.1.3 Nakayama’s lemma 29
 2.1.4 Semi-simple algebras 31
 2.1.5 Representations of finite groups 34
 2.1.6 Induced representations 39
 2.1.7 Representations with coefficients in Artinian rings ... 42
 2.2 Pseudo-representations 45
 2.2.1 Pseudo-representations of degree 2 45
 2.2.2 Higher degree pseudo-representations 48
 2.3 Deformation of Group Representations 51
 2.3.1 Abelian deformation 52
 2.3.2 Non-abelian deformation 56
 2.3.3 Tangent spaces of local rings 59
 2.3.4 Cohomological interpretation of tangent spaces ... 60
Contents

3 Representations of Galois Groups and Modular Forms 63

3.1 Modular Forms on Adele Groups of $GL(2)$ 63
 3.1.1 Elliptic modular forms 63
 3.1.2 Structure theorems on $GL(A)$ 65
 3.1.3 Maximal compact subgroups 69
 3.1.4 Open compact subgroups of $GL_2(A)$ and Dirichlet characters 71
 3.1.5 Adelic and classical modular forms 74
 3.1.6 Hecke algebras 77
 3.1.7 Fourier expansion 84
 3.1.8 Rationality of modular forms 88
 3.1.9 p-adic Hecke algebras 96

3.2 Modular Galois Representations 101
 3.2.1 Hecke eigenforms 101
 3.2.2 Galois representation of Hecke eigenforms 107
 3.2.3 Galois representation with values in the Hecke algebra 112
 3.2.4 Universal deformation rings 117
 3.2.5 Local deformation ring 121
 3.2.6 Taylor-Wiles systems 125
 3.2.7 Taylor-Wiles system of Hecke algebras 135
 3.2.8 Tangential dimensions of deformation rings 139

4 Cohomology Theory of Galois Groups 154

4.1 Categories and Functors 154
 4.1.1 Categories 154
 4.1.2 Functors 155
 4.1.3 Representability 156
 4.1.4 Abelian categories 159

4.2 Extension of Modules 162
 4.2.1 Extension groups 162
 4.2.2 Extension functors 166
 4.2.3 Cohomology groups of complexes 170
 4.2.4 Higher extension groups 173

4.3 Group Cohomology Theory 179
 4.3.1 Cohomology of finite groups 180
 4.3.2 Tate cohomology groups 185
 4.3.3 Continuous cohomology for profinite groups 189
 4.3.4 Inflation and restriction sequences 197
 4.3.5 Applications to representation theory 202

4.4 Duality in Galois Cohomology 206
Contents

4.4.1 Class formation and duality of cohomology groups 206
4.4.2 Global duality theorems 214
4.4.3 Tate-Shafarevich groups 219
4.4.4 Local Euler characteristic formula 227
4.4.5 Global Euler characteristic formula 231

5 Modular L-Values and Selmer Groups 236
5.1 Selmer Groups 239
 5.1.1 Definition 239
 5.1.2 Motivic interpretation 244
 5.1.3 Character twists 252
5.2 Adjoint Selmer Groups 254
 5.2.1 Adjoint Galois representations 254
 5.2.2 Universal deformation rings 259
 5.2.3 Kähler differentials 262
 5.2.4 Adjoint Selmer groups and differentials 265
5.3 Arithmetic of Modular Adjoint L-Values 267
 5.3.1 Analyticity of adjoint L-functions 267
 5.3.2 Rationality of adjoint L-values 269
 5.3.3 Congruences and adjoint L-values 276
 5.3.4 Gorenstein and complete intersection rings 285
 5.3.5 Universal p-ordinary Hecke algebras 291
 5.3.6 p-adic adjoint L-functions 294
5.4 Control of Universal Deformation Rings 297
 5.4.1 Deformation functors of group representations 297
 5.4.2 Nearly ordinary deformations 302
 5.4.3 Ordinary deformations 305
 5.4.4 Deformations with fixed determinant 306
5.5 Base Change of Deformation Rings 307
 5.5.1 Various deformation rings 307
5.6 Hilbert Modular Hecke Algebras 310
 5.6.1 Various Hecke algebras for $GL(2)$ 310
 5.6.2 Automorphic base change 316
 5.6.3 An Iwasawa theory for Hecke algebras 318
 5.6.4 Adjoint Selmer groups over cyclotomic extensions 323
 5.6.5 Proof of Theorem 5.44 325

Bibliography 330
Subject Index 337
List of Statements 340
List of Symbols 342