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Molecular Rydberg states

1.1 The nature of Rydberg states

The nature of atomic Rydberg states is well described by Gallagher, though with
less emphasis on theory [1]. Those of molecules are severely complicated by
the additional nuclear degrees of freedom, in a way that gives them quite dif-
ferent properties from those treated in most spectroscopic texts [2, 3, 4, 5]. The
essential difference is that established spectroscopic theory is rooted in the Born–
Oppenheimer approximation, whereby the frequencies of the electronic motion are
assumed to be so high compared with the vibrational and rotational ones that the
nuclear motions may be treated as moving under an adiabatic electronic energy (or
potential energy) surface. In addition the vibrational frequency usually far exceeds
that of the rotations, which means that every vibrational state has an approximate
rotational constant. Such considerations provide the basis for a highly successful
systematic theory. Modern ab-initio methods allow the calculation of very reliable
potential energy surfaces and there are a variety of efficient methods for diago-
nalizing the resulting Hamiltonian matrix within a functional or numerical basis.
Electronically non-adiabatic interactions between a small number of electronic
states can also be handled by this matrix diagonalization approach, even including
fragmentation processes, if complex absorbing potentials are added to the molecular
Hamiltonian.

The difficulty in applying such techniques to highly excited molecular electronic
states is that the Rydberg spectrum of every molecule includes 100 electronic states
with principal quantum number n = 10, separated from the n = 11 manifold by
only 100 cm−1, which is small compared with most vibrational spacings and
comparable to rotational spacings for small hydride species. Figure 1.1 shows a
simplified level scheme for a species with a positive ion rotational constant, B =
30 cm−1, and a vibrational interval, ω = 2322 cm−1, appropriate to H+

2 . The levels
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Figure 1.1 A schematic molecular Rydberg system, showing series terminating
on different (v, J ) energy levels of the positive ion. The isolated solid lines mark
the series limits. The wavy dotted lines are the attached continua. Small labels are
the principal quantum numbers, n. Energies are measured in atomic units from the
(0, 0) ionization limit.

are calculated by the Rydberg formula

Env+J+ = E+
v+N+ − Ry

(n − μ)2 , (1.1)

with the quantum defect μ = 0.169 appropriate to the np 1�+
u system of H2.

Each series, whose continuum is marked by a wavy dotted line, is labelled by the
vibrational rotational quantum numbers (v+, N+). The small symbols, marking
individual levels are the principal quantum numbers, n. One sees for example that
the n = 10 level of the (0, 2) series lies above the n = 11 level of the (0, 0) series,
which means that the electronic energy splitting is smaller than the �N+ = 0 → 2
rotational interval. In addition, the perturbations arising from the resulting non-
adiabatic coupling in the discrete spectrum go over to auto-ionization as soon
as discrete members of a higher series lie in the continuum of a lower one. The
situation with regard to the 1�+

g series of H2 is further complicated by interaction
with ion-pair valence states, which give rise to the famous double minimum pairs
(E,F), (G,H), etc.

It is therefore evident that Rydberg systems require a theory that can handle the
presence of bound and slowly fragmenting states in a unified way. The method
of choice is ‘multichannel quantum defect theory’ or MQDT, which visualizes
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1.1 The nature of Rydberg states 3

the dynamics as a scattering process in which collisions between the loosely
bound electron and a short-range positive ion core lead to phase changes and
energy transfer probabilities that determine the physical observables [6, 7, 8, 9].
An important difference from normal scattering theory is that the electron is
scattered into an attractive Coulomb field, rather than a field-free region. Thus
for example a low-lying bound electron may be scattered to and fro between
neighbouring bound states, leading to spectral perturbations. Another possibility
is that the collisions may excite the positive ion into a dissociative electronic
state, leading to molecular predissociation. The dynamics are further complicated
for higher-lying bound states by the possibility of scattering into the ionization
continuum.

Fortunately there is a major simplification, in that the energy range of most
interest in molecular physics is small compared with the total energy of the system.
Consequently the parameters, loosely termed ‘quantum defects’, that characterize
the fundamental collision process, may often be treated as almost independent of
energy over the physically interesting range. The dynamical complications arise
principally from the boundary conditions of the coupled system.

The quantum defects may be treated at one level as phenomenological parame-
ters, to rationalize the observations. As a simple example, the Rydberg formula for
the energies of alkali atoms

En� = I − Ry

(n − μ�)2
, (1.2)

withμ2 > μp > μd, etc., is well known to allow fairly accurate predictions of entire
series, from observation of a single member – even without allowing for the weak
energy dependence of the quantum defect parameters, μ�. Similarly, as a slightly
more complicated example, analysis of the perturbations between bound levels
below the first ionization limit in Fig. 1.1 may be used to predict the rates of auto-
ionization above the limit. Another benefit of the weak energy dependence concerns
the relevance of ab-initio electronic structure theory. Standard techniques [10] can
now yield highly accurate low-lying potential energy functions for small molecules,
including Rydberg states up to n � 4, but the extension to higher members of the
series is prohibitive because the very diffuse outer parts of the orbitals are poorly
approximated by Gaussian functions. By contrast, MQDT techniques work with
exact Coulomb wavefunctions in the outer region, and the necessary interactions
with the core may be extracted as quantum defect functions, from the molecular
analogue of (1.2). In the simplest case of a diatomic molecule

Vn�λ(R) = V +(R) − Ry

[n − μ�λ (R)]2 , (1.3)
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4 Molecular Rydberg states
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Figure 1.2 Semiclassical p orbits with � = 1.5 and n = 5, 10 and 15, compared
with a core of radius 10a0. The inset shows that the two latter orbits are indistin-
guishable in the core region, with a small but discernible difference from the inner
n = 5 orbit. The dotted curves in the inset follow the s, d and f orbits for n = 10.

where Vn�λ(R) is the ab-initio potential function for n = 3 or 4 and V +(R) is the
corresponding curve for the positive ion. An alternative, more powerful, ab-initio
approach, particularly in the presence of potential surface crossings, is to solve the
ab-initio equations within a relatively small box around the ionic core and to join
the resulting Rydberg orbitals to combinations of the exact Coulomb functions in
the outer region by what are called R-matrix methods [11, 12, 13].

The reader may wonder at this stage why it is legitimate to employ the output
from ab-initio calculations, which are performed within the fixed nucleus ‘Born–
Oppenheimer’ approximation, despite the stated aim in the second paragraph to
handle situations in which the electronic energy separations are small even com-
pared with rotational ones. The answer again lies in the fact that the relevant
perturbations to the electronic motion occur at short range, where the electron
velocity is high. Figure 1.2 shows the equivalent classical orbits of a hydrogenic p
electron, with n = 5, 10 and 15. The total orbit times are roughly equal to n3 times
the atomic time unit, τ = 2.417 × 10−17 s, but an application of classical angle-
action theory1 shows that the fractional time within a core of radius 10 atomic units
decreases as n−3. Hence the transit time, and even the shape of the track in the inset

1 Appendix E.5 of Child [14] shows that

r = n2a0(1 + ε cos u),
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1.1 The nature of Rydberg states 5

in Fig. 1.2, are almost independent of n. Finally, as discussed in the footnote, the
transit time itself varies from 1.2 × 10−16 s for an s orbit to 1.6 × 10−16 s for an f
orbit, which is short compared with any molecular vibrational or rotational period.
The Born–Oppenheimer approximation is therefore fully justified over the period
during which the electron is perturbed by the core.

This classical argument has two other significant consequences. In the first
place the n−3 dependence of the transit time for any bound orbit translates into
an n−3/2 dependence of the wavefunction amplitude within the core, which gives
rise to a variety of Rydberg scaling laws. Secondly, the abruptness of the transit
allows the use of a powerful ‘frame transformation’ technique [6]. The uncou-
pled states |i〉 in the outer region apply to the combination of a positive ion in
a well-defined quantum state and an independent incoming or outgoing electron
with defined angular momentum �. The interaction region on the other hand sup-
ports Born–Oppenheimer states, |α〉, in which the electron occupies a molecule
fixed orbital with fixed instantaneous bond lengths. Moreover, an electron starting
from an asymptotic state |i〉 typically switches to a Born–Oppenheimer core state
|α〉, so rapidly that the transition amplitude may be approximated as the simple
projection 〈i |α〉. The influence of the positive ion core is then taken into account
via the quantum defects, μα, which cause phase changes between the incoming
and outgoing wavefunctions. As a result the scattering from incident state |i〉 to
final asymptotic state |j〉 may be characterized by matrices of the exponential or
trigonometric forms, with elements of the form

Sij =
∑
α

〈i |α〉 e2iπμα 〈α |j〉 or Kij =
∑
α

〈i |α〉 tanπμα〈α|j〉. (1.4)

where ε is the eccentricity

ε =
√
n2 − (� + 1/2)2

n

and u is an auxiliary variable, in terms of which the classical angle αn is given by

αn = u + ε sin u.

It is readily verified that the closest approach at r = an� = n2a0(1 − ε), which is approximately independent
of n for n2 � (� + 1/2)2, is reached at u = αn = π .

Since αn is designed to vary linearly with time, the fractional time to cross a spherical core of radius rc is
given by [αn (rc) − π ] /π . One may assume a quadratic expansion for cos u about u = π, which is valid for

(u − π )2 = �c

n2ε
� 1,

where �c is the scaled displacement 2(rc − an�)/a0. The corresponding cubic expansion for sinu rearranges to

τcore

τorbit
= αn (rc) − π

π
=

√
�c

[
3(� + 1/2)2 + �c

]
6πn3

,

which demonstrates the n−3 dependence. A computation based on following the evolution of αn and r as
functions of the auxiliary variable u readily shows that the fractional angle action range within a core of radius
10 a0 varies between 4.9n−3 for an s orbit to 6.7n−3 for an f orbit, which translates into a range of transit times
from 1.2 × 10−16 s to 1.6 × 10−16 s.
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6 Molecular Rydberg states
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Figure 1.3 Schematic potential curves for a hypothetical AB molecule. Two con-
tinua are shown by wavy lines. One starts from the A + B asymptote of the repul-
sive � curve. The other has an attached ladder of vibrational levels terminating
on the A∗ + B dissociation limit of the bound �+ curve.

We shall see in later chapters that the choice of an S- or a K-matrix depends on
whether the scattering is formulated in terms of incoming and outgoing waves, or
in terms of sine-like and cosine-like standing waves.

It is also helpful to introduce the concept of a ‘channel’, which plays an important
role in any scattering formulation. Seen in a familiar framework, consider the
potential curves of a hypothetical diatomic molecule in Fig. 1.3, each of which
may be labelled by the electronic symmetry, by the states of its separated atom
fragments, and by the total angular momentum. Each ‘channel’ then consists of the
entire family of bound and continuum states, supported by the relevant potential
curve, or ‘channel potential’. Since the diagram is actually drawn for J = 0, the
bound levels of the �+ potential belong to the rotationless vibrational states. The
corresponding channel potentials for J �= 0 include an additional centrifugal term,
J (J + 1)h̄2/2μR2, and the bound levels are rotational–vibrational ones. As another
useful terminology, a channel is said to be ‘open’ (to fragmentation) at energies
above the dissociation limit, ‘closed’ at energies between Vmin and the dissociation
limit, and ‘strongly closed’ or ‘forbidden’ for E < Vmin. Thus the �+ channel is
closed and the � channel strongly closed below the A + B asymptote, while the
� channel opens at energies above this dissociation limit. Finally both channels
are open above the A∗ + B dissociation limit. One also speaks of the bound levels
of the �+ channel ‘lying in the � continuum’ at energies between the A + B and
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1.2 Organization of the text 7

A∗ + B limits. Symmetry forbids any interaction between the two J = 0 channels,
but added angular momentum can lead to ‘heterogeneous predissociation’ with a
selection rule �J = ±1, induced by Coriolis coupling [15].

The channels in Fig. 1.3 are termed molecular dissociation channels, labelled
by different electronic states of the fragment atoms. In the Rydberg context, the
ionization channels are equally important. The relevant channel potentials are
then centrifugally corrected Coulomb potentials, each supporting infinite series
of electronic states; and the asymptotes belong to different electronic, vibrational
and rotational energies of the positive ion. Figure 1.1 illustrates electronic energy
ladders (or Rydberg series) terminating on the |v+, N+〉 = |0, 0〉, |0, 2〉, |0, 4〉 and
|1, 0〉 states of H+

2 . There are in fact many such ladders with different angular
momenta. One of the first molecular applications of multichannel quantum defect
theory [6] demonstrated the important connection between spectral perturbations
below the |0, 0〉 limit and auto-ionization in the interval between the |0, 0〉 and
|0, 2〉 limits, arising from rotationally induced interactions between the np series
that are designated as npσ 1�+

u and npπ 1�u at low energies, where the Born–
Oppenheimer approximation applies; and as np0 and np2, according to the relevant
value of N+, at energies close to ionization. To see how the interaction arises, it
is interesting to refer to the structure of the scattering matrices in (1.4). The labels
|i〉 = |N+�J 〉 designate the positive ion rotational state, the electronic angular
momentum � and the total angular momentum J ,2 while the Born–Oppenheimer
labels are |α〉 = |�J 〉, where  is the electronic angular momentum that gives the
σ orπ character. It follows from (1.4) that the scattering matrices will contain no off-
diagonal terms unless the quantum defects μα differ from one Born–Oppenheimer
channel to another. In other words, by reference to (1.3) the energies of the npσ 1�+

u

and npπ 1�u electronic states must differ. The beauty of the MQDT formulation
is that the n dependence of such energy separations is determined by the almost
energy-independent quantum defects, μpσ and μpπ .

1.2 Organization of the text

Four of the following chapters cover aspects of multichannel quantum defect theory,
with an emphasis in the early chapters on connections with traditional spectroscopic
theory. Two subsequent chapters focus on photo-excitation and photo-ionization
in the context of modern n-photon experiments. The final chapter concerns the
manipulation of Rydberg states. Readers should note that much of the technical
detail is placed in the appendices. In particular, those unfamiliar with molecular
terminology will find the notation explained in Appendix F. In addition details

2 We ignore vibrational complications for simplicity.
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8 Molecular Rydberg states

of the construction of parity-adapted basis states for different angular momentum
schemes are included in Appendix C.

The quantum defect picture

Chapter 2 outlines the essential elements of multichannel quantum defect theory
(MQDT) [7, 8, 9]. It starts from the assumption that the scattering problem between
the outer Rydberg electron and the positive ion core has been solved – by methods
that will be outlined in later chapters. The relevant quantum defects, μα, and
scattering K-matrices, that monitor the strength of the Rydberg–core interaction
are assumed to be known. The chapter is therefore concerned with the behaviour of
this outer electron, moving in a pure Coulomb field, and with how this behaviour
is modified by the K-matrix parameters and the boundary conditions as r → ∞.

The flexibility to handle arbitrary Rydberg systems, from atoms to polyatomic
molecules is introduced by showing how the supposedly known K-matrix elements
determine combinations of Coulomb basis functions in each channel, which are
simply independent solutions of the radial Schrödinger equation, at the chosen
energy and orbital angular momentum. An analysis of the boundary conditions as
r → ∞ leads to the characteristic structure of the MQDT working equations, which
depend on matrices with dimensions equal to the number of interacting channels,
which is orders of magnitude smaller than the number of basis states required
for a conventional diagonalization. The nature of typical solutions is illustrated
by demonstrating close similarities between the bound state structure immediately
below the ionization limit and the auto-ionizing resonances immediately above.
Connections with the matrix formulation of traditional spectroscopic theory are
also discussed.

Ab-initio methods

Chapter 3 concerns the ab-initio determination of the quantum defects and scatter-
ing K-matrices, which may be derived as functions of the nuclear coordinates. A
short introductory section uses the case of H2 to show how analogues of (1.3) and
(1.4) may be used to extract diagonal and off-diagonal quantum defects from fam-
ilies of possibly strongly interacting high level ab-initio surfaces. Factors affecting
the bond length dependence of the quantum defect functions, μ�(R) are also
discussed.

Subsequent sections concern the formulation and implementation of what are
termed R-matrix techniques, which allow the direct determination of the nuclear-
coordinate-dependent K(Q) matrix at arbitrary energies up to and above the ion-
ization limit [11, 12, 13]. The argument is that the outer parts of all Rydberg
wavefunctions behave as known Coulomb functions, outside the range of the
Rydberg–core interactions. Thus the ab-initio effort may be restricted to a finite
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1.2 Organization of the text 9

volume. The resulting inner wavefunction is then joined to the outer one by appro-
priate log-derivative boundary conditions at the core boundary, at which a strongly
energy-dependent matrix R(E) ensures continuity between the inner and outer
wavefunctions in the form

ψE(a) = R(E)
[
aψ ′

E(a) + bψE(a)
]
, (1.5)

where the components of the column vector ψE(a) are the amplitudes of the
Rydberg wavefunction in different channels at the core radius r = a, while b is
a parameter appropriate to the nature of the internal basis functions. Continuity
of the log-derivative at the boundary normally leads to the very weakly energy-
dependent K-matrix, because the energy dependence of the R-matrix is cancelled
by the log-derivatives of the outer basis functions.

Two types of R-matrix theory are discussed, according to whether the inner
ab-initio equations are solved for electronic eigenvalues in a suitable continuum
basis, perhaps with fixed log-derivatives in the early Wigner–Eisbud approach [16],
or for eigenvalues of the log-derivative, b(E), at a fixed energy in the eigenchan-
nel method [13]. The convergence properties of the two methods are discussed,
including the introduction of so called Buttle corrections to compensate for incom-
pleteness in the Wigner method [17]. Illustrative applications of the two methods are
described.

The treatment of species with large ion core dipoles is tackled in the final
section.

Frame transformations and channel interactions

The strength of the theory is greatly enhanced by the use of frame transformations
(Chapter 4), which are justified on one hand by the brevity of the ‘core transit
time’, and more explicitly by demonstrating the insensitivity of the radial wave-
function to energy changes comparable to those associated with vibrations and
rotations of the ion core. Both these lines of argument justify the conclusion that
the transition amplitude between coupled and uncoupled representations may be
accurately approximated by the simple internal overlap 〈i |α〉. Subsequent sections
of the chapter deal with the machinery required to perform rotational, vibrational
and vibronic frame transformations, each of which is illustrated by appropriate
physical applications.

Rotational frame transformation theory is complicated by the variety of angular
momentum coupling schemes from one molecule to another [5, 18]. The treatment
in the main text is therefore limited to the simplest case, in which spin is ignored,
leaving more complicated situations to be handled in Appendix C. Applications are
chosen to show how MQDT theory handles the familiar topics of -doubling and
�-uncoupling [2, 5, 19]. It is also shown how decreasing electronic energy spacings
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10 Molecular Rydberg states

as the energy increases are reflected in ‘stroboscopic’ fringes in the spectrum
as periods of the electronic motion tune through integer multiples of the fixed
rotational period.

The third section covers vibrational channel interactions, for which the vibra-
tional wavefunctions, 〈R|v+〉, of the positive ion play the part of frame transforma-
tion elements between the fixed nucleus Born–Oppenheimer and the uncoupled pos-
itive ion states. The forms of the resulting K-matrix elements 〈v+′| tanπμ�λ(r)|v+〉
are well displayed by the np series of H2, in view of the strong nuclear coordinate
dependence of the pσ quantum defect. Applications to the discrete level structure
and vibrational auto-ionization are given.

The final section of Chapter 4 starts with a brief discussion of vibronic curve-
crossing interactions. A longer account of Jahn–Teller induced coupling throughout
a Rydberg series is then described. Particular emphasis is given to the scaling of
the coupling strength according to changes in the principal quantum number. The
mechanism of Jahn–Teller-induced auto-ionization is also discussed as a prelude
to the theory of dissociative recombination in the following chapter.

Predissociation and dissociative recombination

Chapter 5 extends the theory to include both ionization and dissociation channels
as illustrated by the processes

AB+ + e � AB∗ � A + B.

Thus the central species AB∗, which designates a Rydberg state, may auto-ionize to
left to produce a positive ion and an electron, or predissociate to the right into neutral
fragments. Alternatively a collision between the electron and positive ion may
yield neutral fragments in a process known as ‘dissociative recombination’ [20].
The reverse possibility, whereby the neutrals collide to produce ions is ‘collisional
ionization’.

Two treatments of these composite processes are described. The first employs
a perturbation model, which is particularly appropriate to curve-crossing situ-
ations. It rests on combining the vibrational and rotational channel interaction
theory of the previous chapter with a ‘generalized MQDT’ treatment of the dis-
sociation dynamics, details of which are given in Appendix E. The two strands
are linked by the perturbative construction of a global K-matrix with both ion-
ization and dissociation channels. The same formal construction allows the treat-
ment of dissociative recombination at higher energies, although the theory is more
easily expressed in terms of a composite S-matrix than the corresponding K-
matrix. The factors responsible for the magnitude and energy dependence of the
cross-section are illustrated by reference to the dissociative recombination of H+

2

and NO+.
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