
1 Introduction

Modern computer systems built from the most sophisticated microprocessors and
extensive memory hierarchies achieve their high performance through a combina-
tion of dramatic improvements in technology and advances in computer architec-
ture. Advances in technology have resulted in exponential growth rates in raw speed
(i.e., clock frequency) and in the amount of logic (number of transistors) that can be
put on a chip. Computer architects have exploited these factors in order to further
enhance performance using architectural techniques, which are the main subject of
this book.

Microprocessors are over 30 years old: the Intel 4004 was introduced in 1971.
The functionality of the 4004 compared to that of the mainframes of that period
(for example, the IBM System/370) was minuscule. Today, just over thirty years
later, workstations powered by engines such as (in alphabetical order and without
specific processor numbers) the AMD Athlon, IBM PowerPC, Intel Pentium, and
Sun UltraSPARC can rival or surpass in both performance and functionality the
few remaining mainframes and at a much lower cost. Servers and supercomputers
are more often than not made up of collections of microprocessor systems.

It would be wrong to assume, though, that the three tenets that computer archi-
tects have followed, namely pipelining, parallelism, and the principle of locality, were
discovered with the birth of microprocessors. They were all at the basis of the design
of previous (super)computers. The advances in technology made their implementa-
tions more practical and spurred further refinements. The microarchitectural tech-
niques that are presented in this book rely on these three tenets to translate the
architectural specification – the instruction set architecture – into a partition of static
blocks whose dynamic interaction leads to their intended behavior.

In the next few pages, we give an extremely brief overview of the advances in
technology that have led to the development of current microprocessors. Then, the
remainder of this chapter is devoted to defining performance and means to mea-
sure it.
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Figure 1.1. The von Neumann machine model.

1.1 A Quick View of Technological Advances

1.1.1 The von Neumann Machine Model

Modern microprocessors have sophisticated engineering features. Nonetheless, they
still follow essentially the conventional von Neumann machine model shown in
Figure 1.1. The von Neumann model of a stored program computer consists of four
blocks:

� A central processing unit (CPU) containing an arithmetic–logical unit (ALU)
that performs arithmetic and logical operations, registers whose main function
is to be used for high-speed storage of operands, a control unit that interprets
instructions and causes them to be executed, and a program counter (PC) that
indicates the address of the next instruction to be executed (for some authors
the ALU and the control unit constitute separate blocks).

� A memory that stores instructions, data, and intermediate and final results.
Memory is now implemented as a hierarchy.

� An input that transmits data and instructions from the outside world to the
memory.

� An output that transmits final results and messages to the outside world.

Under the von Neumann model, the instruction execution cycle proceeds as follows:

1. The next instruction (as pointed to by the PC) is fetched from memory.
2. The control unit decodes the instruction.
3. The instruction is executed. It can be an ALU-based instruction, a load from a

memory location to a register, a store from a register to the memory, or a testing
condition for a potential branch.

4. The PC is updated (incremented in all cases but a successful branch).
5. Go back to step 1.
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1.1 A Quick View of Technological Advances 3

Of course, in the more than sixty years of existence of stored program computers,
both the contents of the blocks and the basic instruction execution cycle sequence
have been optimized thoroughly. In this book, we shall look primarily at what can
be found on a microprocessor chip. At the outset, a microprocessor chip contained
the CPU. Over the years, the CPU has been enhanced so that it could be pipelined.
Several functional units have replaced the single ALU. Lower levels of the memory
hierarchy (caches) have been integrated on the chip. Recently, several microproces-
sors and their low-level caches coexist on a single chip, forming chip multiprocessors
(CMPs). Along with these (micro)architectural advances, the strict sequential exe-
cution cycle has been extended so that we can have several instructions proceed
concurrently in each of the basic steps. In Chapters 2 through 6, we examine the
evolution of single processor chips; Chapters 7 and 8 are devoted to multiprocessors.

1.1.2 Technological Advances

The two domains in which technological advances have had the most impact on the
performance of microprocessor systems have been the increases in clock frequency
and the shrinking of the transistor features leading to higher logic density. In a sim-
plistic way, we can state that increasing clock frequency leads to faster execution,
and more logic yields implementation of more functionality on the chip.

Figure 1.2 shows the evolution of the clock frequencies of the Intel micropro-
cessors from the inception of the 4004 in 1971 to the chip multiprocessors of 2003
and beyond. From 1971 to 2002, we see that processor raw speeds increased at an
exponential rate. The frequency of the 4004, a speck on the figure that cannot be
seen because of the scaling effect, was 1.08 MHz, a factor of 3,000 less than the 3.4
GHz of the Pentium 4. This corresponds roughly to a doubling of the frequency
every 2.5 years. To be fair, though, although the Pentium 4 was the fastest processor
in 2003, there were many mainframes in 1971 that were faster than the 4004. Some
supercomputers in the late 1960s, such as the IBM System 360/91 and Control Data
6600/7600 – two machines that will be mentioned again in this book – had frequen-
cies of over 100 MHz. However, if they were two orders of magnitude faster than
the 4004, they were about six orders of magnitude more expensive. After 2003, the
frequencies stabilize in the 3 GHz range. We shall see very shortly the reason for
such a plateau.

The number of transistors that can be put on a chip has risen at the same pace
as the frequency, but without any leveling off. In 1965, Gordon Moore, one of the
founders of Intel, predicted that “the number of transistors on a given piece of sili-
con would double every couple of years.” Although one can quibble over the “cou-
ple of years” by a few months or so, this prediction has remained essentially true and
is now known as Moore’s law. Figure 1.3 shows the exponential progression of tran-
sistors in the Intel microprocessors (notice the log scale). There is a growth factor
of over 2,000 between the 2,300 transistors of the Intel 4004 and the 1.7 billion tran-
sistors of the 2006 Intel dual-core Itanium (the largest number of transistors in the
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Figure 1.2. Evolution of Intel microprocessors speeds (black bars: frequency at introduction;
white bars: peak frequency).

microprocessors of Figure 1.2 is a little over half a billion for a dual-core Extreme).
It is widely believed that Moore’s law can be sustained until 2025.

Besides allowing implementers to use more logic (i.e., provide more functionality)
or more storage (i.e., mitigate the imbalance between processor speed and memory
latency), consequences of Moore’s law include reduced costs and better reliability.

However, the exponential growths in speed and logic density do not come with-
out challenges. First, of course, the feature size of the manufacturing process, which
is closely related to transistor sizes, cannot be reduced indefinitely, and the number
of transistors that can be put on a chip is physically bounded. Second, and of primary
importance now, is the amount of power that is dissipated. Figure 1.4 illustrates
this point vividly (again, notice the log scale). Third, at multigigahertz frequencies,
the on-chip distance (i.e., sum of wire lengths) between producer and consumer of
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1.1 A Quick View of Technological Advances 5

Figure 1.3. Illustration of Moore’s law for the Intel microprocessors.

information becomes a factor and influences microarchitectural design decisions.
We will elaborate more on these design problems in Chapter 9.

Now we can come back to the source of the leveling of speeds in Figure 1.2 after
2002. The power requirements as shown in Figure 1.4 and the growth in the number
of transistors as shown by Moore’s law limit the speeds that can be attained, because
the switching (or dynamic) power dissipation is related to the frequency, and the

Figure 1.4. Power dissipation in selected Intel microprocessors (from Fred Pollack, Micro32
keynote).
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6 Introduction

static power (leakage) dissipation is related to the number of transistors on the
chip. Therefore, Intel and other manufacturers have capped the frequencies at their
2003 level. An exception is the IBM Power6, introduced in 2007, which is clocked
at slightly over 4.7 GHz. However, even with this latest development, the exponen-
tial speed increase has stopped. The persistence of Moore’s law and the resulting
increase in the amount of logic that can be put on a chip have led to the emer-
gence of CMPs.

1.2 Performance Metrics

Raw speed and the number of transistors on a chip give a good feel for the progress
that has been made. However, in order to assess the performance of computer sys-
tems, we need more precise metrics related to the execution of programs.

From a user’s viewpoint, what is important is how fast her programs execute.
Often, though, this time of execution depends on many factors that have little to
do with the processor on which the programs execute. For example, it may depend
on the operating system (which version of Windows or Linux), the compiler (how
well optimized it is), and network conditions (if the user’s workstation is sharing
I/O devices with other workstations on a local area network). Moreover, the pro-
grams that user A is interested in can be completely different from those of interest
to programmer B. Thus, to perform meaningful architectural comparisons between
processors and their memory hierarchies or to assess the benefits of some compo-
nents of the design, we need:

� Metrics that reflect the underlying architecture in a program-independent
fashion.

� A suite of programs, or benchmarks, that are representative of the intended
load of the processor.

Neither of these goals is easy to attain in a scientific manner.

1.2.1 Instructions Per Cycle (IPC)

Metrics to assess the microarchitecture of a processor and of its memory hierarchy,
(i.e., caches and main memory), should be defined independently of the I/O subsys-
tem. The execution time of a program whose code and data reside in the memory
hierarchy will be denoted EXCPU to indicate the context in which it is valid.

The execution time of a program depends on the number of instructions exe-
cuted and the time to execute each instruction. In a first approximation, if we assume
that all instructions take the same time to execute, we have

EXCPU = Number of instructions × Time to execute one instruction (1)

Now, Time to execute one instruction can be expressed as a function of the cycle
time (the reciprocal of the clock frequency) and the number of cycles to execute an
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1.2 Performance Metrics 7

instruction, or CPI (for “cycles per instruction”). Equation (1) can then be rewritten
as:

EXCPU = Number of instructions × CPI × cycle time (2)

CPI is a program-independent, clock-frequency-independent metric. Recently,
computer architects have preferred to quote figures related to its reciprocal, IPC
(for “instructions per cycle.”) The main reason for this cosmetic change is that it is
psychologically more appealing to strive for increases in IPC than for decreases in
CPI. Thus, we can rewrite Equation (2) as

EXCPU = (Number of instructions × cycle time)/IPC (2′)

and define IPC as

IPC = (Number of instructions × cycle time)/EXCPU (3)

or

IPC = Number of instructions/(clock frequency × EXCPU) (3′)

or, if we express EXCPU as Total number of cycles × cycle time,

IPC = Number of instructions/Total number of cycles (3′′)

Another reason to use IPC as a metric is that it represents throughput, (i.e., the
amount of work per unit of time). This is in contrast to EXCPU, which represents
latency, which is an amount of time.

In an ideal single-pipeline situation, when there are no hazards and all mem-
ory operations hit in a first-level cache, one instruction completes its execution at
every cycle. Thus, both CPI and IPC are equal to one. We can forget about the
overhead of filling the pipeline, for this operation takes only a few cycles, a negli-
gible amount compared to the billions – or trillions – of cycles needed to execute
a program. However, when there are hazards – for example, branches, load depen-
dencies, or cache misses (we will review these hazards and the basics of the memory
hierarchy in Chapter 2) – then CPI will increase (it is easier to reason about CPI
than about IPC, although for the reasons mentioned above we shall often refer to
IPC). More specifically, assuming that the only disruptions to the ideal pipeline are
those that we just listed, CPI can be rewritten as

CPI = 1 + CPIload latency + CPIbranches + CPIcache (4)

where CPIx refers to the extra number of cycles contributed by cause x. This yields
the formula for IPC:

IPC = 1
1 + ∑

x
CPIx

(4′)

EXAMPLE 1: Assume that 15% of instructions are loads and that 20% of the
instructions following a load depend on its results and are stalled for 1 cycle.
All instructions and all loads hit in their respective first-level caches. Assume
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8 Introduction

further that 20% of instructions are branches, with 60% of them being taken
and 40% being not taken. The penalty is 2 cycles if the branch is not taken, and
it is 3 cycles if the branch is taken. Then, 1 cycle is lost for 20% of the loads,
2 cycles are lost when a conditional branch is not taken, and 3 cycles are lost for
taken branches. This can be written as

CPIload latency = 0.15 × 0.2 × 1 = 0.03

and

CPIbranches = 0.2 × 0.6 × 3 + 0.2 × 0.4 × 2 = 0.52

Thus

CPI = 1.55 and IPC = 0.65.

A very simple optimization implementation for branches is to assume that they
are not taken. There will be no penalty if indeed the branch is not taken, and
there will still be a 3 cycle penalty if it is taken. In this case, we have

CPIbranches = 0.2 × 0.6 × 3 = 0.36, yielding CPI = 1.39 and IPC = 0.72

Of course, it would have been more profitable to try optimizing the branch-
taken case, for it occurs more frequently and has a higher penalty. However,
its optimization is more difficult to implement. We shall return to the subject of
branch prediction in detail in Chapter 4.

Let us assume now that the hit ratio of loads in the first level cache is 95%.
On a miss, the penalty is 20 cycles. Then

CPIcache = (1 − 0.95) × 20 = 1

yielding (in the case of the branch-not-taken optimization) CPI = 2.39 and
IPC = 0.42.

We could ask whether it is fair to charge both the potential load dependency
and the cache miss penalty for the 5% of loads that result in a cache miss. Even
in a very simple implementation, we could make sure that on a cache miss the
result is forwarded to the execution unit and to the cache simultaneously. There-
fore, a better formulation for the load dependency penalty would be CPIload latency =
0.15 × 0.2 × 1 × 0.95 = 0.029. The overall CPI and IPC are not changed signifi-
cantly (in these types of performance approximation, results that differ by less than
1% should be taken with a large grain of salt). Although this optimization does not
bring any tangible improvement, such small benefits can add up quickly when the
engines become more complex, as will be seen in forthcoming chapters, and should
not be scorned when there is no cost in implementing them. This example also indi-
cates that the memory hierarchy contributions to CPI could be dominating. We shall
treat techniques to reduce the penalty due to the memory hierarchy in Chapter 6.

There exist other metrics related to execution time and, more loosely, to IPC.
One of them – MIPS, or millions of instructions per second – was quite popular in
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1.2 Performance Metrics 9

the 1970s and the 1980s, but has now fallen into desuetude because it is not very rep-
resentative of the architecture of contemporary microprocessors. MIPS is defined
as

MIPS = Number of instructions
EXCPU × 106

(5)

The main problem with this metric is that all instructions are considered to be equal
and neither classes of instructions nor explicit decreases in IPC (hazards) are taken
into account. This can lead to discrepancies such as a system having a higher MIPS
rating (MIPS is a rate inversely proportional to execution time, so the higher, the
better) than another while having a larger execution time because, for example, it
executes fewer instructions but some of these instructions have much higher latency
(see the exercises at the end of the chapter).

MFLOPS, the number of millions of floating-point operations per second, has
a definition similar to that of MIPS, except that only floating-point operations are
counted in Number of instructions. It can be argued that it is a representative mea-
sure for systems whose main goal is to execute scientific workloads where most of
the computation time is spent in tight loops with many floating-point operations.
However, it does suffer from some of the same shortcomings as MIPS, mainly
compiler-dependent and algorithm-dependent optimizations. Reaching teraflops,
that is, 1,000 megaflops, was for a long time the goal of supercomputer manufac-
turers; it was achieved in 1996 by a massively parallel computer (i.e., a system com-
posed of thousands of microprocessors). The next Holy Grail is to achieve pentaflops
(a million megaflops): it is not the subject of this book.

1.2.2 Performance, Speedup, and Efficiency

Equation (2) is the rule that governs performance, which can be defined as the recip-
rocal of the execution time. A smaller execution time implies better performance.
The three factors that affect performance are therefore:

� The number of instructions executed. The smaller the number of instructions
executed, the smaller the execution time, and therefore the better the perfor-
mance. Note that reducing the number of instructions executed for a given pro-
gram and a given instruction set architecture (ISA) is a compiler-dependent
function.

� CPI or IPC. The smaller the CPI (the larger the IPC), the better the perfor-
mance. It is the goal of computer architects to improve IPC, (i.e., this is a ques-
tion of microarchitecture design and implementation).

� The clock cycle time or frequency. The smaller the cycle time (the higher the
frequency), the better the performance. Improving the cycle time is technology-
dependent.

Improvement in any of these three factors will improve performance. However, in
practice these factors are not completely independent. For example, minimizing the
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10 Introduction

number of instructions executed can be counterproductive. A case in point is that
a multiplication can be sometimes replaced by a small sequence of add-and-shift
operations. Though more instructions are executed, the time to execute the add–
shift sequence may be smaller than that of the multiply. The apparent contradiction
is that in Equation (2) the factor CPI was assumed to be the same for all instructions.
In fact, in the same way as we introduced CPIx for showing specific penalties due
to cause x, we should make sure that CPI reflects the mix of instructions and their
execution times. If we have c classes of instructions with frequencies f1, f2, . . . , fc

and with cycles per instruction CPI1, CPI2, . . . , CPIc, then Equation (4) should be
rewritten as

CPI =
c∑

i=1

fi × CPIi +
∑

x

CPIx (6)

or

IPC = 1
c∑

i=1

fi × CPIi +
∑

x

CPIx

(6′)

Similarly, IPC and clock cycle time are related. With smaller cycle times, fewer oper-
ations can be performed in a single stage of the pipeline, and the latter becomes
deeper. Hazards now can inflict larger penalties when these are expressed in terms
of number of cycles. Thus, IPC might decrease with a smaller cycle time. How-
ever, recall from Equation (2′) that what is important is decreasing the ratio cycle
time/IPC.

IPC is a useful metric when assessing enhancements to a given microarchitec-
ture or memory latency hiding technique. We will often make use of it in subsequent
chapters. However, using IPC as a basis for comparison between systems that have
different ISAs is not as satisfactory, because the choice of ISA affects and is affected
by all three components of performance listed above.

When comparing the performance of two systems, what we are interested in is
their relative performance, not their absolute ones. Thus, we will say that system A
has better (worse) performance than system B if the execution time of A – on some
set of programs (cf. Section 1.2.3) – is less (more) than the execution time of B:

PerformanceA

PerformanceB
= EXCPU−B

EXCPU−A
(7)

A particularly interesting ratio of performance is Speedup, which is the ratio of per-
formance between an enhanced system and its original implementation:

Speedup = Enhanced performance
Original performance

= EXCPU−original

EXCPU−enhanced
(8)

Historically, the speedup was defined for parallel processors. Let Ti denote the time
to execute on i processors (i = 1, 2, . . . ,n); then the speedup for n processors is

Speedupn = T1

Tn
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