
Water, Life and Civilisation

Climate, Environment and Society in the Jordan Valley

Water, Life and Civilisation provides a unique interdisciplinary study of the relationships

between climate, hydrology and human society from 20,000 years ago to 100 years into the
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hunter-gatherers of the Pleistocene to classical civilisation, but also the present and future.
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the impacts of climate change and hydrology on human society, especially in the Near East.
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This volume is dedicated to Professor Bruce Sellwood (1947–2007).

Bruce was a pioneer of integrating palaeoclimatic modelling

and geological research. He was an inspirational figure within the

Water, Life and Civilisation Project and has been sorely missed

by his colleagues for both his academic contributions and

bonhomie.

Bruce Sellwood recording a section of the Lisan Marl for the

Water, Life and Civilisation project, 2006.
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Figures

1.1 Disciplinary aims and interdisciplinary interactions of the

Water, Life and Civilisation Project. page 4

1.2 Hierarchical modelling from global circulation models to

socio-economic impacts (courtesy of David Viner). See

colour plate section. 5

1.3 The geographical scope of the climate modelling within

the Water, Life and Civilisation project and the case study

region, indicating the key research localities. 6

1.4 Water, Life and Civilisation team members during an

orientation visit to Jordan in October 2004, here seen at

the Iron Age tell of Deir ‘Alla. See colour plate

section. 7

2.1 Location of rain gauges. Top: Global Historical Climate

Network (GHCN) gauges within Europe, Middle East and

North Africa. Bottom: gauge data within the Middle East.

Circles indicate GHCN monthly data; diamonds are

gauges from the World Meteorological Organisation

Global Summary of the Day (GSOD; daily data of very

variable quality); stars are stations with daily data, provided

by the Israeli Meteorological Service. 15

2.2 Mean climate over the Mediterranean. From top to

bottom: December–February total precipitation;

December–February SLP; December–February track

density. See colour plate section. 17

2.3 Seasonal cycle in various rainfall statistics for the stations

shown in the map to the right. The x-axis gives the month

and the y-axis the statistic in question. The error bars

represent the inter-annual standard deviation from one of

the stations. All rainfall units are millimetres. From top to

bottom, the statistics are: total monthly rainfall; mean

number of rainy days in the month; mean rain per rainy

day; mean maximum daily rainfall in the month;

probability of rain given rain the day before (upper group

of curves) and probability of rain given no rain the day

before (lower group of curves). 18

2.4 Annual total rainfall in Jordan and Israel superposed on

the orography. The contours are based on the data from

the gauges shown in Figure 2.1. The dashed contours are

sketched from published sources (US Geological Survey,

2006) because we were unable to obtain suitable quality

data in eastern Jordan. See colour plate section. 19

2.5 Mean correlation versus mean distance apart for

rainfall stations within Jordan and Israel. The solid line is

cross-correlations between all stations; the dotted line

is cross-correlations between grid squares of the same

latitude, and the dashed line represents cross-correlations

between grid squares of the same longitude. 19

2.6 Composite daily anomalies during the four GWL regimes

that favour rainfall most strongly (WA, SWA, SWZ

and NWZ – abbreviations defined in Table 2.1). Left set:

daily rainfall anomaly composites over the Mediterranean

(box shown on the top right plot); right set: daily SLP

anomaly composites over the Mediterranean and Atlantic.

See colour plate section. 20

2.7 Composites of precipitation, track density and SLP during

January based on the five wettest and driest Januaries in a

box with minimum longitude 34�, maximum longitude

36�, minimum latitude 31�, maximum latitude 33�.
See colour plate section. 21

2.8 Histograms of rainfall total for the box defined in Figure

2.7 for positive and negative phases of the NAO, EAWR,

East Atlantic pattern and for warm and cold Niño sea

surface temperature (SST) anomalies. Negative phases or

cold SSTs are shown by no shading and positive phases or

warm SSTs by grey shading. 21

3.1 The forcings used to drive the global and regional models.

(a) Greenhouse gas concentrations. (b) The annual cycle of

insolation at the top of the atmosphere in experiment

PREIND (units W m�2). (c) The anomaly in the annual

cycle of top of atmosphere (TOA) insolation applied to

experiment 6kaBP (units W m�2). (d) Annual mean

insolation anomalies at the top of the atmosphere in each of

the time-slice experiments (units W m�2). 27

3.2 (a) The area of land surface modifications over

North Africa and the Arabian Peninsula in the

‘Wet Sahara’ (WS) experiments (þ shows grid points

that are converted from mostly desert to uniform

savannah/shrubland and � are converted to open water).

ix
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(b) Imposed land ice-sheet changes between experiments

8kaBP and PREIND (shading shows the change in

surface height, in metres). (c) Ocean heat flux

convergence in experiments PRESDAY – 6kaBP

(W m�2). (d) Ocean heat flux convergence anomaly

applied to experiment 8kaBP (W m�2). (e) Sea surface

temperature (SST) difference between experiments

8kaBP and 8kaBPNOICE (shading, �C) and sea ice

difference (contours at 5% and 30%) for June–August.

(f) As (e), but for December–February. 28

3.3 The seasonal distribution of precipitation over the

Mediterranean. (a) GPCC dataset (June–September).

(b) GPCC dataset (December–February). (c) As (a) but

from the regional model in experiment PRESDAY. (d) As

(b) but from the regional model in experiment PRESDAY.

(e) As (a) but using the ERA-40 dataset. (f ) As (b) but

using the ERA-40 dataset. Units mm day�1. In (a) and (b)

missing data areas are blacked out. In (c) to (f), black

squares mark the regions where GPCC data are

missing. 31

3.4 Annual mean SAT and precipitation during the

pre-industrial period. The top row panels show

(a) SAT (�C) in experiment PRESDAY, and (b) the

difference (�C) found in experiment PREIND

(i.e. PREIND – PRESDAY). The middle row panels show

results from the global model where (c) is the

precipitation in experiment PRESDAY (mm day�1) and

(d) is the fractional difference (%) found in experiment

PREIND (i.e. [PREIND – PRESDAY] � 100/

PRESDAY). The bottom row (e, f ) is identical to the

middle row but uses downscaled data from the regional

model. For the difference plots (b, d, f ), areas where the

differences are statistically significant at (b) 99%, (d) 90%

and (f) 70% confidence are indicated by black crosses.

Areas of extremely low precipitation (less than 0.2 mm

day�1) in experiment PRESDAY are blacked out in the

difference plots. See colour plate section. 32

3.5 Hemisphere average SAT differences. (a) Northern

Hemisphere average SAT change relative to experiment

PREIND (�C). Data points from the time-slice

experiments are marked by crosses, and data points from

experiment 8kaBPNOICE are marked by triangles

(experiment PRESDAY is shown at time ¼ �0.2 kaBP).

(b) As (a) but for Southern Hemisphere. 33

3.6 Changes in SAT across the Holocene time-slice

integrations. (a) Annual mean SAT change (experiment

6kaBP – PREIND, �C). Panels (b) and (c) are as (a), but

for boreal summer and winter seasons, respectively.

(d) The change in the strength of the seasonal cycle of

SAT between experiment 6kaBP and PREIND (the

strength of the cycle is defined as the maximum monthly

mean SAT minus the minimum monthly mean SAT, units
�C). (e) Boreal winter SAT change (6kaBP – PREIND,

colours, �C) in the regional model and lower tropospheric

winds (850 hPa) in experiment PREIND (arrows, units m

s�1). (f ) As (e) but for boreal summer. In panels (b) to (d),

areas where the changes are statistically significant at the

90% level are marked with black crosses. See colour plate

section. 34

3.7 The annual cycle of zonal mean SAT anomalies

in experiment 6kaBP relative to experiment PREIND. (a–

c) Zonal mean SAT anomaly including (a) both ocean and

land points, (b) land points only, and (c) ocean points only

(units �C). (d) Outgoing longwave radiation anomalies at

the top of the atmosphere (boreal summer, for experiment

6kaBP – PREIND, units W m�2). For (a) to (c) contours

are at �0.25, 0.5, 1, 2 �C. 36

3.8 The lower tropospheric circulation, as given by the 850

hPa streamfunction. (a) Experiment PREIND during

December–February. (b) Difference between experiments

6kaBP and PREIND during December–February; shaded

areas indicate negative values. (c) As (a) but for June–

September. (d) As (b) but for June–September.

The circulation is along streamlines and is cyclonic

(anticlockwise) around negative values. The contour

interval is the same in (a) and (c), and is four times greater

than that in (b) and (d). 38

3.9 Differences in boreal summer precipitation across the

Holocene time-slice integrations. The top row shows the

precipitation in experiment PREIND (units mm day�1)

using data from (a) the global model and (b) the regional

model. The middle row shows the fractional change in

precipitation (units %) in experiment 6kaBP relative to

experiment PREIND (i.e. [6kaBP – PREIND] � 100/

PREIND), using data from (c) the global model and

(d) the regional model. Panel (e) is similar to (c) but for

experiment 8kaBP-WS. Panel (f ) shows the fractional

precipitation changes averaged over the SAHEL box

(in the global model, as marked in panels (a) and (c))

and the CAUCUS box (in the regional model, as marked

in panels (b) and (d)) in the time-slice experiments. Data

points from the time-slice experiments are marked by �
symbols whereas the þ symbols mark data points from

experiments 6kaBP-WS and 8kaBP-WS and triangles

mark data points from experiment 8kaBPNOICE

(experiment PRESDAY is shown at time ¼ �0.2 kaBP).

In panels (c) to (e), areas where the changes are

statistically significant at the 90% level are marked with

black crosses. Areas of extremely low precipitation (less

than 0.2 mm day–1 for the global model and
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0.05 mm day�1 in the regional model) in experiment

PREIND are blacked out in panels (b) to (e). See colour

plate section. 39

3.10 Differences in boreal winter precipitation across the

Holocene time-slice integrations using the global model.

(a) Experiment PREIND (units mm day�1). (b) The

fractional change in precipitation (units %) in experiment

6kaBP relative to experiment PREIND (i.e. [6kaBP –

PREIND] � 100/PREIND). (c) As (b) but for experiment

8kaBP. (d) As (b) but for experiment 8kaBPNOICE.

(e) As (b) but for Early Holocene experiments (8kaBP þ
10kaBP þ 12kaBP) minus the Late Holocene experiments

(2kaBPþ 4kaBPþ 6kaBP). Panel (f ) shows the fractional

precipitation changes averaged over the boxes marked in

panels (a) to (e). Data points from the time-slice

experiments are marked by � symbols whereas triangles

mark data points from experiment 8kaBPNOICE

(experiment PRESDAY is shown at time¼�0.2 kaBP). In

panels (b) to (e), areas where the changes are statistically

significant at the 90% level are marked with black crosses.

Areas of extremely low precipitation (less than 0.2 mm

day�1) in experiment PREIND are blacked out in panels (c)

and (d). See colour plate section. 41

3.11 Differences in boreal winter storm tracks across the

Holocene time-slice integrations using the global model.

(a) The storm track in experiment PREIND (units of

storms per month passing through a 5� spherical cap).
(b) Storm track difference (expt 6kaBP – PREIND). (c) As

(b) but for experiment 8kaBP. (d) As (b) but for

experiment 8kaBPNOICE. (e) As (b) but for Early

Holocene experiments (8kaBP þ 10kaBP þ 12kaBP)

minus the Late Holocene experiments (2kaBP þ 4kaBP þ
6kaBP). (f ) The fractional storm track changes averaged

over the boxes marked in panels (a) to (e). Data points

from the time-slice experiments are marked by � symbols

(experiment PRESDAY is not shown). In panels (b) to (e),

areas where the differences are statistically significant at

the 90% level are marked with black crosses, and areas of

high orography (in excess of 1,200 m) are blacked out.

Thick black contours in (b) to (e) show the 10 storms per

month contour from experiment PREIND. Prior to

display, the storm track diagnostics have been smoothed

to improve readability. 42

3.12 The upper and lower tropospheric s (the susceptibility of

the mean state to weather system growth, as described in

Section 3.2.7). (a) Values of s in experiment PREIND

(units s�1) at 925 hPa. (b) As (a) but for 400 hPa.

(c) Difference in s between experiments 6kaBP and

PREIND at 925 hPa. (c) As (b) but at 400 hPa. (e) As (c)

but for experiment 8kaBP. (f) As (d) but for experiment

8kaBP. Data are only shown for the Northern Hemisphere

extratropics and the contours have been lightly smoothed to

improve readability. 43

3.13 Differences in boreal winter precipitation across the

Holocene time-slice integrations from the regional model.

(a) Experiment PREIND (units mm day�1). (b) The

fractional change in precipitation (units %) in experiment

6kaBP relative to experiment PREIND (i.e. [6kaBP –

PREIND] � 100/PREIND). (c) As (b) but for experiment

8kaBP. (d) As (b) but for experiment 8kaBPNOICE. (e) as

(b) but for early Holocene experiments (8kaBPþ 10kaBPþ
12kaBP) minus the late Holocene experiments (2kaBP þ
4kaBP þ 6kaBP). (f) The fractional precipitation changes

averaged over the boxes marked in panels (a) to (e). Data

points from the time-slice experiments are marked by �
symbols, whereas triangles mark data points from

experiment 8kaBPNOICE (experiment PRESDAY is

shown at time �0.2 kaBP). In panels (b) to (e), areas

where the differences are statistically significant at the

90% level are marked with black crosses. Areas of

extremely low precipitation (less than 0.2 mm day�1) in

experiment PREIND are blacked out in panels (c) and

(d). See colour plate section. 45

3.14 Differences in the boreal winter storm tracks across the

Holocene time-slice integrations using the regional

model. (a) The storm track in experiment PREIND (units

of storms per month passing through a 5� spherical cap).
(b) Storm track difference (expt 6kaBP – PREIND). (c) As

(b) but for experiment 8kaBP. (d) As (b) but for

experiment 8kaBPNOICE. (e) As (b) but for the average

of the Early Holocene experiments (8kaBP þ 10kaBP þ
12kaBP) minus that for the Late Holocene experiments

(2kaBPþ 4kaBPþ 6kaBP). (f ) The fractional storm track

differences averaged over the box marked in panels (a) to

(e). Data points from the time-slice experiments are

marked by � symbols (experiment PRESDAY is not

shown). In panels (b) to (e), areas where the changes are

statistically significant at the 90% level are marked with

black crosses and areas of high orography (in excess of

1,200 m) are greyed out. Thick black contours in

(b) to (e) show the 10 storms per month contour from

experiment PREIND. The storm tracking analysis is

performed on a coarse grid (hence the extremely coarse

orographic features shown), and prior to display here the

storm track diagnostics have been further smoothed to

improve readability. 46

4.1 Model domains and modelled and observed topography.

Top: model grid points (dots) on the model topography for

the large domain. Bottom left: small domain (Middle

East only) used for the ensembles. Bottom right: observed
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topography for the easternMediterranean andMiddle East.

Topography is given in metres above sea level for all the

plots. See colour plate section. 53

4.2 Left set of panels: seasonal cycles in various statistics of

the weather for eight stations (black lines), and the

regional climate model baseline ensemble (grey shaded

area indicates the ensemble range). The x-axis gives the

month and the y-axis gives the mean rainfall statistic

during that month. From top to bottom the statistics are:

mean total monthly rainfall, mean total number of rainy

days, mean rain per rainy day, mean maximum

monthly rainfall, monthly mean probability of rain given

no rain the day before, monthly mean probability of

rain given rain the day before. Rainfall is given in

millimetres for all the plots. Right panel: the location of

the stations and the RCM time-series box. The crosses

indicate RCM grid points. 54

4.3 Seasonal cycle in precipitation change under an A2

scenario by 2070–2100. Significance at the 95% level is

shown by a dot in the grid square. Top set: monthly mean

absolute change in rainfall (mm) over the whole of the

Mediterranean under an A2 scenario. Bottom set: monthly

mean percentage change in rainfall (%) over the East

Mediterranean only. See colour plate section. 55

4.4 Change in the January climate (temperature, precipitation,

sea-level pressure and 850 mb track density) over the

Mediterranean under an A2 scenario by 2070–2100. See

colour plate section. 56

4.5 Change in daily rainfall probabilities. Significance at

the 95% level is indicated by a dot within the grid square.

Top row, left panel: absolute change in the probability of rain

given no rain the day before; right: absolute change in the

probability of rain given rain the day before. Bottom row: as

above but for percentage changes for the southeast part of the

region only. See colour plate section. 57

4.6 Left set of panels: seasonal cycles in various statistics of

the weather for the baseline ensemble (light grey

polygon); the A2 ensemble (dark grey polygon) and the

B2 integration (dashed line) for the box shown in Figure

4.2. The x-axis gives the month and the y-axis gives the

mean rainfall statistic during that month. From top to

bottom the statistics are: mean total monthly rainfall,

mean total number of rainy days, mean rain per rainy day,

mean maximum monthly rainfall, monthly mean

probability of rain given no rain the day before, monthly

mean probability of rain given rain the day before.

Rainfall is given in millimetres for all the plots. Right set

of panels: difference in ensemble means between the A2

scenario integration and the baseline integration for the

statistics shown on the left. Filled bars indicate

significance at the 95% level. 58

4.7 Percentage change in January precipitation under an A2

scenario by 2070–2100 for eight IPCC models. The model

name abbreviations on the plots are: CSIRO Mark 3.0

(csmk3); GFDL CM 2.0 AOGCM (gfcm20); HadCM3

(hadcm3); IPSL CM4 (ipcm4); MRI-CGCM2.3.2

(mrcgcm);NCAR CCSM3 (nccsm); GFDL CM 2.1

AOGCM (gfcm21); MIMR MIROC3.2

(medium resolution). See colour plate section. 59

4.8 Top: mean percentage change in January precipitation

predicted under an A2 scenario for 2070–2100 for the

IPCC models shown in Figure 4.7; middle: mean

percentage change in January precipitation predicted

under a B1 scenario for 2070–2100 for the IPCC models

shown in Figure 4.7. Bottom: difference in the mean

percentage change between the A2 and B1 (B1 – A2). See

colour plate section. 60

5.1 Location of gauges referred to in the chapter superposed

on the topography. The inset map shows the location of

the main map. Crosses are the locations of the stations

provided by the Israeli Meteorological Service. The star is

Tafilah and the circles are monthly data used in Chapters

12 and 13 and referred to here. 65

5.2 Seasonal cycles of rainfall statistics for the observations

(black line), the weather generator based on observed

statistics (dashed line) and the weather generator based on

the predicted statistics (grey line). Top left: rainfall

probabilities (upper lines are PRR and lower lines are

PDR); bottom left: rainfall amount fractional frequency

histogram; right: rainfall totals (mm day–1). 66

5.3 Quantile–quantile plot of observed versus simulated

rainfall amounts for a single gamma distribution (filled

circles) and for spliced gamma/extreme value distribution

(open circles). The line represents a y ¼ x function on

which the circles would lie if the theoretical distribution

perfectly matched the observations. 66

6.1 Map of the eastern Mediterranean and Levant region

showing the locality of major features and sites discussed

in the text. 1: Ghab Valley; 2: Hula Basin; 3: Peqiin Cave;

4: Israeli coastal plain; 5: Ma’ale Efrayim Cave; 6: Soreq

Cave; 7: Jerusalem West Cave; 8: Wadi Faynan; 9: Ocean

Drilling Program (ODP) Site 967; 10: site of core M44–1-

KL83; 11: site of core GeoB5804–4; 12: site of core

GeoB5844–2. Map produced with GMT (http://gmt.soest.

hawaii.edu/). 72

6.2 Reconstructed air temperatures from the GISP 2 ice

core in Greenland (after Alley, 2000). The timing and

duration of the Last Glacial Maximum (LGM) is the
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same as the ‘LGM Chronozone Level 1’ as defined by

Mix et al. (2001). 72

6.3 Climate model outputs for the LGM and the present day.

(A) Present-day winter (DJF) precipitation (precipitation

in mm per day); (B) LGM winter (DJF) precipitation;

(C) present-day summer (JJA) precipitation; (D) LGM

summer (JJA) precipitation; (E) present-day annual

precipitation; (F) LGM annual precipitation; (G) LGM

winter (DJF) snowfall (snowfall in mm per day); (H)

LGM summer (JJA) snowfall. Note that panel H is blank

because there is no snowfall in summer. 74

6.4 Climate model outputs for the LGM and present day.

(A) Present-day winter (DJF) temperature (�C); (B) LGM
winter (DJF) temperature; (C) present-day summer (JJA)

temperature; (D) LGM summer (JJA) temperature;

(E) present-day average annual temperature; (F) LGM

average annual temperature; (G) LGM annual average

precipitation minus evaporation in mm day–1; (H) LGM

annual average wind strength (in m s–1) and vectors. See

colour plate section. 74

6.5 Compilation of lake level curves for Lake Lisan/the Dead

Sea and Lake Tiberias. (A) Frumkin et al. (1994); (B)

Neev and Emery (1995); (C) Landman et al. (2000); (D)

timing of massive salt deposition (Yechieli et al., (1993);

Neev and Emery (1967); there is some uncertainty

regarding the exact age of the sediments, hence the

dashed line. Shading of the YD here indicates the

range of the two best dates); (E) Bartov et al.

(2002, 2003); (F) Hazan et al. (2004). EHWP ¼ Early

Holocene Wet Phase; YD ¼ Younger Dryas;

H1 ¼ Heinrich Event 1; LGM ¼ Last Glacial Maximum;

H2 ¼ Heinrich Event 2. 75

6.6 An integrated, schematic lake level curve (solid black

line) for the Lake Lisan/Dead Sea based upon various

studies. This curve is designed primarily to illustrate lake

level trends over time for ease of comparison with other

proxy data. For the period 25 to 13 cal. ka BP the

integrated curve is an approximate average of Neev and

Emery (1995), Bartov et al. (2002, 2003) and Landmann

et al. (2002). From 13 to 9 cal. ka BP we have used the

data from Neev and Emery (1967), Begin et al. (1985),

Yechieli et al. (1993) and Stein (2001) which suggest a

major lake level fall between 13 and 11 cal. ka BP. From

9 cal. ka BP onwards we have followed the study of Frumkin

et al. (1994). 76

6.7 Palaeoclimate of the Israeli coastal plain, as interpreted

from palaeosols (Gvirtzman and Wieder, 2001). Black

dots show position of age model tiepoints. S1 ¼ Sapropel

1, B-A ¼ Bølling–Allerød; other abbreviations as in

Figure 6.5. 77

6.8 Palynology of the Hula Basin (Baruch and Bottema, 1991)

and the Ghab Valley (Niklewski and van Zeist, 1970) with

the proposed chronostratigraphy of Rossignol-Strick

(1995). Horizontal axes in %; in the left-hand figure, the

percentage for each taxon refers to concentration of

that pollen taxon with respect to total ‘Arboreal

pollenþnon-arboreal pollen’. In the right-hand figure, the

percentage scale refers to the relative proportions of ‘trees

þ shrubs’ and ‘ChenopodiaceaeþArtemisia’. 78

6.9 Speleothem stable-isotope data (Bar-Matthews et al.,

2003; Vaks et al., 2003) and reconstructed air

temperatures (McGarry et al., 2004). 80

6.10 Gastropod oxygen isotope data from the Negev Desert

(Goodfriend, 1991). 82

6.11 (A) Foraminiferal LGM annual, summer and winter SST

reconstructions (Hayes et al., 2005), calculated using an

artificial neural network (ANN). (B) Temperature

anomalies for annual, summer and winter SSTs during the

LGM, compared with modern-day values (Hayes et al.,

2005). Anomaly values were calculated by subtracting

modern-day SSTs from the glacial values. The black dots

represent the sites of the cores from which the LGM data

were obtained. This figure is a reproduction of part of

Figure 9 in Hayes et al. (2005). See colour plate

section. 83

6.12 Compilation of eastern Mediterranean Sea palaeoclimatic

records from Site 967 (Emeis et al., 1998, 2000, 2003) and

MD84–461 (Fontugne and Calvert, 1992). The ‘d18O/p.s.
u. value’ is a coefficient used in the calculation of SSS that

relates salinity and d18Oseawater (see Emeis et al., 2000 for

more details). 84

6.13 Compilation of northern Red Sea palaeoclimatic records

(Arz et al., 2003a, b; core names defined therein). 84

6.14 Compilation of terrestrial and marine palaeoclimatic proxy

data for the Levant and eastern Mediterranean. Also shown

is the ice-core record from GISP2 (Greenland). References:

1: Alley (2000); 2: see Figure 6.6; 3: Bar-Matthews et al.

(2003); 4: Arz et al. (2003a); 5: Emeis et al. (2000, 2003); 6:

Gvirtzman and Wieder (2001); 7: Rossignol-Strick (1995);

8: Magaritz (1986), Goodfriend and Magaritz (1988); 9:

Magaritz andHeller (1980); Goodfriend (1990, 1991, 1999);

10: Reeder et al. (2002). 86

6.15 Summary of climatic conditions at the LGM (A), peak of the

Bølling–Allerød warm phase (B), the Younger Dryas (C)

and during the early Holocene/S1 (D). Turbidite data from

Reeder et al. (2002); alkenone SSTs and SSS data from

Emeis et al. (2000, 2003) and Arz et al. (2003a, b);

speleothem data from Bar-Matthews et al. (1997, 1999,

2000, 2003), Frumkin et al. (1999b, 2000), Vaks et al.

(2003) and McGarry et al. (2004); pollen data from
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Niklewski and van Zeist (1970), Baruch and Bottema

(1991) and Rossignol-Strick (1995); lake levels from

Figure 6.6 (this study); LGM annual SSTs calculated from

foraminiferal assemblages taken from Hayes et al. (2005);

early Holocene SSS values are from Kallel et al. (1997a);

Israeli coastal plain palaeosol data from Gvirtzman and

Wieder (2001); Negev data from Magaritz (1986),

Goodfriend and Magaritz (1988); Goodfriend, (1999);

southern Jordan fluvial data from McLaren et al. (2004).

T ¼ temperature (all in �C), S ¼ salinity, P ¼
precipitation, NAP ¼ non-arboreal pollen, AP ¼ arboreal

pollen, Maps drawn with GMT (http://gmt.soest.hawaii.

edu/). Coastlines do not account for any changes in sea

level or sedimentation. 87

7.1 Location of the different localities and regions presented

in the text. (A)Map of the southern Levant and mean annual

rainfall (from EXACT 1998). 1 – Hula Basin (Baruch and

Bottema, 1999; Cappers et al., 1998; Rosen, 2007). 2 –

Upper Galilee caves (Issar, 2003). 3 –Ma’ale Efrayim Cave

(Vaks et al., 2003). 4 – Soreq Cave (Bar-Matthews and

Ayalon, 2004; Bar-Matthews et al., 1998, 1999, 2003). 5 –

Israeli coastal plain (Gvirtzman &Wieder, 2001). 6 – Wadi

Faynan (Hunt et al., 2004, 2007; McLaren et al., 2004;

Grattan et al., 2007). 7 – Elat shorelines (Shaked et al.,

2002). 8 –WadiMuqat (Abboud, 2000). 9 – Cores GA 112–

110 (Schilman et al., 2001a,b).

10 – Jordan Valley (Hourani and Courty, 1997).

11 – Northern Negev Desert (Goodfriend, 1991, 1999).

12 – Southern Negev (Amit et al., 2007). 13 – Qa’el-Jafr

Basin (Davies, 2005). 14 – Central Negev Highlands (Rosen

et al., 2005; Avni et al., 2006). 15 – Birkat RamLake, Golan

Heights (Schwab et al., 2004). 16 – Wadi ash-Shallalah

(Cordova, 2008). 17 – Wadi al-Wala and the Madaba-

Dhiban plateau (Cordova et al., 2005; Cordova, 2008). 18 –

Tel Lachish (Rosen, 1986).

19 – Nahal Qanah Cave (Frumkin et al., 1999a). 20 – Nahal

Zin, Negev (Greenbaum et al., 2000). (B) Map of the

Dead Sea area. 96

7.2 Compilation of several proxies for the middle to late

Holocene in the southern Levant. Red and blue bars (see

colour plate section) show interpreted climate fluctuations

(wetter/drier conditions). Archaeological periods from

Rosen (2007). Dead Sea levels: 1 – Frumkin and Elitzur

(2002). 2 – Klinger et al. (2003). 3 – Enzel et al. (2003).

4 – Bookman et al. (2004). 5 – Migowski et al. (2006).

(A) Dead Sea levels in 1997 (Migowski et al., 2006). Lake

Kinneret levels: 6 – Hazan et al. (2005). Calculated

rainfall: 7 – From the Soreq cave record; Bar-Matthews and

Ayalon (2004). (B) Present-day mean annual rainfall in

Soreq area. 8 – From tamarisk wood, Mount Sedom cave;

Frumkin et al. (2009). (C) Present-day mean annual

rainfall at Mount Sedom. 9 – Climatic change from pollen

indicators according to Neumann et al. (2007). Our

synthesis is presented at the bottom of the figure. See

colour plate section. 97

8.1 Summary of rainfall signal from the proxy data for the

Middle East and Europe described in the text. Pluses

indicate higher rainfall and minuses lower rainfall during

the early Holocene as compared with the early/mid-

Holocene. 108

8.2 Comparison between the observed and modelled climate.

Top set, left: GPCC precipitation for the whole

Mediterranean (top) and for the Middle East only

(bottom); right: RCM precipitation for the whole

Mediterranean (top) and for the Middle East only

(bottom). Bottom set, left: NCEP reanalysis temperature

for the whole Mediterranean (top) and for the Middle East

only (bottom); right: RCM temperature for the whole

Mediterranean (top) and for the Middle East only

(bottom). See colour plate section. 109

8.3 Comparison of modelled and observed track densities

(in number of tracks per month per 5 degree spherical

cap). Left: mean January track density in the reanalysis.

Right: mean January track density in the RCM large-

domain baseline scenario. Both figures are based on

tracking of features in the 850 mb vorticity field. See

colour plate section. 110

8.4 Modelled changes in October–March precipitation (top, in

mm) and December–February track density (bottom, in

number of tracks per month per 5 degree spherical cap for

(from left to right) late Holocene minus early Holocene;

future (2070–2100) – present (1961–1990); and driest

years – wettest years from 1948–1999. See colour plate

section. 110

9.1 Map showing the initial extent of Lake Lisan and

present-day Dead Sea (after Stein et al., 2009). Inset shows

the structural setting for the region. 113

9.2 Map showing the location of sites 1–4 sampled within this

study. 114

9.3 Photograph showing the Lake Lisan Grey Unit and White

Unit on the East side of the Jordan Valley. 116

9.4 The U-decay series chain. 117

9.5 The Th-decay series chain. 117

9.6 Compilation figure of previously published lake level data

from Lisan sediments, predominately from the west side

of the Jordan Valley together with information from this

study coming from the east side. 118

9.7 Site 4 used in this study. Inset shows stromatolite in cross-

section, with intercalated gravels above and fine-grained

sediments below. 123
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9.8 Site 1. Inset shows laminated bands of aragonite (white)

and grey (silicate-rich) units. 123

9.9 Site 3. Inset shows detailed layers of the sediments with

annual bands. 124

9.10 The data presented in this chapter (black circles) together

with the elevation/age data from Enzel et al. (2003) (grey

squares). 124

10.1 A schematic map of the upper River Jordan. 133

10.2 An overview of the modelling framework. 137

10.3 Modelled and observed daily mean flows in the Jordan

river at Obstacle Bridge from 1 October 1988 to 30

September 1993. 138

10.4 The relationship between monthly mean flow and monthly

mean rainfall for different values of PDR. Top: monthly

mean flow plotted against monthlymean rainfall. High PDR

are filled circles and low PDR are unfilled circles. Bottom:

histograms of flow for different ranges of monthly total

rainfall for high PDR (filled bars) and low PDR (unfilled

bars). The ranges are given on the figure. 140

10.5 The relationship between monthly mean flow and

monthly mean rainfall for different values of PRR. Top:

monthly mean flow plotted against monthly mean

rainfall. High PRR are shaded circles and low PRR

are unfilled circles. Bottom: histograms of flow for

different ranges of monthly total rainfall for high PRR

(shaded bars) and low PRR (unfilled bars). The ranges

are given on the figure. 141

10.6 Flow duration curves for each of the sensitivity studies

compared with the flow duration curve for the generated

time-series based on the observed statistics of the weather

(sensitivity studies labelled on the figure). 142

10.7 Comparison between the flow duration curves for halving

PRR and halving PDR. The right-hand figure is a zoom of

the high flow region of the left-hand figure, which shows

all the data. 142

10.8 Projected changes in the monthly rainfall totals at Degania

Bet, Israel, from the HadRM3 and weather generator

models for 2070–2100 under the SRES A2 scenario. 143

10.9 Modelled daily mean flows in the Jordan river at Obstacle

Bridge for control (1961–1990) and scenario (2071–2100)

periods. 144

11.1 Map Showing the Dead Sea catchment area, with Lake

Kinneret in the north. 148

11.2 A GIS representation of the digital terrain of the Jordan

Valley and the Dead Sea. 148

11.3 Estimates of changing Dead Sea levels over the past

25,000 years (Enzel et al., 2003 – upper graph; Black

et al., Chapter 9 of this volume – lower graph). 148

11.4 Dead Sea hypsometric curves showing relationships

between sea elevation, surface area and volume. 149

11.5 The shoreline of the Dead Sea reconstructed for four

different depths. The 170 m depth equates to that at the

Last Glacial Maximum, which occurred at approximately

20 cal. ka BP based on the palaeoenvironmental evidence

summarised in Robinson et al. (2006). 150

11.6 Dead Sea elevations from 1860 to 2009, showing rapid

decline since the 1960s. 150

11.7 Jerusalem rainfall from 1846 to 1996. 152

11.8 Regression of Dead Sea level change against Jerusalem

rainfall for the period 1860–1960 using decadal

averages. 152

11.9 Observed and modelled Dead Sea levels

1860–1960. 152

11.10 Extension of the observed and modelled data to include

the recent period of abstraction and sea level

decline. 152

11.11 Predicted simulation of the levels to 2050 assuming

continued abstraction from the River Jordan. 153

11.12 Predicted sea levels in the future assuming climate change

for eight future realisations without the effects of

abstraction, and two climate change scenarios that do

include the abstraction. 154

11.13 The effects on Dead Sea elevations assuming a major

water transfer from either the Red Sea or

the Mediterranean Sea into the Dead Sea. Shown are three

water transfer rates of 1,690, 1,900 and 2,150 million m3

per year for the years 2020 to 2040, and then transfer rates

falling to match the water abstraction rate of 800 million

m3 per year. 154

11.14 Estimated rainfall over the past 9,000 years based on the

Enzel et al. (2003) Dead Sea elevations. 155

11.15 Estimated rainfall over the period 8–250 ka BP based on

the Black et al. (Chapter 9, this volume) Dead Sea

elevations. 155

12.1 A schematic map of the Wadi Faynan, its major tributaries

and settlements. PPNB, Pre-Pottery Neolithic B. 158

12.2 The geology of the Wadi Faynan area. Source Geological

Map of Jordan 1:250,000, prepared by F. Bender,

Bundesanstalt für Geowissenschaften und Rohstoffe,

Hannover 1968 [Sheet: Aqaba-Ma’an and Amman].

Reproduced with permission. Not to scale. #

Bundesanstalt für Geowissenschaften und Rohstoffe.

See colour plate section. 161

12.3 A geological cross-section made 5 km to the north of the

Wadi Faynan. Source: GeologicalMap of Jordan 1:250,000,

prepared by F. Bender, Bundesanstalt für

Geowissenschaften und Rohstoffe, Hannover 1968 [Sheet:

Aqaba-Ma’an and Amman]. Reproduced with permission.

Not to scale.# Bundesanstalt für Geowissenschaften und

Rohstoffe. See colour plate section. 162
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12.4 A subset of the Landsat image of the Wadi Faynan area

acquired on 08 March 2002. 162

12.5 This picture was taken just to the south of the Jebel

Hamrat al Fidan and shows how a farmer has tapped the

groundwater held close to the surface by the granitic

barrier by digging a network of trenches to expose the

water. The water is pumped from the trench and used to

irrigate fields of watermelon. 162

12.6 Rainfall patterns (isohyets) in the region of the Wadi

Faynan (marked by the circle). Source: Department of

Civil Aviation, Jerusalem, 1937–38. 165

12.7 Sample site locations in the Wadi Faynan from the 2006,
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