Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributors</td>
<td>xi</td>
</tr>
</tbody>
</table>

1 Small-Scale Statistics and Structure of Turbulence – in the Light of High Resolution Direct Numerical Simulation
Yukio Kaneda and Koji Morishita
1.1 Introduction 1
1.2 Background supporting the idea of universality 2
1.3 Examination of the ideas underlying the 4/5 law 7
1.4 Intermittency of dissipation rate and velocity gradients 14
1.5 Local structure 21
1.6 Inertial subrange 28
1.7 Concluding remarks 34
References 35

2 Structure and Dynamics of Vorticity in Turbulence
Jörg Schumacher, Robert M. Kerr and Kiyosi Horiuti
2.1 Introduction 43
2.2 Basic relations 44
2.3 Temporal growth of vorticity 52
2.4 Spatial structure of the turbulent vorticity field 60
2.5 Vorticity statistics in turbulence 73
References 80

3 Passive Scalar Transport in Turbulence: A Computational Perspective
T. Gotoh and P.K. Yeung
3.1 Introduction 87
3.2 Computational perspective 89
Contents

3.3 Background theory
3.4 Approach to low-order asymptotic state
3.5 High-order statistics: fine-scale structure and intermittency
3.6 Concluding remarks
References

4 A Lagrangian View of Turbulent Dispersion and Mixing
Brian L. Sawford and Jean-François Pinton
4.1 Introduction
4.2 Single particle motion and absolute dispersion
4.3 Two particle motion and relative dispersion
4.4 n-particle statistics
4.5 Conclusions
References

5 The Eddies and Scales of Wall Turbulence
Ivan Marusic and Ronald J. Adrian
5.1 Introduction
5.2 Background
5.3 Scales of coherent structures in wall turbulence
5.4 Relationship between statistical fine-scales and eddy scales
5.5 Summary and conclusions
References

6 Dynamics of Wall-Bounded Turbulence
J. Jiménez and G. Kawahara
6.1 Introduction
6.2 The classical theory of wall-bounded turbulence
6.3 The dynamics of the near-wall region
6.4 The logarithmic and outer layers
6.5 Coherent structures and dynamical systems
6.6 Conclusions
References

7 Recent Progress in Stratified Turbulence
James J. Riley and Erik Lindborg
7.1 Introduction
7.2 Scaling, cascade and spectra
7.3 Numerical simulations
7.4 Laboratory experiments
7.5 Field data
Contents

7.6 Conclusions 309
Appendix 311
References 312

8 Rapidly-Rotating Turbulence: An Experimental Perspective 318
P.A. Davidson

8.1 The evidence of the early experiments 318
8.2 Background: inertial waves and the formation of Taylor columns 321
8.3 The spontaneous growth of Taylor columns from compact eddies at low Ro 325
8.4 Anisotropic structuring via nonlinear wave interactions: resonant triads 332
8.5 Recent experimental evidence on inertial waves and columnar vortex formation 337
8.6 The cyclone–anticyclone asymmetry: speculative cartoons 343
8.7 The rate of energy decay 345
8.8 Concluding remarks 347
References 348

9 MHD Dynamos and Turbulence 351
S.M. Tobias, F. Cattaneo and S. Boldyrev

9.1 Introduction 351
9.2 Dynamo 356
9.3 Mean field 374
9.4 Conclusions 394
References 397

10 How Similar is Quantum Turbulence to Classical Turbulence? 405
Ladislav Skrbek and Katepalli R. Sreenivasan

10.1 Introduction 405
10.2 Preliminary remarks on decaying QT 410
10.3 Comparisons between QT and HIT: energy spectrum 417
10.4 Decaying vorticity 422
10.5 Decay of HIT when the shape of the energy spectra matters 425
10.6 Effective viscosity 429
10.7 Conclusions 431
References 432