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Introduction

1.1 Phase space, phase portrait

In this first chapter we give an introduction to the stability of discrete systems and
bifurcations from the geometrical viewpoint of the theory of dynamical systems in
phase space. In the first part, which is more mathematical than physical, we define
the fundamental ideas. These ideas are then illustrated by examples borrowed from
hydrodynamics and the physics of liquids. We close the chapter with a brief pre-
sentation of the idea of transient growth, which is related to nonorthogonality of
the eigenvectors of a linear system.

The time evolution of a discrete (noncontinuous) physical system is generally
governed by differential equations following from physical conservation principles
and the laws describing the phenomenological behavior. These equations can often
be written as a system of first-order ordinary differential equations (ODEs) of the
form (see, e.g., Glendinning (1994)):

dxi

dt
= Xi (x1, . . . , xn, t), i =1, . . . ,n. (1.1)

The remainder of this chapter will consider only autonomous systems, in which
time does not appear explicitly on the right-hand side. The variables xi are called
the degrees of freedom of the system.1 As an example, let us consider a simple
damped nonlinear pendulum whose vertical position is specified by the angle θ .
Its equation of motion

d2θ

dt2
+µ

dθ

dt
+ω2

0 sinθ =0 (1.2)

1 The degrees of freedom in question are the dynamical degrees of freedom (here, the position and velocity),
which are different from the kinematical degrees of freedom in physical space (the positions).
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2 Introduction
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Figure 1.1 Phase portraits of the oscillator (1.3) for (a) µ=0; (b) µ>0.

can be written equivalently as a system of two ODEs by setting x1 =θ , x2 =dθ/dt :

dx1

dt
= x2,

dx2

dt
=−µx2 −ω2

0 sin x1. (1.3)

Any solution of a system of ODEs for a given initial condition can be repre-
sented by a curve in the space of the degrees of freedom, called the phase space.
For the system (1.3) the phase space is the (x1, x2) plane. Figure 1.1 shows typi-
cal trajectories corresponding to given initial conditions for µ= 0 and µ> 0. The
case µ = 0 corresponds to a nondissipative oscillator (i.e., where the mechanical
energy remains constant), and the case µ>0 corresponds to a dissipative oscillator
(where the mechanical energy decreases over time). A representation of this type
which depicts the essential features of the solutions of a system of ODEs is called
the phase portrait, which allows the trajectory to be plotted qualitatively for any
given initial condition. We use the term dynamical system to refer to any system of
ODEs studied from the viewpoint of obtaining the phase portrait of the system.

The phase portrait can be guessed easily for a system as elementary as the pen-
dulum (1.3). For more complicated systems the first step is to determine the fixed
points and study their stability. When there are several fixed points the second
important step is to determine to which fixed point the system evolves for vari-
ous initial conditions. The ensemble of initial conditions resulting in motion to a
particular fixed point is called the basin of attraction of that fixed point.

1.2 Stability of a fixed point

1.2.1 Fixed points

The equilibrium states of a physical system correspond to the stationary solutions
of the system of ODEs, defined as

dxi

dt
=0, i =1, . . . ,n.
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1.2 Stability of a fixed point 3

These solutions are represented in phase space by points called fixed points. The
fixed points are determined by solving the nonlinear system

Xi (x1, . . . , xn)=0, i =1, . . . ,n.

The fixed points of the system (1.3) are (x1, x2) = (0,0) and (x1, x2) = (π,0)

(modulo 2π ). In the case of a system where the forces acting can be derived
from a potential V (x1, . . . , xn), or are proportional to velocities (viscous or friction
forces), the equilibrium states correspond to the extrema of the potential (Landau
and Lifshitz, 1976).

1.2.2 Linear stability of a fixed point

Once the fixed points are determined, the question of their stability (i.e., the stabil-
ity of the corresponding equilibrium states) arises. When these equilibrium states
are the extrema of a potential, the states of stable and unstable equilibrium cor-
respond respectively to the minima and maxima of the potential (Landau and
Lifshitz, 1976), and knowledge of the potential is sufficient for sketching the phase
portrait. For example, the phase portrait of the system (1.3) for µ = 0 can easily
be drawn by noticing that the only force involved in the equation of motion, the
weight, can be derived from the potential V (θ) = −mg cosθ . When there is no
such potential, a general method based on linear algebra can be used to study the
stability of a fixed point with respect to small perturbations. Accordingly, let us
consider the system (1.1) written in vector form

dx
dt

=X(x), where x= (x1, . . . , xn),

which has a fixed point at x = a. The idea is that for small perturbations from
equilibrium of amplitude ε �1, the smooth function X can be expanded about the
fixed point in a Taylor series, and all products of perturbations can be neglected
because they are of order ε2 or smaller. Setting y = x−a, the resulting linearized
system is written as

dy
dt

=L(a)y, (1.4)

where L(a) is the Jacobian matrix of X(x) calculated at the point a, the elements of
which are Li j =∂ Xi/∂x j (a). When, as in the present case of autonomous systems,
the elements Li j are independent of time, the system (1.4) is linear with constant
coefficients and its solutions are exponentials exp(st). The problem then becomes
an algebraic eigenvalue problem L(a)y = sy, which has a nontrivial solution only
if the determinant of L− sI vanishes, where I is the unit matrix. This determinant
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4 Introduction

is a polynomial in s, called the characteristic polynomial, and its roots are the
eigenvalues. If the real parts of the eigenvalues are all negative, the solution is
a sum of decaying exponentials, and any perturbation from equilibrium dies out
at large times: the fixed point is asymptotically stable. However, if at least one
of the eigenvalues has positive real part, the fixed point is unstable. To study the
linear stability of a fixed point we therefore need to (i) find the eigenvalues of the
linearized problem, (ii) find the eigenvectors or eigendirections in the phase space,
and (iii) plot the phase portrait in the neighborhood of the fixed point.

In two dimensions the classification of types of fixed point is simple. The
characteristic polynomial det(L − s I ) depends only on the trace tr(L) and the
determinant det(L) of the matrix L:

det(L−s I )= s2 − tr(L)s +det(L). (1.5)

The various cases, illustrated in Figure 1.2, are the following:

• det(L)<0: s1 and s2 are real and have opposite signs; the trajectories are hyper-
bolas whose asymptotes are the eigendirections, and the fixed point is called a
saddle (Figure 1.2a).

• det(L) > 0 and 4det(L) ≤ tr2(L) (positive or zero discriminant): s1 and s2 are
real and have the same sign as tr(L); the fixed point is called a node, and is
attractive (stable) if tr(L) < 0 or repulsive (unstable) if tr(L) > 0 (Figure 1.2b).
If the discriminant is zero, s is a double root and two cases can be distinguished:
either L is a multiple of the identity I, in which case the trajectories are straight
lines and the node is called a star, or L is nondiagonalizable and the node is

(b) Node

(c) Focus

Determinant
(c) Focus

(b) Node

Trace

(d) Center

(e)

(a) Saddle

Figure 1.2 Types of fixed point in R2. The parabola corresponds to tr2L −
4det L=0 (discriminant of the characteristic polynomial equal to zero).
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1.2 Stability of a fixed point 5

termed improper. In the latter case L can at best be written as a Jordan block:

L=
(

s 1
0 s

)
.

• det(L) > 0 and 4det(L) > tr2(L) (negative discriminant): s1 = s∗
2 are complex

conjugates with real part tr(L)/2 and nonzero imaginary part; the trajectories are
spirals and the fixed point is a focus, attractive (stable) if tr(L)< 0 or repulsive
(unstable) if tr(L)>0 (Figure 1.2c).

• det(L)>0 and tr(L)=0: s1 =s∗
2 are purely imaginary; the trajectories are ellipses

and the fixed point is a center (Figure 1.2d). A perturbation neither grows nor
decays, and the stability is termed neutral.

• det(L)= 0: L is not invertible (Figure 1.2e). If tr(L) �= 0, zero is a simple eigen-
value, whereas if tr(L)= 0, zero is a double eigenvalue. In the latter case, if the
proper subspace has dimension 2, L is diagonalizable (L = 0); otherwise L is a
Jordan block of the form

L=
(

0 1
0 0

)
.

In the first three cases the real part of each of the two eigenvalues is nonzero and
the fixed point is termed hyperbolic. In the last two cases the real parts are zero
and the fixed point is termed nonhyperbolic.

As an example, let us consider the stability of the fixed point (0,0) of the system
(1.3). The linearized system is written as

dx1

dt
= x2,

dx2

dt
=−µx2 −ω2

0x1. (1.6)

The trace and the determinant of the matrix of this system are respectively −µ

and ω2
0. The eigenvalues are s± = 1

2(−µ±
√

µ2 −4ω2
0). For µ<−2ω0 or µ>2ω0

the discriminant is positive and the eigenvalues are real and of the same sign, that
of −µ; the fixed point is a node and determination of the eigenvectors permits
the local phase portrait to be sketched. For −2ω0 < µ < 2ω0 the eigenvalues are
complex conjugates of each other, and the fixed point is a focus or a center for
µ = 0. In the end, (0,0) is attractive (stable) for µ > 0 and repulsive (unstable)
for µ< 0. A similar analysis can be performed for the other fixed point (π,0), for
which the trace and the determinant of the matrix L are respectively −µ and −ω2

0.
The eigenvalues are real and of opposite signs, and so the fixed point is a saddle.
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6 Introduction

1.2.3 Stability of a nonhyperbolic fixed point

A special situation occurs when all the eigenvalues have negative real part except
for one (or several) which have zero real part. The fixed point is then nonhyper-
bolic, and we can learn nothing about its stability from the linear stability analysis.
Its stability is therefore determined by the nonlinear terms, whose effect can be sta-
bilizing or destabilizing. Let us take as an example the oscillator described by the
system (1.3) in the nondissipative case (µ=0) with an additional force β(dθ/dt)3.
The system linearized about the fixed point (0,0) possesses two purely imaginary
eigenvalues ±iω0, and so the linear stability analysis tells us nothing. However,
in this particular case it can be shown simply, without linearization, that the fixed
point is stable for β > 0 and unstable for β < 0. We multiply the first equation in
(1.3) by x1 and the second by x2 and then add them. Introducing the distance to

the fixed point r =
√

x2
1 + x2

2 , we obtain

r
dr

dt
=−βx4

2 . (1.7)

The distance r therefore varies monotonically with time, decreasing for β > 0 and
increasing for β <0, thus proving the result.

1.3 Bifurcations

1.3.1 Definition

The behavior of a physical system depends in general on a certain number of
parameters, for example, the damping constant µ of the oscillator (1.3). An impor-
tant question is the following: how does the system behave when one of these
parameters is varied? The answer is that nothing much happens except when the
parameter passes through certain values where the qualitative behavior of the sys-
tem changes. Let us take the oscillator (1.3) as an example. As µ varies without
changing sign, the oscillator remains unstable when µ is negative, and stable when
µ is positive. However, when µ passes through the critical value µc = 0, the sta-
bility of the equilibrium position changes. It is said that the oscillator undergoes a
bifurcation at µ=µc. The general definition of a bifurcation of a fixed point is the
following.

Definition 1.1 Let a dynamical system depend on a parameter µ and possess a
fixed point a(µ). This system undergoes a bifurcation of the fixed point for µ=µc

if for this value of the parameter the system linearized at the fixed point a admits
an eigenvalue with zero real part, i.e., if the fixed point is nonhyperbolic.

The rest of this section is devoted to the study of three important bifurcations.
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1.3 Bifurcations 7

Figure 1.3 Schematic representation of the oscillator described by (1.10).

1.3.2 Saddle–node bifurcation

Let us consider the mechanical system represented in Figure 1.3. An arm of length
l is attached to a pivot at its lower end and holds a mass m at its other end; its angu-
lar position is given by the angle θ . One end of a helical torsion spring with spring
constant C is attached to the arm, while the other end of the spring is attached
to a plane inclined at an angle α with respect to the horizontal. The spring tends
to restore the arm to the direction perpendicular to the attached plane. We also
include a moment of viscous friction −mglτ ∗dθ/dt about the pivot, where τ ∗ is a
relaxation time.

Denoting the mass, length, and time scales as m, l, and
√

l/g, the oscillator
potential energy in the gravitational field can be written as

V (ω2,α,θ)= ω2

2
(θ −α)2 +cosθ −1, (1.8)

where the characteristic frequency ω is defined as

ω2 = C

mgl
. (1.9)

In terms of these scales the friction moment takes the form −τdθ/dt , where τ =
τ ∗/

√
l/g is the dimensionless relaxation time. The equation of motion is then

d2θ

dt2
+τ

dθ

dt
=−∂V

∂θ
. (1.10)

This equation can be rewritten as a dynamical system of two ODEs in the phase
space (θ,dθ/dt). The fixed points (equilibrium states) are defined by dθ/dt = 0,
and θ is the root of the equation for the potential extrema:

0= ∂V

∂θ
=ω2(θ −α)−sinθ. (1.11)
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8 Introduction

(a)

V

θ

θeq

(b)

α > αc

–αc αc α

α > 0

α = 0

α < 0

α < –αc

Figure 1.4 (a) The potential V (θ) for various inclinations α (the relative vertical
positions of the various curves are arbitrary). (b) The bifurcation diagram: (—)
stable states, (- -) unstable states.

The dependence of the equilibrium states on the two parameters ω2 and α can
be determined graphically or, for |α| small and ω2 near unity, by a Taylor series
expansion about θ = 0. For α = 0 the potentials at the equilibrium points θ− and
θ+ are the same (Figure 1.4a). For |α| small and ω2 < 1 the system possesses an
unstable equilibrium state θ0 near θ =0 (the corresponding fixed point is a saddle)
and two stable equilibrium states on either side, θ− < 0 and θ+ > 0 (whose corre-
sponding fixed points are nodes). For α<0 the state θ− <0 has the lowest potential
and is therefore the most stable state, while the state θ+ >0 is only metastable. The
situation is reversed for α >0.

Let us consider the system in the state θ− with α positive and small (Figure
1.4b). As α increases, the metastable equilibrium state θ− and the unstable
equilibrium state θ0 approach each other, and there exists a critical inclina-
tion αc for which the two equilibrium states merge. For α > αc, the system
jumps to the stable branch θ+. For α = αc, the phase portrait of the system
therefore undergoes a qualitative change when the stable node (θ−,0) and the
unstable saddle (θ0, 0) coalesce. This qualitative change corresponds to a bifur-
cation: for α = αc, an eigenvalue of the system linearized about each of the
fixed points (θ0, 0) and (θ−,0) crosses the imaginary axis (the proof is left as
an exercise). The corresponding bifurcation is called a saddle–node bifurcation.
A similar bifurcation occurs for decreasing α when α reaches the value −αc.
Figure 1.4b, which shows the fixed points as a function of the parameter α, is
called the bifurcation diagram. At each bifurcation the system jumps from one
branch to another, and the critical value of the bifurcation parameter α is dif-
ferent depending on whether it is increasing or decreasing: the system displays
hysteresis.
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1.3 Bifurcations 9

Figure 1.5 The saddle–node bifurcation diagram: (—) stable states, (- -) unstable
states.

This example2 displays a bifurcation corresponding to the coalescence of two
fixed points, called a saddle–node bifurcation. The general definition of such a
bifurcation is the following.

Definition 1.2 A dynamical system possessing a stable fixed point a undergoes
a saddle–node bifurcation at µ = µc if a real eigenvalue of the system linearized
about a crosses the imaginary axis for µ = µc. For µ in the neighborhood of µc,
the behavior of the system is then governed, maybe after an appropriate change
of variables, by the following equation, called the normal form of a saddle–node
bifurcation:

dx

dt
=µ− x2. (1.12)

Figure 1.5 shows the corresponding bifurcation diagram.

1.3.3 Pitchfork bifurcation

Let us return to the oscillator of Figure 1.3, and now consider what happens
when we allow ω2 to vary for fixed α = 0. As ω2 increases, the potential bar-
rier between the two minima flattens, and the three equilibrium points coalesce
for ω2

c0 = 1 (Figure 1.6a). For ω2 > ω2
c0, only the stable equilibrium state θ = 0

exists. This qualitative change of the phase portrait again corresponds to a bifur-
cation: for ω2 = ω2

c0, an eigenvalue of the system linearized about (0,0) crosses
the imaginary axis (the proof is left as an exercise). The corresponding bifurca-
tion is called a supercritical pitchfork bifurcation and the bifurcation diagram is
shown in Figure 1.6b. The term supercritical means that in passing through the
bifurcation a stable branch of equilibrium positions varies continuously, without
any discontinuity.

2 An extension of the analysis to the case of a chain of coupled oscillators can be found in Charru (1997).
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10 Introduction

(a) (b)

V
ω > ωc0

ω = ωc0

ω < ωc0

θ

θeq

ωc0 ω

Figure 1.6 (a) The potential for various ω and α=0 (the relative vertical positions
of the various curves are arbitrary). (b) Bifurcation diagram: (—) stable states,
(- -) unstable states.

The existence of the pitchfork bifurcation displayed in this example is related in
a crucial way to the symmetry of the problem about θ =0, i.e., to the invariance of
the equation for the transformation of θ into −θ , which is referred to as reflection
invariance. A pitchfork bifurcation is defined more generally as follows.

Definition 1.3 A dynamical system which is invariant under reflection, i.e.,
invariant under the transformation x → −x (associated with a symmetry of the
physical system), and which possesses a stable fixed point a undergoes a pitchfork
bifurcation at µ=µc if a real eigenvalue of the system linearized about a crosses
the imaginary axis for µ = µc. For µ in the neighborhood of µc, the behavior of
the system is then governed, perhaps after an appropriate change of variables, by
the following equation, called the normal form of a pitchfork bifurcation:

dx

dt
=µx −δx3, δ =±1. (1.13)

The case δ =1 is termed supercritical and the case δ =−1 is termed subcritical.

Figure 1.7 shows the corresponding bifurcation diagrams. In the supercritical
case the equilibrium state x = 0 is stable for µ < 0 and unstable for µ > 0; in the
latter case any perturbation of this equilibrium state makes the system jump to one
of the stable branches ±√

µ. In the subcritical case and for µ< 0, x = 0 is always
stable with respect to infinitesimal amplitude perturbations, but an amplitude
perturbation larger than ±√−µ, i.e., a perturbation of finite amplitude, can desta-
bilize it: for µ > 0, any perturbation of the state x = 0 causes the system to jump
discontinuously to a state that the normal form (1.13) is incapable of describing;
higher-order terms (of degree five or higher) must be taken into account.

What happens in a system when the reflection symmetry x → −x is broken
by an imperfection? We return to the oscillator of Figure 1.3 but now for small,
nonzero angle α, which breaks the θ →−θ invariance, and we consider the effect
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