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Preface

This book is an outgrowth of a course, taught by the author at MIT dur-
ing fall 2007, on p-adic ordinary differential equations. The target audience
was graduate students with some prior background in algebraic number the-
ory, including exposure to p-adic numbers, but not necessarily with any
background in p-adic analytic geometry (of either the Tate or Berkovich
flavors).

Custom would dictate that ordinarily this preface would continue with an
explanation of what p-adic differential equations are, and why they mat-
ter. Since we have included a whole chapter on this topic (Chapter 0), we
will devote this preface instead to a discussion of the origin of the book, its
general structure, and what makes it different from previous books on the
subject.

The subject of p-adic differential equations has been treated in several pre-
vious books. Two that we used in preparing the MIT course, and to which
we make frequent reference in the text, are those of Dwork, Gerotto, and
Sullivan [80] and of Christol [42]. Another existing book is that of Dwork [78],
but it is not a general treatise; rather, it focuses in detail on hypergeometric
functions.

However, this book develops the theory of p-adic differential equations in
a manner that differs significantly from most prior literature. Key differences
include the following.

• We limit our use of cyclic vectors. This requires an initial investment in
the study of matrix inequalities (Chapter 4) and lattice approximation
arguments (especially Lemma 8.6.1), but it pays off in significantly
stronger results.

• We introduce the notion of a Frobenius descendant (Chapter 10). This
complements the older construction of Frobenius antecedents, partic-
ularly in dealing with certain boundary cases where the antecedent
method does not apply.

xiii
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xiv Preface

As a result, we end up with some improvements of existing results, includ-
ing the following. (Some of these can also be found in an upcoming book of
Christol [46], whose development we learned about only after this book was
mostly complete.)

• We refine the Frobenius antecedent theorem of Christol and Dwork
(Theorem 10.4.2).

• We extend some results of Christol and Dwork, on the variation of the
generic radius of convergence, to subsidiary radii (Theorem 11.3.2).

• We extend Young’s geometric interpretation of subsidiary generic radii
of convergence beyond the range of applicability of Newton polygons
(Theorem 11.9.2).

• We give quantitative versions of the Christol–Mebkhout decomposition
theorem for differential modules on an annulus that are applicable even
when the modules are not solvable at a boundary (Theorems 12.2.2
and 12.3.1).

• We give a somewhat simplified treatment of the theory of p-adic
exponents (Theorems 13.5.5, 13.5.6, and 13.6.1).

• We sharpen the bound in the Christol transfer theorem to a disc con-
taining a regular singularity with exponents in Zp (Theorem 13.7.1).

• We give a general version of the Dieudonné–Manin classification
theorem for difference modules over a complete nonarchimedean field
(Theorem 14.6.3).

• We give improvements on the Christol–Dwork–Robba effective bounds
for solutions of p-adic differential equations (Theorems 18.2.1 and
18.5.1) and some related bounds that apply in the presence of a
Frobenius structure (Theorem 18.3.3). The latter can be used to recover
a theorem of Chiarellotto and Tsuzuki concerning the logarithmic
growth of solutions of differential equations with Frobenius structure
(Theorem 18.4.5).

• We state a relative version of the p-adic local monodromy theorem,
formerly Crew’s conjecture (Theorem 20.1.4), and describe in detail
how it may be derived either from the p-adic index theory of Christol
and Mebkhout, which we treat in detail in Chapter 13, or from the slope
theory for Frobenius modules of Kedlaya, which we only sketch, in
Chapter 16.

Some of the new results are relevant in theory (in the study of higher-
dimensional p-adic differential equations, largely in the context of the
semistable reduction problem for overconvergent F-isocrystals, for which
see [138] and [143]) or in practice (in the explicit computation of solutions
of p-adic differential equations, e.g., for the machine computation of zeta

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76879-5 - p-adic Differential Equations
Kiran S. Kedlaya
Frontmatter
More information

http://www.cambridge.org/9780521768795
http://www.cambridge.org
http://www.cambridge.org


Preface xv

functions of particular varieties, for which see [139]). There is also some rel-
evance, entirely outside number theory, to the study of flat connections on
complex analytic varieties (see [144]).

Although some applications involve higher-dimensional p-adic analytic
spaces, this book treats exclusively p-adic ordinary differential equations. In
joint work with Liang Xiao [145], we have developed some extensions to
higher-dimensional spaces.

Each individual chapter of this book exhibits the following basic structure.
Before the body of the chapter, we give a brief introduction explaining what
is to be discussed and often setting some running notations or hypotheses.
After the body of the chapter, we typically include a section of afternotes, in
which we provide detailed references for results in that chapter, fill in historical
details, and add additional comments. (This practice is modeled on that in [94],
although we do not carry it out quite as fully.) Note that we have a habit of
attributing to various authors slightly stronger versions of their theorems than
the ones they originally stated; to avoid complicating the discussion in the
text, we resolve these misattributions in the afternotes instead. At the end of
a chapter we typically include a few exercises; a fair number of these request
proofs of results which are stated and used in the text but whose proofs pose
no unusual difficulties.

The chapters themselves are grouped into several parts, which we now
describe briefly. (Chapter 0, being introductory, does not fit into this grouping.)

Part I is preliminary, collecting some basic tools of p-adic analysis. How-
ever, it also includes some facts of matrix analysis (the study of the variation
of numerical invariants attached to matrices as a function of the matrix entries)
which may not be familiar to the typical reader.

Part II introduces some formalism of differential algebra, such as differential
rings and modules, twisted polynomials, and cyclic vectors, and applies these
to fields equipped with a nonarchimedean norm.

Part III begins the study of p-adic differential equations in earnest, develop-
ing some basic theory for differential modules on rings and annuli, including
the Christol–Dwork theory of variation of the generic radius of convergence
and the Christol–Mebkhout decomposition theory. We also include a treat-
ment of p-adic exponents, culminating in the Christol–Mebkhout structure
theorem for p-adic differential modules on an annulus satisfying the Robba
condition (i.e., having intrinsic generic radius of convergence everywhere
equal to 1).

Part IV introduces some formalism of difference algebra, and presents (with-
out full proofs) the theory of slope filtrations for Frobenius modules over the
Robba ring.
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xvi Preface

Part V introduces the concept of a Frobenius structure on a p-adic differ-
ential module, to the point of stating the p-adic local monodromy theorem
and sketching briefly the proof techniques using either p-adic exponents or
Frobenius slope filtrations. We also discuss effective convergence bounds for
solutions of p-adic differential equations.

Part VI consists of a series of brief discussions of several areas of applica-
tion of the theory of p-adic differential equations. These are somewhat more
didactic, and much less formal, than in the other parts; they are meant primarily
as suggestions for further reading.

The following diagram indicates the logical dependencies of the chapters. To
keep the diagram manageable, we have grouped together some chapters (1–3
and 9–12) and omitted Chapter 0 and the chapters of Part VI. The reader should
be aware that there is one forward reference, from Chapter 13 to Chapter 18,
but the graph remains acyclic. (There are some additional forward references
between Chapters 1 and 2, but these should not cause any difficulty.)

��������1–3 	
�����4��

	
�����5 	
�����6��

��

	
�����7��

	
�����8

��

��������9–12��

��

������� 13��

��

���
�
�
�
�
�
�
�
�

������� 14

��������������������������� ������� 15

�������������
�� ������� 16��

������� 17

������������������

�������������������� ������� 18

���������������������������
�� ������� 19�� ������� 20�� ������� 21

		����������������������
��

As noted above we have not assumed that the reader is familiar with rigid
analytic geometry and so have phrased all statements more concretely in terms
of rings and modules. Although we expect that the typical reader has at least
a passing familiarity with p-adic numbers, for completeness we include a
rapid development of the algebra of complete rings and fields in the first few
chapters of the book. This development, when read on its own, may appear
somewhat idiosyncratic; its design is justified by the reuse of some material in
later chapters.
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Preface xvii

We would like to think that the background needed is that of a two-semester
undergraduate abstract algebra course. However, some basic notions from
commutative algebra do occasionally intervene, including flat modules, exact
sequences, and the snake lemma. It may be helpful to have a well-indexed text
on commutative algebra within arm’s reach; we like Eisenbud’s book [84], but
the far slimmer Atiyah and Macdonald [9] should also suffice.

The author would like to thank the participants of the MIT course 18.787
(“Topics in number theory”, fall 2007) for numerous comments on the lec-
ture notes which ultimately became this book. Particular thanks are due to Ben
Brubaker and David Speyer for giving guest lectures, and to Chris Davis, Han-
sheng Diao, David Harvey, Raju Krishnamoorthy, Ruochuan Liu, Eric Rosen,
and especially Liang Xiao for providing feedback. Additional feedback was
provided by Francesco Baldassarri, Laurent Berger, Bruno Chiarellotto, Gilles
Christol, Ricardo García López, Tim Gowers, and Andrea Pulita.

During the preparation of the course and of this book, the author was sup-
ported by a National Science Foundation CAREER grant (DMS-0545904), a
Sloan Research Fellowship, MIT’s NEC Research Support Fund, and the MIT
Cecil and Ida Green Career Development Professorship.
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