CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 125

Editorial Board B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO

p-adic Differential Equations

Over the last 50 years the theory of *p*-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material.

Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.

KIRAN S. KEDLAYA is Associate Professor of Mathematics at the Massachusetts Institute of Technology.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:

B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: http://www.cambridge.org/series/sSeries.asp?code=CSAM

Already published

- 73 B. Bollobás Random graphs (2nd edition)
- 74 R. M. Dudley Real analysis and probability (2nd edition)
- 75 T. Sheil-Small Complex polynomials
- 76 C. Voisin Hodge theory and complex algebraic geometry, I
- 77 C. Voisin Hodge theory and complex algebraic geometry, II
- 78 V. Paulsen Completely bounded maps and operator algebras
- 79 F. Gesztesy & H. Holden Soliton equations and their algebro-geometric solutions, I
- 81 S. Mukai An introduction to invariants and moduli
- 82 G. Tourlakis Lectures in logic and set theory, I
- 83 G. Tourlakis Lectures in logic and set theory, II
- 84 R. A. Bailey Association schemes
- 85 J. Carlson, S. Müller-Stach & C. Peters Period mappings and period domains
- 86 J. J. Duistermaat & J. A. C. Kolk Multidimensional real analysis, I
- 87 J. J. Duistermaat & J. A. C. Kolk Multidimensional real analysis, II
- 89 M.C. Golumbic & A.N. Trenk Tolerance graphs
- 90 L. H. Harper Global methods for combinatorial isoperimetric problems
- 91 I. Moerdijk & J. Mrčun Introduction to foliations and Lie groupoids
- 92 J. Kollár, K. E. Smith & A. Corti Rational and nearly rational varieties
- 93 D. Applebaum Lévy processes and stochastic calculus (1st edition)
- 94 B. Conrad Modular forms and the Ramanujan conjecture
- 95 M. Schechter An introduction to nonlinear analysis
- 96 R. Carter Lie algebras of finite and affine type
- 97 H.L. Montgomery & R.C. Vaughan Multiplicative number theory, I
- 98 I. Chavel Riemannian geometry (2nd edition)
- 99 D. Goldfeld Automorphic forms and L-functions for the group GL(n,R)
- 100 M.B. Marcus & J. Rosen Markov processes, Gaussian processes, and local times
- 101 P. Gille & T. Szamuely Central simple algebras and Galois cohomology
- 102 J. Bertoin Random fragmentation and coagulation processes
- 103 E. Frenkel Langlands correspondence for loop groups
- 104 A. Ambrosetti & A. Malchiodi Nonlinear analysis and semilinear elliptic problems
- 105 T. Tao & V. H. Vu Additive combinatorics
- 106 E. B. Davies Linear operators and their spectra
- 107 K. Kodaira Complex analysis
- 108 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Harmonic analysis on finite groups
- 109 H. Geiges An introduction to contact topology
- 110 J. Faraut Analysis on Lie groups: An introduction
- 111 E. Park Complex topological K-theory
- 112 D. W. Stroock Partial differential equations for probabilists
- 113 A. Kirillov, Jr An introduction to Lie groups and Lie algebras
- 114 F. Gesztesy et al. Soliton equations and their algebro-geometric solutions, II
- 115 E. de Faria & W. de Melo Mathematical tools for one-dimensional dynamics
- 116 D. Applebaum Lévy processes and stochastic calculus (2nd edition)
- 117 T. Szamuely Galois groups and fundamental groups
- 118 G.W. Anderson, A. Guionnet & O. Zeitouni An introduction to random matrices
- 119 C. Perez-Garcia & W. H. Schikhof Locally convex spaces over non-Archimedean valued fields
- 120 P.K. Friz & N.B. Victoir Multidimensional stochastic processes as rough paths
- 121 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Representation theory of the symmetric groups
- 122 S. Kalikow & R. McCutcheon An outline of ergodic theory
- 123 G.F. Lawler & V. Limic Random walk: A modern introduction
- 124 K. Lux & H. Pahlings Representations of groups

p-adic Differential Equations

KIRAN S. KEDLAYA

Massachusetts Institute of Technology

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521768795

© K.S. Kedlaya 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Kedlaya, Kiran Sridhara, 1974– p-adic differential equations / Kiran S. Kedlaya.
p. cm. – (Cambridge studies in advanced mathematics; 125) Includes bibliographical references and index. ISBN 978-0-521-76879-5
1. *p*-adic analysis. 2. Differential equations. I. Title. II. Series. QA241.K43 2010 512.7'4–dc22 2010004489

ISBN 978-0-521-76879-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	<i>page</i> xiii
0	Introductory remarks	1
0 1	Why n adje differential equations?	1
0.1	Zeta functions of varieties	1
0.2	Zeta functions of varieties	5
0.5	A word of coution	5 7
0.4	A word of caution	/ 8
	Exercises	8
	Exercises	9
Part I	Tools of <i>p</i> -adic Analysis	11
1	Norms on algebraic structures	13
1.1	Norms on abelian groups	13
1.2	Valuations and nonarchimedean norms	16
1.3	Norms on modules	17
1.4	Examples of nonarchimedean norms	25
1.5	Spherical completeness	28
	Notes	31
	Exercises	33
2	Newton polygons	35
2.1	Introduction to Newton polygons	35
2.2	Slope factorizations and a master factorization theorem	38
2.3	Applications to nonarchimedean field theory	41
	Notes	42
	Exercises	43
3	Ramification theory	45
3.1	Defect	46
3.2	Unramified extensions	47

v

Cambridge University Press	
978-0-521-76879-5 - p-adic Differential	Equations
Kiran S. Kedlaya	
Frontmatter	
Moreinformation	

vi	Contents	
3.3	Tamely ramified extensions	49
3.4	The case of local fields	52
	Notes	53
	Exercises	54
4	Matrix analysis	55
4.1	Singular values and eigenvalues (archimedean case)	56
4.2	Perturbations (archimedean case)	60
4.3	Singular values and eigenvalues (nonarchimedean case)	62
4.4	Perturbations (nonarchimedean case)	68
4.5	Horn's inequalities	71
	Notes	72
	Exercises	74
D (1		75
Part	II Differential Algebra	/5
5	Formalism of differential algebra	77
5.1	Differential rings and differential modules	77
5.2	Differential modules and differential systems	80
5.3	Operations on differential modules	81
5.4	Cyclic vectors	84
5.5	Differential polynomials	85
5.6	Differential equations	87
5.7	Cyclic vectors: a mixed blessing	87
5.8	Taylor series	90
	Notes	91
	Exercises	91
6	Metric properties of differential modules	93
6.1	Spectral radii of bounded endomorphisms	93
6.2	Spectral radii of differential operators	95
6.3	A coordinate-free approach	102
6.4	Newton polygons for twisted polynomials	104
6.5	Twisted polynomials and spectral radii	105
6.6	The visible decomposition theorem	107
6.7	Matrices and the visible spectrum	109
6.8	A refined visible decomposition theorem	112
6.9	Changing the constant field	114
	Notes	116
	Exercises	117
7	Regular singularities	118
7.1	Irregularity	119

Cambridge University Press	
978-0-521-76879-5 - p-adic Differential Equations	3
Kiran S. Kedlaya	
Frontmatter	
Moreinformation	

	Contents	vii
7.2	Exponents in the complex analytic setting	120
7.3	Formal solutions of regular differential equations	123
7.4	Index and irregularity	126
7.5	The Turrittin–Levelt–Hukuhara decomposition theorem	127
	Notes	129
	Exercises	130
Part	III <i>p</i> -adic Differential Equations on Discs and Annuli	133
8	Rings of functions on discs and annuli	135
8.1	Power series on closed discs and annuli	136
8.2	Gauss norms and Newton polygons	138
8.3	Factorization results	140
8.4	Open discs and annuli	143
8.5	Analytic elements	144
8.6	More approximation arguments	147
	Notes	149
	Exercises	150
9	Radius and generic radius of convergence	151
9.1	Differential modules have no torsion	152
9.2	Antidifferentiation	153
9.3	Radius of convergence on a disc	154
9.4	Generic radius of convergence	155
9.5	Some examples in rank 1	157
9.6	Transfer theorems	158
9.7	Geometric interpretation	160
9.8	Subsidiary radii	162
9.9	Another example in rank 1	162
9.10	Comparison with the coordinate-free definition	164
	Notes	165
	Exercises	166
10	Frobenius pullback and pushforward	168
10.1	Why Frobenius descent?	168
10.2	<i>p</i> th powers and roots	169
10.3	Frobenius pullback and pushforward operations	170
10.4	Frobenius antecedents	172
10.5	Frobenius descendants and subsidiary radii	174
10.6	Decomposition by spectral radius	176
10.7	Integrality of the generic radius	180
10.8	Off-center Frobenius antecedents and descendants	181

viii	Contents	
	Notes	182
	Exercises	183
11	Variation of generic and subsidiary radii	184
11.1	Harmonicity of the valuation function	185
11.2	Variation of Newton polygons	186
11.3	Variation of subsidiary radii: statements	189
11.4	Convexity for the generic radius	190
11.5	Measuring small radii	191
11.6	Larger radii	193
11.7	Monotonicity	195
11.8	Radius versus generic radius	197
11.9	Subsidiary radii as radii of optimal convergence	198
	Notes	199
	Exercises	200
12	Decomposition by subsidiary radii	201
12.1	Metrical detection of units	202
12.2	Decomposition over a closed disc	203
12.3	Decomposition over a closed annulus	207
12.4	Decomposition over an open disc or annulus	209
12.5	Partial decomposition over a closed disc or annulus	210
12.6	Modules solvable at a boundary	211
12.7	Solvable modules of rank 1	212
12.8	Clean modules	214
	Notes	216
	Exercises	216
13	<i>p</i> -adic exponents	218
13.1	<i>p</i> -adic Liouville numbers	218
13.2	<i>p</i> -adic regular singularities	221
13.3	The Robba condition	222
13.4	Abstract <i>p</i> -adic exponents	223
13.5	Exponents for annuli	225
13.6	The <i>p</i> -adic Fuchs theorem for annuli	231
13.7	Transfer to a regular singularity	234
	Notes	237
	Exercises	238
Part	IV Difference Algebra and Frobenius Modules	241
14	Formalism of difference algebra	243
14.1	Difference algebra	243

CAMBRIDGE

Cambridge University Press	
978-0-521-76879-5 - p-adic Differential Equation	s
Kiran S. Kedlaya	
Frontmatter	
Moreinformation	

	Contents	ix
14.2	Twisted polynomials	246
14.3	Difference-closed fields	247
14.4	Difference algebra over a complete field	248
14.5	Hodge and Newton polygons	254
14.6	The Dieudonné-Manin classification theorem	256
	Notes	258
	Exercises	260
15	Frobenius modules	262
15.1	A multitude of rings	262
15.2	Frobenius lifts	264
15.3	Generic versus special Frobenius lifts	266
15.4	A reverse filtration	269
	Notes	271
	Exercises	272
16	Frobenius modules over the Robba ring	273
16.1	Frobenius modules on open discs	273
16.2	More on the Robba ring	275
16.3	Pure difference modules	277
16.4	The slope filtration theorem	279
16.5	Proof of the slope filtration theorem	281
	Notes	284
	Exercises	286
Part '	V Frobenius Structures	289
17	Frobenius structures on differential modules	291
17.1	Frobenius structures	291
17.2	Frobenius structures and the generic radius of	
	convergence	294
17.3	Independence from the Frobenius lift	296
17.4	Slope filtrations and differential structures	298
17.5	Extension of Frobenius structures	298
	Notes	299
	Exercises	300
18	Effective convergence bounds	301
18.1	A first bound	301
18.2	Effective bounds for solvable modules	302
18.3	Better bounds using Frobenius structures	306
18.4	Logarithmic growth	308
18.5	Nonzero exponents	310

Х	Contents	
	Notes	310
	Exercises	311
19	Galois representations and differential modules	313
19.1	Representations and differential modules	314
19.2	Finite representations and overconvergent differential	
	modules	316
19.3	The unit-root <i>p</i> -adic local monodromy theorem	318
19.4	Ramification and differential slopes	321
	Notes	323
	Exercises	325
20	The <i>p</i> -adic local monodromy theorem	326
20.1	Statement of the theorem	326
20.2	An example	328
20.3	Descent of sections	329
20.4	Local duality	332
20.5	When the residue field is imperfect	333
	Notes	335
•	Exercises	337
21	The <i>p</i> -adic local monodromy theorem: proof	338
21.1	Running hypotheses	338
21.2	Modules of differential slope 0	339
21.3	Modules of rank 1	341
21.4	Modules of rank prime to p	342
21.5	The general case	343
	Notes	343
	Exercises	344
Part	t VI Areas of Application	345
22	Picard–Fuchs modules	347
22.1	Origin of Picard–Fuchs modules	347
22.2	Frobenius structures on Picard–Fuchs modules	348
22.3	Relationship to zeta functions	349
	Notes	350
23	Rigid cohomology	352
23.1	Isocrystals on the affine line	352
23.2	Crystalline and rigid cohomology	353
23.3	Machine computations	354
	Notes	355

CAMBRIDGE

Cambridge University Press 978-0-521-76879-5 - p-adic Differential Equations Kiran S. Kedlaya Frontmatter More information

	Contents	xi
24	<i>p</i> -adic Hodge theory	357
24.1	A few rings	357
24.2	(ϕ, Γ) -modules	359
24.3	Galois cohomology	361
24.4	Differential equations from (ϕ, Γ) -modules	362
24.5	Beyond Galois representations	363
	Notes	364
	References	365
	Notation	374
	Index	376

Preface

This book is an outgrowth of a course, taught by the author at MIT during fall 2007, on *p*-adic ordinary differential equations. The target audience was graduate students with some prior background in algebraic number theory, including exposure to *p*-adic numbers, but not necessarily with any background in *p*-adic analytic geometry (of either the Tate or Berkovich flavors).

Custom would dictate that ordinarily this preface would continue with an explanation of what *p*-adic differential equations are, and why they matter. Since we have included a whole chapter on this topic (Chapter 0), we will devote this preface instead to a discussion of the origin of the book, its general structure, and what makes it different from previous books on the subject.

The subject of p-adic differential equations has been treated in several previous books. Two that we used in preparing the MIT course, and to which we make frequent reference in the text, are those of Dwork, Gerotto, and Sullivan [80] and of Christol [42]. Another existing book is that of Dwork [78], but it is not a general treatise; rather, it focuses in detail on hypergeometric functions.

However, this book develops the theory of p-adic differential equations in a manner that differs significantly from most prior literature. Key differences include the following.

- We limit our use of cyclic vectors. This requires an initial investment in the study of matrix inequalities (Chapter 4) and lattice approximation arguments (especially Lemma 8.6.1), but it pays off in significantly stronger results.
- We introduce the notion of a Frobenius descendant (Chapter 10). This complements the older construction of Frobenius antecedents, particularly in dealing with certain boundary cases where the antecedent method does not apply.

xiii

xiv

Preface

As a result, we end up with some improvements of existing results, including the following. (Some of these can also be found in an upcoming book of Christol [46], whose development we learned about only after this book was mostly complete.)

- We refine the Frobenius antecedent theorem of Christol and Dwork (Theorem 10.4.2).
- We extend some results of Christol and Dwork, on the variation of the generic radius of convergence, to subsidiary radii (Theorem 11.3.2).
- We extend Young's geometric interpretation of subsidiary generic radii of convergence beyond the range of applicability of Newton polygons (Theorem 11.9.2).
- We give quantitative versions of the Christol–Mebkhout decomposition theorem for differential modules on an annulus that are applicable even when the modules are not solvable at a boundary (Theorems 12.2.2 and 12.3.1).
- We give a somewhat simplified treatment of the theory of *p*-adic exponents (Theorems 13.5.5, 13.5.6, and 13.6.1).
- We sharpen the bound in the Christol transfer theorem to a disc containing a regular singularity with exponents in \mathbb{Z}_p (Theorem 13.7.1).
- We give a general version of the Dieudonné–Manin classification theorem for difference modules over a complete nonarchimedean field (Theorem 14.6.3).
- We give improvements on the Christol–Dwork–Robba effective bounds for solutions of *p*-adic differential equations (Theorems 18.2.1 and 18.5.1) and some related bounds that apply in the presence of a Frobenius structure (Theorem 18.3.3). The latter can be used to recover a theorem of Chiarellotto and Tsuzuki concerning the logarithmic growth of solutions of differential equations with Frobenius structure (Theorem 18.4.5).
- We state a relative version of the *p*-adic local monodromy theorem, formerly Crew's conjecture (Theorem 20.1.4), and describe in detail how it may be derived either from the *p*-adic index theory of Christol and Mebkhout, which we treat in detail in Chapter 13, or from the slope theory for Frobenius modules of Kedlaya, which we only sketch, in Chapter 16.

Some of the new results are relevant in theory (in the study of higherdimensional *p*-adic differential equations, largely in the context of the *semistable reduction problem* for overconvergent *F*-isocrystals, for which see [138] and [143]) or in practice (in the explicit computation of solutions of *p*-adic differential equations, e.g., for the machine computation of zeta

Preface

functions of particular varieties, for which see [139]). There is also some relevance, entirely outside number theory, to the study of flat connections on complex analytic varieties (see [144]).

Although some applications involve higher-dimensional *p*-adic analytic spaces, this book treats exclusively *p*-adic *ordinary* differential equations. In joint work with Liang Xiao [145], we have developed some extensions to higher-dimensional spaces.

Each individual chapter of this book exhibits the following basic structure. Before the body of the chapter, we give a brief introduction explaining what is to be discussed and often setting some running notations or hypotheses. After the body of the chapter, we typically include a section of afternotes, in which we provide detailed references for results in that chapter, fill in historical details, and add additional comments. (This practice is modeled on that in [94], although we do not carry it out quite as fully.) Note that we have a habit of attributing to various authors slightly stronger versions of their theorems than the ones they originally stated; to avoid complicating the discussion in the text, we resolve these misattributions in the afternotes instead. At the end of a chapter we typically include a few exercises; a fair number of these request proofs of results which are stated and used in the text but whose proofs pose no unusual difficulties.

The chapters themselves are grouped into several parts, which we now describe briefly. (Chapter 0, being introductory, does not fit into this grouping.)

Part I is preliminary, collecting some basic tools of *p*-adic analysis. However, it also includes some facts of matrix analysis (the study of the variation of numerical invariants attached to matrices as a function of the matrix entries) which may not be familiar to the typical reader.

Part II introduces some formalism of differential algebra, such as differential rings and modules, twisted polynomials, and cyclic vectors, and applies these to fields equipped with a nonarchimedean norm.

Part III begins the study of *p*-adic differential equations in earnest, developing some basic theory for differential modules on rings and annuli, including the Christol–Dwork theory of variation of the generic radius of convergence and the Christol–Mebkhout decomposition theory. We also include a treatment of *p*-adic exponents, culminating in the Christol–Mebkhout structure theorem for *p*-adic differential modules on an annulus satisfying the Robba condition (i.e., having intrinsic generic radius of convergence everywhere equal to 1).

Part IV introduces some formalism of difference algebra, and presents (without full proofs) the theory of slope filtrations for Frobenius modules over the Robba ring.

xvi

Preface

Part V introduces the concept of a Frobenius structure on a p-adic differential module, to the point of stating the p-adic local monodromy theorem and sketching briefly the proof techniques using either p-adic exponents or Frobenius slope filtrations. We also discuss effective convergence bounds for solutions of p-adic differential equations.

Part VI consists of a series of brief discussions of several areas of application of the theory of *p*-adic differential equations. These are somewhat more didactic, and much less formal, than in the other parts; they are meant primarily as suggestions for further reading.

The following diagram indicates the logical dependencies of the chapters. To keep the diagram manageable, we have grouped together some chapters (1-3) and 9-12 and omitted Chapter 0 and the chapters of Part VI. The reader should be aware that there is one forward reference, from Chapter 13 to Chapter 18, but the graph remains acyclic. (There are some additional forward references between Chapters 1 and 2, but these should not cause any difficulty.)

As noted above we have not assumed that the reader is familiar with rigid analytic geometry and so have phrased all statements more concretely in terms of rings and modules. Although we expect that the typical reader has at least a passing familiarity with *p*-adic numbers, for completeness we include a rapid development of the algebra of complete rings and fields in the first few chapters of the book. This development, when read on its own, may appear somewhat idiosyncratic; its design is justified by the reuse of some material in later chapters.

Preface

We would like to think that the background needed is that of a two-semester undergraduate abstract algebra course. However, some basic notions from commutative algebra do occasionally intervene, including flat modules, exact sequences, and the snake lemma. It may be helpful to have a well-indexed text on commutative algebra within arm's reach; we like Eisenbud's book [84], but the far slimmer Atiyah and Macdonald [9] should also suffice.

The author would like to thank the participants of the MIT course 18.787 ("Topics in number theory", fall 2007) for numerous comments on the lecture notes which ultimately became this book. Particular thanks are due to Ben Brubaker and David Speyer for giving guest lectures, and to Chris Davis, Hansheng Diao, David Harvey, Raju Krishnamoorthy, Ruochuan Liu, Eric Rosen, and especially Liang Xiao for providing feedback. Additional feedback was provided by Francesco Baldassarri, Laurent Berger, Bruno Chiarellotto, Gilles Christol, Ricardo García López, Tim Gowers, and Andrea Pulita.

During the preparation of the course and of this book, the author was supported by a National Science Foundation CAREER grant (DMS-0545904), a Sloan Research Fellowship, MIT's NEC Research Support Fund, and the MIT Cecil and Ida Green Career Development Professorship.

xvii