

Cambridge University Press 978-0-521-76860-3 — Flooding and Management of Large Fluvial Lowlands Paul F. Hudson Index More Information

Index

```
Alblasserwaard polder, NL, 207-209
                                                                                         sediment mining, 139, 141
Asian mega-deltas, 4, 72, 223-225, 235-238, 249, See rivers
                                                                                           environmental impact, Mekong, 141
                                                                                         sediment replenishment (dumping), 139, 232, 250-254
atmospheric
   atmospheric rivers, 42-43
                                                                                         sedimentology, influence
  Maya Express, 37, 42–43
Bermuda High, 37
                                                                                           cohesive vs. coarse sediment, 143-144
                                                                                         Mississippi backswamp clay, 144, 156–157, 229–230 structural and nonstructural measures, list, 139
  intertropical convergence zone (ITCZ), 31-32
  synoptic scale, 31
                                                                                        tree snag removal and log jams, 139, 153-155
  teleconnections, 37–42
                                                                                           extent of wood removal, 154
     Atlantic Multidecadal Oscillation (AMO), 39
                                                                                           Great River Raft, Red River (Louisiana), 154-155
     El Niño Southern Oscillation (ENSO), 38-42, 236
                                                                                           US rivers, historic, 154
     ENSO and Amazon flooding, 40
                                                                                      channel geomorphology
     ENSO and South American rivers, 40
                                                                                         bankfull discharge, 19
     ENSO and streamflow variability, 37–42
Indian Ocean Dipole (IOD), 39, 41
La Niña, 41, 42
                                                                                        boundary shear stress, 9, 23, 44
                                                                                         channel bank erosion, 23, 43-47
                                                                                           hydraulic entrainment, 44
     North Atlantic Oscillation (NAO), 38-39
                                                                                           hydrologic controls, 46-48
     Northern Annular Mode (NAM), 39
                                                                                           mass wasting, 45
     Pacific Decadal Oscillation (PDO), 38, 41, 42
                                                                                           processes, 44
     Southern Annular Mode (SAM), 37-38
                                                                                           sedimentary controls, 44-46
     teleconnections and streamflow variability, 37-42
                                                                                         channel bed aggradation, 29, 105, 125, 134, 155, 161, 233
  tropical cyclones, 33, 35, 236, 239
                                                                                        channel slope, 20, 23, 27, 104, 138, 144, 278
  zonal and meridional flow, 33, 36
                                                                                        critical entrainment, 44
                                                                                        cross-sectional geometry, 22 disturbance and fluvial adjustment (conceptual), 27–29
avulsion, see floodplain geomorphology
Bangkok 2011 flood, 35, 235-238
                                                                                         dominant discharge, 19
                                                                                         ecosystem links with functional channel surfaces, 106
  hydro-climatology, 236
batture channel (tie-channel), 47, 57, 58, 191, 192
                                                                                         Froude number, 23
                                                                                         impacts of Great River Raft, Red River (Louisiana), 154-155
channel bank erosion, See channel geomorphology
                                                                                         longitudinal profile, 22, 63-64, 97, 99, 136, 142
                                                                                        meander wavelength, 20, 22, 25, 29
channel bed wave (historic California gold mining), 17–18, 29, 143 channel engineering, 27–28, 138–165, 210, 251–257
                                                                                        mid-channel bar (model), 25
  channelization (cut-offs), 27-28, 144-147, 156-163
                                                                                        planform geometry, 22
pool-riffle morphology, 22
     lower Mississippi case study, 156–163 response, knickpoint, 28, 122, 128, 145–147, 157–159, 202, 203, 284
                                                                                         radius of curvature, 10, 22
     Tulla cut-offs and straightening, Rhine, 147, 148, 193, 278
                                                                                         sinuosity, 21, 24, 27-29, 62-63, 142, 147, 278
                                                                                         specific stream power, 10, 12, 19, 26, 28, 46, 100
     types, 139, 144
     Ucayali and local people (Amazon basin), 146-147
                                                                                         velocity shelter, 25, 53
                                                                                         w/d ratio, 20, 22, 29
     conceptual model, 28, 201-203
                                                                                      channel pattern, 19-27
   groynes (wing dikes), 138-140, 151-153, 162, 251-252
                                                                                         anabranching, 26-27
     hydraulic influence, 151-152
                                                                                           anastomosing, 26 mega rivers, 27
     influence on sediment and floodplain evolution, 151-152
     lower Mississippi, 162
                                                                                           wandering, 26
     pattern of erosion and deposition, Rhine delta, 152
                                                                                         braided, 21, 25
                                                                                         meandering, 19-24
  revetment, 102, 139, 142, 148-150, 161, 253-256
     concrete, casting field, lower Mississippi, 149
                                                                                         meandering-braided threshold, 20
     installation, lower Mississippi, 149-150
                                                                                      Chinese Loess Plateau, 9, 11, 15, 94, 96, 134, 136, 191
                                                                                      coastal land loss in Louisiana, 76, 78, 265
     environmental impact, 150
                                                                                      coastal storm surge, 11, 33, 76–77, 169, 176, 205, 228, 242–248, 269–270, 282
     willow fascine mattress, 149
  riprap, 139, 148-149
                                                                                         geophysical parameters, hurricane strength, 243
Hurricane Katrina, 243–245
     design, 149
   sediment dredging, 139-140
                                                                                           storm surge levels, 243-244
     dredge spoil, Apalachicola River, lower Mississippi,
                                                                                         influence on Mississippi River stage levels, 243
                                                                                         loop current (Gulf of Mexico), 244
```


Cambridge University Press 978-0-521-76860-3 — Flooding and Management of Large Fluvial Lowlands Paul F. Hudson Index <u>More Information</u>

continuum of geomorphic adjustment and sequence of management	Gavins Point and Lewis and Clarke Lake (Missouri), 100, 101, 102, 103,
activities, 201–203, 284–286	132, 137 Grand Ethionian Ronaissanaa Dam (Plua Nila) 02
Cubits Gap (breach and subdelta), 267–269 cycle of dike management, 167, 171–176	Grand Ethiopian Renaissance Dam (Blue Nile), 92 Huanghe River main-stem dams (Longyangxia, Liujiaxia,
dam removal, 115–130	Qingtongxia, Sanshenggong, Wanjiazhai, Sanmenxia,
drivers (list and characterization), 116	Xiaolangdi), 97
cultural heritage, 125	Iffezheim (Rhine), 98, 99, 251, 253, 257
economic, cost to rehabilitate US dams, 117	Kariba Reservoir (Zambezi), 111
environmental, fish, 116, 119	Kingsley (Platte) and McConaughy Lake, 106-107
policy, EU Water Framework Directive, 115, 119	Manuel Moreno Torres, Chicoasén (Mexico), 119
salmon, 119, 124	Mekong basin and large dams (map), 98
stakeholders, 117	Milltown (Clark Fork), 122–123, 124
Elwha River case study, 125–126	Nam Leuk Reservoir (Mekong), 111
extent and tally, 118–120	Pa Sak (Chao Phraya), 236
Canada, 118 European Union, 119	Red Bluff Diversion Dam (Sacramento), 81 Sanmenxia Dam (Huanghe), 97, 131, 134, 136
Finland, 119	Three Gorges Dam (Yangtze), 91, 94, 96, 102, 104, 108, 109, 131,
France, 119	133
Great Britain, 119	upper Mekong (Lancang) dams: Gongguoqiao, Xiaowan, Manwan,
Mexico, 119	Dachaoshan, Nuozhadu, Jinghong, Ganlanba, 96-97
Spain, 119	Vezins and La Roche Qui Boit (Sélune, FR), 119
Sweden, 119	Volgograd (Volga), 91, 99, 101, 104, 108, 109
United States, 118	dam types, 83
reservoir drawdown, 122, 125	ecosystem impacts, 105–115
reservoir sediment, 120–122 reworking, 122–125	aquatic fauna, 108–110 aquatic fauna and Irrawaddy Dolphin (Orcaella brevirostris) in
response, 125–129	Mekong, 110
channel adjustment, 124, 126–128	aquatic fauna and Mekong fishery, 108, 110
fish, 125	aquatic fauna, Nile fishery, 108–109
sediment pulse, 122, 126–128	aquatic fauna, Volga and Russian sturgeon, 108–109
vegetation, 125	aquatic fauna, Yangtze and carp, 108-109
salmon and dam removal	channel narrowing, 105–107
Atlantic salmon (Salmo salar), 118, 119, 276–277	channel narrowing, Platte, 106–107
Pacific salmon (five species), 117, 118	woody vegetation encroachment, 105–107
science of dam removal, 120–130	environmental impact
polluted sediment, 122 polluted sediment, arsenic (Clark Fork), 123	river fragmentation, 86–89 global extent and tally, 82–86
reservoir drawdown, 120, 122	Australia, large dams, 86
reservoir sediment management strategy, 121	Canada, large dams, 86
reservoir sediment weight, 123	large dams, 83–85
sediment compaction, change to reservoir storage capacity, 123	reservoir storage capacity, 85
sediment reworking, 122–125	Spain, large dams by drainage basin, 86
	United States, 86–87
dams, 80–137	hungry water, 100
and agriculture, 80–82, 84, 85, 87, 105–106, 108, 111	new construction, 87–88
chemical fertilizer and Nile agriculture, 108 freshwater withdrawal, 81	reservoir evaporation, 81 reservoir sediment management, 120–125, 130–137
Indus Basin Project, 19, 89	reservoir sediment storage, 130–132
irrigation network, 81, 82, 83	reservoir water quality decline, 110–115
irrigation projects, Mekong, 82	hypoxia, 110–111
water withdrawal and changes to Platte River, 105-106	hypoxia and Lake Nasser, 110–111
channel bed incision	outflow oxygen and temperature decline for TVA dams, 113-115
Danube, 104	outflow temperature and oxygen, 111
several US rivers (Chattahoochee, Colorado, Missouri, Red),	outflow temperature, lower Mekong basin dams, 112
103	phosphorus, 111–112
Volga, 104 Yangtze, 102, 104	thermal stratification, 110–111 river fragmentation index, 86–89
channel degradation	river regulation index, 86–89
Rio Grande/Bravo, 105	sediment decline, 93–100
comprehensive environmental impacts, 95	changes to global sediment flux, 93
dam and reservoir, list	Ebro, 99
Aswan High Dam and Lake Nasser, Lake Nubia (Nile), 3, 81, 91-95,	Huanghe, 94
108–109	Mekong, 96–97
Canyon Dam (Guadalupe), 112	middle Mississippi and lower Mississippi, 99–102
Cherokee (Holston), 113, 115	Missouri, 99–102
Don Sahong (Mekong), 110	Nile and agriculture, 93–94, 96
Douglas Dam (French Broad, United States), 113, 115 Elephant Butte (Rio Grande), 105	Rhine, 97–99 Volga, 99
Elwha and Glines Canyon (Elwha River, United States), 116, 118,	Yangtze River after Three Gorges Dam, 94–96
126, 127	streamflow regime impacts, 89–92
Falcon (Rio Grande / Bravo), 104	changes to TVA dams, 115
Flix reservoir (Ebro), 133	decline for Platte, 107
Fort Edward (Hudson) 122	Ebro 90

Cambridge University Press 978-0-521-76860-3 — Flooding and Management of Large Fluvial Lowlands Paul F. Hudson Index More Information

```
Bangkok 2011 flood, 235-238
dams, (cont.)
     Nile, 91-92
                                                                                          Houston and Hurricane Harvey, 248
     Rio Grande / Bravo, 104–105
                                                                                          New Orleans, 2, 239-248
     Tennessee Valley Authority (TVA), 113–114 US rivers, 89–90
                                                                                        Yazoo backwater flood basin, 206-211
     Volga, 91
                                                                                     flood control and flood management
     Yangtze and Three Gorges Dam, 91
                                                                                        1928 Mississippi River & Tributaries Project, 145, 156, 177, 192,
  world's oldest dam, Cornalvo in Spain, 85
                                                                                             207-213, 282, 288
dams, environmental impact, 86-115
                                                                                        1941 Flood Control Act, 211

    1965 Lake Pontchartrain & Vicinity Hurricane Protection Project, 177, 242–243, 244, 245, 269
    1972 Clean Water Act, section 404c, 116, 212

dams, global extent, 82-89
dams and agriculture, 80–83 delta form and process, 64–78
deltaic geomorphology
                                                                                        1986 Water Resources Development Act, 212
  delta cycle, 73–77
                                                                                        2007 Water Resources Development Act, 170, 270
   fluvial dominated, 72-73
                                                                                        cycle of dike management, 171-177
   fluvial-wave transition, 72
                                                                                        dike breach process. See embanked floodplain:dike breach process
                                                                                        dike (levee) design, 167-181
   fluvial-deltaic sedimentation (hypopycnal condition), 73-74
                                                                                          construction deficiencies, 173-174
  Mississippi delta lobe chronology, 75
Mississippi delta wetland loss, 77–78, 265
                                                                                          factors in dike design, 172-173
  natural levee. See floodplain geomorphology primary controls, 64–69
                                                                                          geophysical indices, 174
                                                                                        dike system, 168–171
                                                                                          US dikes, 171
     delta size, 64
     delta size and drainage area, 68, 69
                                                                                        dike, types, 169
   sediment facies, 74
                                                                                        New Orleans dike, history, 176-177
   subdeltas, 76, 265-270
                                                                                        palimpsest of management, 176-177
  tidal, 72
                                                                                        pattern of embankment, 178–179
  wave dominated, 72 wave to fluvial delta continuum, 72
                                                                                        Room for the River, Netherlands, 8, 170, 213, 249, 250, 258–264, 275–283, 285, 289
                                                                                        structural measures, 138-140, 169
depositional environment. See floodplain geomorphology
drainage basin perspective, 9–13
                                                                                        Yazoo Backwater Area Reformulation, 212
embanked floodplain, 166-204
                                                                                     flood pulse, 31, 32-34, 40, 92, 169, 177, 205, 211, 258
  change to flooding, 181-183
                                                                                     flooding (natural processes)
  dike breach event, 196-202
                                                                                        hydrologic pathways, 48-50, 168
                                                                                          floodplain sedimentology, 49
  dike breach process, 193-195
     overtopping, 194
                                                                                          groundwater, 48
     piping, 174, 176, 193, 246
                                                                                          lowland rivers, 48-49
     underseepage, 194–195, 221, 246
                                                                                          overbank flow, 49-50
  dike breach sedimentology, 193-196, 199-201
                                                                                        local-scale mechanisms, 48-49
                                                                                        perirheic zone, 59
  evolution
     conceptual model, 168-169, 201-203
                                                                                        watershed-scale mechanisms, 48
   Huanghe profile, 191
                                                                                     floodplain geomorphology
                                                                                        abandoned channel (infill), 56, 57, 58
  hydrographic change
     artificial cut-offs, 189-193
                                                                                        avulsion, 64, 225-233
     borrow pit ponds, 185-187
                                                                                          and flood basin sedimentology, 228-231
     dike breach ponds (wielen), 187-188
                                                                                          Atchafalaya, 229-231
     natural and anthropogenic water bodies, 183
                                                                                          controls, 226
                                                                                          Huanghe, 226-227
  hydrologic pathways, 168
                                                                                          management, 231–234
  ice dam (jam) flooding, 167, 197
                                                                                          management factors, table, 232
   lower Mississippi
     distance profile of embanked floodplain width, 180
                                                                                        backswamp, 46, 48, 52, 55-56
   sand boil, 194-196
                                                                                        channel belt, 49-51
   sedimentary change, 188-189
                                                                                        channel fill deposit, 52, 57-59
                                                                                        channel lag deposit, 25
clay plug, 46–47, 58, 143, 157, 287
Fisk, 47, 58
     dike breach pond (wiel) infilling, 199
   width of embanked floodplains for some US rivers, 180
                                                                                        crevasse splay, 52, 53-54, 55, 61
EU Water Framework Directive, 116, 119, 275-279, 288, 293, See dam
                                                                                        depositional environment, 52, 53, 55, 74
       removal:drivers:policy
                                                                                        natural levee, 51-53, 55, 56, 58, 60-61
flood basin and delta management, 205-248
   Atchafalaya, 208, 213, 229-232, 266-267, 274, 287
                                                                                          bioturbation, 52, 61
   Bangkok (Chao Phraya River) 2011 flood, 235-238
                                                                                          downstream pattern, 53-54
   Caernarvon Freshwater Diversion Structure, 269–270
                                                                                          New Orleans, 240
  Biesbosch, NL, 208, 228-229, 265
                                                                                          relation to migration rates, 54
   ecological disturbance, 213-218
                                                                                        negative relief floodplain, 49-51
                                                                                        overbank (flood) sedimentary deposits, 51–58 pedogenesis, 59–62
  flood diversion structures
     Bonnet Carré Spillway, 43, 206–208, 213–215
Fremont Weir, 216–217
                                                                                          bioturbation, 61
     Morganza Spillway, 207, 208, 213, 229, 231
                                                                                        pedogenic properties, 52, 62
                                                                                          cutan, 61
     Steele Bayou (Yazoo basin backwater), 211-212
     types, 207
                                                                                          soil catena, 61
     Yolo bypass, 207, 216–218
                                                                                        point bar, 23-24, 52
   sediment diversion structures, 78, 79, 99, 141, 233, 250, 265, 270-274, 290
                                                                                        sedimentary infilling
                                                                                          channel plug, 57, 58
oxbow lake, 57–58, 184, 192–193
  suspended sediment dynamics, 212, 216, 270–271 urban flooding, 234–248, 289
```


Cambridge University Press 978-0-521-76860-3 — Flooding and Management of Large Fluvial Lowlands Paul F. Hudson Index More Information

```
importance of geodiversity for biodiversity, 289-291
     sedimentary structure, 52
                                                                                    palimpsest of lowland river management, the past is not history, 291 sedimentological controls, 286–287
     spillage sedimentation (model), 53
fluvial system, 9–13
  deposition zone, 12
                                                                                     urban flood management, 289
  headwater (supply) zone, 9-11
                                                                                  lessons learned - summary, 286
  transfer zone, 11–12
                                                                                  levee. See flood control:dike design
                                                                                  looking forward, concern and optimism, 291-297
Gilbert, G.K., 17, 29
Goyder's Line, 82
                                                                                  mega rivers, 27
Great Flood of 1993
                                                                                  National Levee Database, 169, 171
  Missouri, middle and upper Mississippi, 37, 59, 170, 199-200
                                                                                  neotectonic influence, 3, 11, 12, 62-64, 78, 173, 184, 218
  rainfall totals, 38
Great River Raft, Red River (Louisiana), 154-155
                                                                                     fault, 63
                                                                                     Peel Horst Fault Zone, 63, 64, 67
hunger stones, 36
                                                                                     uplift dome, 63, 64
                                                                                  New Orleans, 1, 177-178, 239-248
Hurricane Harvey 2017 flooding of southeast Texas, 248
Hurricanes Katrina and Rita, 2, 8, 169, 171, 176, 239-248, 269-270, 287
                                                                                     2005 flood disaster, see Hurricanes Katrina and Rita
  Caernarvon Freshwater Diversion Structure, 269-270
                                                                                     dikes (levees) and flood walls, 2, 176, 177-178, 239, 245-247
                                                                                     geomorphology and subsidence, 239-241
  New Orleans and Gulf Coast flooding (see New Orleans)
storm surge levels, 243–245
hydraulic geometry, 26, 27
                                                                                     Pierre Sauvé Crevasse flooding (of 1849), 240-241
                                                                                  Nilometer, 41
  change, lower mississippi, 157, 158
hydraulic gold mining in California, historic, 17–18, 29, 216–218
                                                                                  palimpsest of flood management, 176-177, 238, 291
  mercury (Hg) pollution, 17, 216-218
                                                                                  peat, 26, 64, 77, 169, 170, 175, 218, 220–224, 228, 246, 247,
hydroclimatology, 12, 31-43
                                                                                          See subsidence
  historic flood regime (upper Mississippi), 36-37
                                                                                     classification, 220-221
  flow variability, 34
                                                                                     geophysical properties, table, 221
  ice jam flooding, 36, 37, 122, 167, 197-199
teleconnections, see atmospheric hydrologic regime, 32–35
                                                                                  rain follows the plow, 82
                                                                                  reservoir management, 89, 108, 111-113, 130-137, 295
                                                                                     storage capacity lost to sedimentation, 130
                                                                                     strategies, 130-137
integrated river basin management (IRBM), 7, 249-283, 288
                                                                                       sluicing and flushing, 131-136
     coarse sediment replenishment (sediment dumping), 252-253, 286
                                                                                  Rhine-Meuse drainage basin
     groyne lowering, 251-252
                                                                                    map, 66. See rivers: Rhine
     meander (channel) reconnection, 256-257
                                                                                  river channel pattern, 19-27
     removal of revetment (bank protection works), 253-256
                                                                                  rivers
  concern and optimism (in IBRM), 291-296
                                                                                     Amazon, 20, 31, 32, 34, 35, 39-40, 41, 67, 68, 88, 146, 164
  embanked floodplain. See Room for the River
                                                                                     American, 17
     dike setback, 260-262
                                                                                     Amur, 88
     lake reconnection, 260
                                                                                     Apalachicola, 86, 140, 154
     lake reconnection, ecosystem services, 260-262
                                                                                     Arno, 142
     sediment scraping, floodplain lowering, 260
                                                                                     Atchafalaya, 5, 35, 76, 78, 154, 207, 208, 213, 229-231, 266, 267, 273, 287
     side channel creation, guidelines, 258-259
                                                                                     Bear, 17
  vegetation management, 262–264 flood basins and deltas, 264–272, 279–281
                                                                                     Blue Nile, 33, 92, 93
                                                                                     Brahmaputra-Ganges system, 32, 34, 35, 68, 69, 72, 88, 112, 150
                                                                                     Brazos, 51, 180
     challenges, 264
                                                                                     Chao Phraya, 35, 235–237, 294
     sediment diversions. See sediment diversion structures
  governance, 282, 286, 292
                                                                                     Chattahoochee, 102, 103
  managing expectations, 280-283
                                                                                     Clark Fork, 122-124
  Rhine case study, 275-283
                                                                                     Colorado (U.S.), 69, 89, 103
     flood level reduction, 258, 277-279, 281
                                                                                     Columbia, 41, 42, 69, 117
     floodwater retention, 274-275, 277
                                                                                     Colville, 37
                                                                                     Congo, 33, 34, 35, 38, 69
     Rhine delta, 279-280
     Upper Rhine, 278-279
                                                                                     Danube, 34, 35, 64, 69, 88, 102, 104, 140, 142, 152, 164, 220, 253, 260,
                                                                                         261, 274, 287
  strategies
                                                                                     Ebro, 69, 86, 90-91, 93, 97, 99, 120, 133, 134, 219
     channel modification, 251-257
                                                                                     Elbe, 36, 134, 142, 147, 162, 253
     embanked floodplain, 258-264, 275-279
     flood basins and deltas, 264-275, 279-283
                                                                                     Elwha, 116, 118, 124, 125-128
     governance, 249-250, 288, 294
                                                                                     Fraser, 27, 219
     urban, 289
                                                                                     French Broad, 113, 115
  strategies, table, 250
                                                                                     Guadalupe (US), 42, 112, 154
                                                                                    Huanghe, 9, 11, 15, 16, 34, 69, 72, 85, 94, 96, 97, 111, 134–136, 167, 189, 191–192, 220, 226–227, 274
International Commission for the Protection of the Rhine (ICPR), 249, 275,
       288, 297
                                                                                     Hudson, 122
Indus, 19, 62–63, 89, 292
Lake Pontchartrain, 213-215, 239-242, 244, 245, 248
land degradation, 11, 13-17, 161, 191
                                                                                     Irrawaddy, 69, 219
large river context, 9-11, 31-32
                                                                                     Lancang (upper Mekong), 3, 96-97, 98, 182
lessons learned, 284-297
                                                                                     Liaohe, 94
  continuum of geomorphic adjustment and sequence of management,
                                                                                     Loire, 119, 164
                                                                                     lower\ Mississippi, 5, 6, 20, 22, 34, 35, 37, 41, 43, 47, 50, 55, 58, 59, 60-62,
       284-286
  dams, 88, 126-129
                                                                                          64,\,65,\,102,\,140,\,144,\,146,\,149 - 150,\,154,\,156 - 164,\,176,\,185,\,211,
                                                                                          214, 229, 288
  governance, 288
```


More Information

Cambridge University Press 978-0-521-76860-3 — Flooding and Management of Large Fluvial Lowlands Paul F. Hudson Index

```
rivers (cont.)
                                                                                           Zaire, 111-112
   Mackenzie, 34–35, 37, 69
                                                                                           Zambezi, 39, 69, 111–112
                                                                                        Room for the River (Rhine delta), 8, 170, 188, 213, 249, 250, 251, 252, 258,
   Madeira, 22
                                                                                                260, 279–283, 285, 288, 291, see Integrated River Basin Management
  Mekong, 3, 5, 34, 41, 43, 69, 82, 88, 96–98, 108–111, 113, 141,
        220, 292
                                                                                           importance of vegetation management, 264
   Mississippi basin, 35, 36, 37-38, 93, 111, 162, 170, 200
                                                                                           international context, 280-283
  Missouri, 35, 37, 90, 99, 100, 102, 105, 131–132, 137, 152, 154, 161, 170,
                                                                                           specific measures, figure, 251
        180, 194, 199-201, 263, 293
                                                                                             location, map, 280
   Murray-Darling, 31, 34, 35, 39, 42, 69, 82, 154
                                                                                             type, amount of flood stage reduction (cm) per river channel segment
   Nile, 3, 33, 34, 38, 41, 69, 72, 80, 81, 91–92, 93–94, 108, 109, 112, 211,
                                                                                                (table), 281
        219
  Ohio, 35, 37, 140, 166
                                                                                        salmon
  Pearl (CN), 69, 219
                                                                                           Atlantic salmon (Salmo salar), 118-119, 276-277
   Penobscot, 116, 118
                                                                                           Chinook (Oncorhynchus tshawytscha), 17, 29, 218
   Platte, 100, 105-108
                                                                                           Coho salmon (Oncorhynchus kisutch), 126
   Po, 69, 181, 219
                                                                                           Pacific salmon, 117, 118
  Red (Louisiana), 64, 154-155
                                                                                         sea level rise (absolute and relative), 2, 3, 4, 62, 64, 67, 69, 78, 159, 172, 177,
  Rhine, 2, 5, 6, 8, 31, 34, 35–36, 38, 39, 58, 62–64, 66–67, 69, 97, 99, 134, 140, 147–148, 152–153, 164, 167, 170, 175, 178, 187–190, 192–193, 195–197, 199, 207–208, 218, 222, 227–228, 233, 249, 251, 252–254,
                                                                                                178, 204, 218, 226, 235, 248, 270–271, 273, 292
                                                                                           Rhine, 62-64
                                                                                        sediment and freshwater diversion structures
        259, 260, 265, 275–283, 285, 288, 290, 294
                                                                                           Caernarvon Freshwater Diversion, 269-270
   Rhine (IJssel), 189, 207, 233, 252, 264, 281
                                                                                           design considerations, 265-266, 270-274
  Rhine (Nederrijn-Lek), 66, 67, 170, 188, 189-190, 196, 207, 208, 224, 229,
                                                                                           international context, 274
        233, 252, 277, 281
                                                                                           Mississippi delta (mid-Barataria Bay and Breton Sound), 270-271
   Rhine (Waal), 2, 66-67, 140, 152, 153, 167, 176, 189, 196, 199, 208, 229,
                                                                                        subdeltas (Mississippi delta) and historic wetland construction, 265-270
        233, 250, 252, 281
                                                                                           chronology and size, 267
   Rhône, 68, 69, 147, 162, 220, 258
                                                                                           Cubits Gap subdelta, 268–269, 291
                                                                                        St. Elizabeth Day Floods of 1421-1424
  Rio Grande / Bravo, 93, 104, 105, 180
  Rio Pánuco, 39, 54
Rio Paraná, 26, 34, 41
                                                                                           Holland, 186, 226
                                                                                        subsidence, 2, 8, 11, 12, 69, 70, 76, 77, 78, 143, 170, 173, 177–178, 202, 205,
  Sacramento-San Joaquin, 13, 17-19, 29, 30, 34, 69, 81, 154, 176, 207,
                                                                                                218–225, 228, 234, 235, 238, 239–241, 245, 247, 265, 273, 286, 289
        216-217, 219, 223, 255-256, 294
                                                                                           Asian mega-deltas, 220, 224–225
   São Francisco, 40, 72, 73
                                                                                           drivers, 218-219
   Schoonrewoerd (NL), 229
                                                                                           fossil fuel activities and wetland drainage, 78, 222-224
  Sekong, 98, 113
                                                                                           New Orleans and coastal storm surge, 239-247
  Sélune, 119
                                                                                           rates for lowland rivers and delta, table, 219-220
  Senegal, 69, 71, 73
Sesan, 98, 112, 113
Snake, 105, 117
                                                                                           peat compaction and oxidation, 220-221
                                                                                        teleconnections, see atmospheric: teleconnections
  Srepok, 97, 98, 113
                                                                                        Tennessee Valley Authority, 113-115
   Tennessee, 113-115
                                                                                        tie-channel, see batture channel
  Tisza, 147, 149
  Ucayali, 147
                                                                                        US dike (levee) construction, 170-171
  upper Mississippi, 35, 36, 37, 38, 59, 170
Volga, 69, 90, 91, 94, 97, 99, 102, 108, 109, 112, 147
Yangtze, 20, 34, 39, 41, 69, 72, 85, 88, 91, 94, 96, 102, 104, 108, 109, 111, 112, 133, 147, 167, 207, 219, 224, 225, 227
                                                                                        unintended geomorphic consequences, 6, 156, 159-164, 166, 202, 205, 214,
                                                                                                252 286
                                                                                        Wax Lake Delta, 75, 78, 266-267, 291
   Yazoo, 49, 56, 209-210
   Yuba, 18, 29
                                                                                        Yazoo flood basin controversey (Mississippi valley), 208–213
```