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Preface and Acknowledgments

The importance of writing a book about the geomorphic and

environmental impacts of hydraulic engineering to lowland

rivers has long seemed obvious. I’ve mainly studied and resided

in lowland coastal plain settings, other than an early stint in the

Midwest having been born in Wisconsin. This includes north

Florida and the lower St. Johns River valley, the Holocene

Mississippi floodplain in Baton Rouge, Louisiana, and Austin,

Texas at the upper fringe of the Gulf Coastal Plain. And now,

atop late-Holocene sand dunes at the terminus of the Rhine delta

in the Netherlands.

Since the early 1990s I’ve conducted research on the theme of

human impacts to lowland rivers, particularly topics related to

hydraulic engineering and flooding. The concept for the book

really began to take shape over a decade ago after my return to

Austin from Utrecht in late summer 2008. At Utrecht we focused

on an explicit comparison of management approaches between the

Mississippi and Rhine, a timely theme given the 2005 flooding of

New Orleans and new developments in flood management in the

Netherlands. Colleagues in the Department of Geography and the

Environment at UT Austin encouraged me to embark on the

sinuous journey of writing a monograph. I was keen. Well, life

is rich – and complex – and in 2010 it involved relocating to the

Netherlands and two universities that resulted in a series of start

and stop attempts to write the book. A semester research sabbatical

from Leiden University College in autumn 2015 finally provided

the watershed moment to hunker down and tackle the book,

although I didn’t realize it would take another six years.

In some ways this work is a historical treatise in that it draws

upon prominent themes and topics of where I’ve studied, taught,

and researched. I was fortunate to complete my doctorate at

Louisiana State University (LSU), immersed in the rich tradition

of scholarship on fluvial–deltaic processes and engineering geo-

morphology of the lower Mississippi River prominently

developed by R. J. Russell and H. N. Fisk, among others. At

LSU my doctoral supervisor, R. H. Kesel, embraced these

themes and also emphasized the importance of archival and

historic research as complementary and essential to scholarship

in geomorphology. This is necessary when working on large

rivers and can be particularly rewarding when working on rivers

that have long been utilized for human settlement. And I became

acquainted with several themes herein examined during my MSc

thesis work at the University of Florida with Joann Mossa, who

also completed her doctorate at LSU. Joann introduced me to the

lower Mississippi during a “Friends of the Pleistocene” field trip

(actually focused on the Red River valley) in Louisiana. With

repeated trips between Baton Rouge and Vicksburg along Scenic

Highway (U.S. 61), I became fully ensconced in the lore of the

lower Mississippi alluvial valley. And many trips to New

Orleans, that great sinking delta city, provided a unique perspec-

tive on the difficulty of flood management in a complex urban

environment undergoing high rates of ground subsidence. At

LSU I had courses and attended lectures by esteemed scholars,

including H. H. Roberts, J. M. Coleman, G. W. Stone, among

others, that oozed of Mississippi delta science.

I’ve been fortunate to have an academic career over the past

twenty-five years that enabled me to conduct research and annu-

ally teach courses closely aligned with themes contained herein,

including at the University of Texas at Austin, and in the

Netherlands at the University of Amsterdam and Leiden

University. At UT Austin, I had great scholars as colleagues,

including Karl Butzer, who was always supportive and instilled

a measured perspective on current fluvial disasters that can only be

appreciated when working across longer timescales (“we’ve seen

this before. . .”). Receipt of a US Fulbright Fellowship spent in

residence (2007–2008) with Hans Middelkoop’s group at the

Institute of Physical Geography at Utrecht University was invalu-

able for shedding light on several themes herein reviewed, and for

gaining an appreciation for the high level of scholarship in geo-

morphology and the precision to which flood management science

is practiced in the Netherlands. I’ve also been fortunate to have

great students who enquire about topics we might have thought

were worked out but were not, thereby unwittingly helping to

elucidate gaps in knowledge and stimulate new research ideas.

Teaching and research really are bidirectional.

It’s important to acknowledge that this treatise could not have

been written without the tremendous body of scholarly materials

xvii

www.cambridge.org/9780521768603
www.cambridge.org


Cambridge University Press
978-0-521-76860-3 — Flooding and Management of Large Fluvial Lowlands
Paul F. Hudson 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

from which it draws. This includes materials produced by govern-

ment agencies in the form of reports and data sets invaluable to

academic research. I’m particularly grateful for a range of mater-

ials provided by the U.S. Army Corps of Engineers (esp.

Potamology Program) and Rijkswaterstaat. Additionally, digital

archives and databases from a wide range of organizations were

important for providing historic photographs, imagery, maps, and

data. These especially included Actueel Hoogtebestand Nederland

(lidar DEM), American Rivers, Bangkok Metropolitan Agency,

Bank Swallow Technical Advisory Committee (California),

Australian National Committee on Large Dams, DamRemoval.

eu, Delfland Water Authority, Delta Regional Authority

(Mississippi), German Federal Waterways and Shipping

Administration, Google Earth Pro, International Commission on

Large Dams, International Commission for the Protection of the

Danube, International Commission for the Protection of the Rhine,

Louisiana Coastal Protection and Restoration Authority, Louisiana

State University, Department of Geography & Anthropology,

ATLAS lidar data, Mekong Eye, National Archives of the

Netherlands, Murray-Darling Basin Authority, National Oceanic

Atmospheric Administration, NASA Earth Observatory, New

Orleans Historic Collection, Occidental College Special

Collections, Regional Archives Dordrecht, Rijksmuseum

Amsterdam, Spanish Ministry of Environment, State Library of

Louisiana Historic Collection, Tennessee State Library and

Archives, United Nations Food and Agriculture Organization,

U.S. Department of Agriculture (NRCS), U.S. Fish and Wildlife

Service, U.S. AID (Mekong ARCC Program), U.S. Geological

Survey, U.S. Library of Congress, and Utrecht University Digital

Historic Map Collection. An exhaustive attempt was made to

properly secure rights and permissions for all figures and tables

herein utilized. I’m grateful to the following individuals who

kindly granted permission to use their personal photographs or

figures, including Prof. S. Darby (Mekong River erosion), Prof.

L. Fitcher (point bar diagram), L. Lefort (New Orleans area

subsidence), N. Olsen (Bayou Goula towhead island, Mississippi

River), and J. Rusky (Head of Passes, Mississippi River).

The quality and quantity of new published academic research

along the themes herein examined is especially impressive and

requires considerable effort to keep pace. The Mississippi and

Rhine have long served as hearths of fluvial scholarship, and

recent research increasingly has direct environmental, interdis-

ciplinary, and societal relevance. An impressive flow of new large

river research concerns long neglected regions, providing excep-

tions to the general body of knowledge of fluvial geomorphology

developed in mid-latitude North America and Western Europe.

This especially includes rivers in Asia and South America.

I’m keenly aware of esteemed scholars who have passed over

the last decade or so, and from whom I’ve learned so much and

whose ideas permeate this treatise, including Leal Mertes (2005),

Luna Leopold (2006), Gilbert White (2006), Henk Berendsen

(2007), Gordon Wolman (2010), Stan Schumm (2011), Jim Knox

(2012), Jess Walker (2015), Karl Butzer (2016), Wil Graf (2019),

and Ken Gregory (2020). I’m grateful to and remain in awe of

their extensive contributions and dedication to river science.

I’m very appreciative of Cambridge University Press, specific-

ally editors M. Lloyd, S. Lambert, Z. Pruce, S. Duveau, and

F. Mathews Jebaraj for prompt feedback and, especially, the time

and space to complete the monograph, which extended long after

my relocation from Texas to the Netherlands. Critical reviews

and sharp insights provided by E. M. Latrubesse, J. M. Daniels,

F. T. Heitmuller, M. K. Steinberg, M. C. LaFevor, among others,

and my students, who were unsuspecting critics for several years,

allowed me to explore and develop a range of materials. And last –

but certainly not least – this work could not have been completed

without support and sacrifice frommy family, who endured far too

many “fragmented” weekends and “cut-off” holidays while

I toiled. Thanks for your patience over all these years.
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