Contents

Preface
Preface: xiii

Acknowledgments
Acknowledgments: xx

1 Physical Oceanography: Methods and Dynamical Framework

1.1 Observations
1.1.1 What Is the General Circulation?
1.1.2 Sensors to Observe the Ocean
1.1.3 Platforms to Observe the Ocean
1.1.4 Synthesis of Ocean Data
1.1.5 Global Temperature and Salinity
1.1.6 Bottom Topography of the World Ocean
1.2 Concepts
1.2.1 Oceanic Time and Space Scales
1.2.2 Models of the Circulation
1.2.3 Seawater Equation of State
1.3 Theory
1.3.1 Governing Equations
1.3.2 Solving the Governing Equations
1.3.3 Conserved and Derived Quantities
1.4 Excursions: Paths to Oceanography
Exercises: 39

2 Rotating and Shallow-Water Flow

2.1 Concepts
2.1.1 Coriolis Force
2.1.2 Geostrophy, Hydrostasy, and Thermal Wind
2.1.3 Ekman Boundary Layers
2.1.4 Divergence, Vorticity, and Streamfunction
2.1.5 Shallow Water and Potential Vorticity
2.2 Theory
2.2.1 Geostrophic Flow and Ekman Boundary Layers
2.2.2 Example: Hydrostatic, Geostrophic, Thermal Wind, and Dynamic Height Calculation
2.2.3 Vorticity, Streamfunction, and Geostrophic Divergence
2.2.4 Shallow-Water Equations
Table of Contents

2.2.5 Shallow-Water Potential Vorticity Budget

2.3 Excursions: Walfrid Ekman, Fridtjof Nansen, and the Fram Expedition

Exercises

3 Two-Dimensional Horizontal Circulation

3.1 Observations

- Wind Stress Forcing
- Ocean Gyres
- Western Boundary Currents
- Vertically Integrated Velocity

3.2 Concepts

- Uniform-Density Models of the Gyres
- Vorticity Dynamics of the Gyres
- Vorticity Dynamics of the Western Boundary Currents
- Gyre Strength: The Sverdrup Balance
- Limitations of the Sverdrup Balance

3.3 Theory

- Scale Analysis of the Vorticity Equation
- Sverdrup Balance and the Need for a Western Boundary Current
- Depth-Integrated Gyres with Western Boundary Currents
- Nonlinear Recirculation Dynamics
- Integral Vorticity Balances

3.4 Excursions: Pre-Scientific Knowledge of the Ocean Circulation

Exercises

4 Surface and Mixed Layer Properties

4.1 Observations

- Distribution of Surface Properties in Space and Time
- Mixed Layer Structure

4.2 Concepts

- How Surface Fluxes Influence Surface Temperature and Salinity
- Mixed Layer Response to Atmospheric Forcing

4.3 Theory

- Restoring Surface Temperature and Virtual Salt Flux
- Virtual Salt Flux from Freshwater Flux
- One-Dimensional Mixed-Layer Model

Exercises

5 Depth-Dependent Gyre Circulation

5.1 Observations

- Topography of the Pycnocline
- Depth Distribution of Currents
- Density Distribution of Currents

5.2 Concepts

- The Paradox of Wind-Driven Flow in the Pycnocline
Tables of Contents

5.2.2 Ventilated Pycnocline

- 5.2.2 Ventilated Pycnocline: 167
- 5.2.3 Unventilated Pycnocline: 170
- 5.2.4 Mixed Layer Variations and Subduction: 172
- 5.2.5 Some Open Questions: 175

5.3 Theory

- 5.3.1 Condition for Neglect of Mixing: 177
- 5.3.2 Elements of Layer Models: 178
- 5.3.3 Model of Ventilated Pycnocline: 182
- 5.3.4 Model of Unventilated Pycnocline: 184

5.4 Excursions: Henry Stommel Worried That He Came Too Late to Oceanography

- Exercises: 187

6 Equatorial Circulation, Shallow Overturning, and Upwelling

- 6.1 Observations
 - 6.1.1 Equatorial Currents and Subtropical Cells: 192
 - 6.1.2 Upwelling and Downwelling: 195
 - 6.1.3 Eastern Boundary Circulation: 200
- 6.2 Concepts
 - 6.2.1 Equatorial Undercurrent: 202
 - 6.2.2 Three-Dimensional Motion in Uniform-Density Water: 207
 - 6.2.3 Subtropical Cells in Numerical Models: 211
 - 6.2.4 Gyre and Cell Circulation Together: 213
- 6.3 Theory
 - 6.3.1 Some Incomplete Theories of the Equatorial Undercurrent: 218
 - 6.3.2 Equatorial Undercurrent Scaling: 219
 - 6.3.3 Varieties of Meridional Streamfunction: 222
 - 6.3.4 Layer Models of Extra-Equatorial Tropics: 225
 - 6.3.5 Gyre With Subtropical Cell: 228

7 Eddies and Small-Scale Mixing

- 7.1 Observations
 - 7.1.1 Mesoscale Eddies: 238
 - 7.1.2 Small-Scale Mixing: 245
- 7.2 Concepts
 - 7.2.1 Interaction between Eddies and Large-Scale Circulation: 248
 - 7.2.2 Eddy Transport: 251
 - 7.2.3 Parameterization of Eddy Transport: 254
- 7.3 Theory
 - 7.3.1 Flux Due to Eddy Correlation: 258
 - 7.3.2 Isopycnic and Diapycnic Tracer Diffusion: 261
 - 7.3.3 Isopycnic Layer Thickness Advection: 265

Exercises

- Exercises: 273

© in this web service Cambridge University Press

www.cambridge.org
8 Deep Meridional Overturning

8.1 Observations
8.1.1 Evidence of Deep Circulations
8.1.2 Horizontal Deep Flow
8.1.3 Deep Meridional Overturning Circulation
8.1.4 Deep Water Formation

8.2 Concepts
8.2.1 Thermohaline Overturning
8.2.2 Thermohaline Equilibrium
8.2.3 Overturning Strength
8.2.4 Deep Western Boundary Currents
8.2.5 Dynamics of Sinking Regions

8.3 Theory
8.3.1 Energetics
8.3.2 Advection-Diffusion Scaling for Overturning Strength
8.3.3 Horizontal Flow Patterns

8.4 Excursions: Oceanography through the Ages
Exercises

9 The Southern Ocean Nexus

9.1 Observations
9.1.1 Global Overturning
9.1.2 Antarctic Circumpolar Current

9.2 Concepts
9.2.1 Global Ocean Meridional Overturning
9.2.2 Remote Wind-Driven Overturning
9.2.3 Elements of Antarctic Circumpolar Current Theory
9.2.4 Sensitivity to Forcing

9.3 Theory
9.3.1 Wind-Eddies-Diffusion Overturning Scaling
9.3.2 Wind-Driven Models of Eddying Antarctic Circumpolar Current

9.4 Excursions: What Wrong Looks Like from the Inside, Part I
Exercises

10 Arctic Circulation

10.1 Observations
10.1.1 Arctic Circulation
10.1.2 Arctic Temperature, Salinity, and Freshwater

10.2 Concepts
10.2.1 Arctic Hydrographic Properties
10.2.2 Beaufort Gyre Circulation

10.3 Theory
10.3.1 Eurasian Basin Surface Salinity
10.3.2 Atlantic Water Conversion to the East Greenland Current
Contents

10.3.3 Beaufort Gyre Circulation: Eddy–Wind Balance 373
10.4 Excursions: What Wrong Looks Like from the Inside, Part II 379
Exercises 380

11 Heat Flux, Freshwater Flux, and Climate 382
11.1 Observations 382
11.1.1 Equilibrium Energy Balance and Heat Transport 382
11.1.2 Observations of Energy Transport 385
11.1.3 Distribution of Surface Heat Flux 387
11.1.4 Freshwater Forcing 390
11.1.5 Atlantic Overturning and Paleoclimate Change 392
11.2 Concepts 396
11.2.1 Dynamical Analyses of Heat Transport 396
11.2.2 Interactive Surface Conditions 400
11.2.3 Flux Boundary Conditions and Multiple Circulation States 403
11.2.4 Multiple States in General Circulation Models 406
11.3 Theory 409
11.3.1 Surface Heat Flux with Atmospheric Interaction 409
11.3.2 Two-Box Model with Multiple Equilibria 411
Exercises 415

Appendices 418

A Data Sources 418

B Vector Calculus and Spherical Coordinates 423
B.1 Vector Operators 423
B.2 Components in Curvilinear Coordinates 425
B.3 Vector Operators in Spherical Coordinates 426
B.4 Thin-Shell and Traditional Approximations 428

C Tables of Notation and Useful Values 429

References 433
Index 456

Color plates section can be found between pages 196 and 197