Bold font indicates the primary reference for each term.

β-effect, 67, 68, 179, 301, 302, 317, 348, 352, 363

topographic, see topographic, β-effect

β-plane, 68, 111, 113, 123, 124, 219, 220, 312, 313

f-plane, 68, 96, 123, 303, 312, 364

in-situ sensor, 4, 8, 10

absolute
salinity, 6, 6, 31, 31, 40, 153
temperature, 145

vorticity, 55, 74, 104, 431

abyssal plain, 17, 18, 20

acceleration potential, 161

acoustic-doppler current profiler (ADCP), 7, 8, 10, 11, 193, 281, 285

acoustics, 4, 6–8, 10, 11, 24, 34

active tracer, see dynamically, active

adiabatic, 5, 29, 31, 37, 37, 74, 167, 167, 168, 189, 265, 266, 273, 311, 340, 374, 399

advection, 32, 33, 37, 58, 71, 105, 115, 117, 118, 177, 178, 204, 205, 207, 221, 252, 255, 256, 259, 266, 267, 308–310, 412

advective velocity, 257, 267

advective-diffusive balance, 297, 311, 319, 344

Agulhas

current, 85, 87, 102, 241, 323, 388

leakage, 323

retroreflection, 87, 102, 103, 240, 323

Alaska stream, 87

Alaskan coastal current, 354

albedo, 145, 383, 388, 401, 402

alpha ocean, 15, 155, 187, 188, 356

altitude, 4, 9, 11, 273, 421

angular

momentum, 55, 56

velocity, see velocity, angular

Antarctic

bottom water (AABW), 278, 281–284, 302, 322–324, 326, 332, 395, 396

intermediate water (AAIW), 278, 328

peninsula, 83, 132, 281

anticyclonic, 51, 82, 82, 92, 158, 165, 240, 242, 273, 336, 352, 353, 403

Arctic

circumpolar boundary current, 355

mediterranean sea, 359

ocean, 75, 132, 187, 243, 244, 287, 348, 352, 354–361, 363, 380

argo, 11, 13, 88, 98, 143, 153, 316, 349

aspect ratio, 18, 42, 207, 432

Atlantic

meridional overturning circulation (AMOC), 388, 392, 396, 398, 399, 402, 407, 414, 416

ocean, see north, Atlantic, ocean and south, Atlantic ocean

atmospheric GCM, 28

autonomous vehicle, 10

available potential energy, 249, 250, 251, 254, 255, 273, 275, 296, 307

Baffin Island current, 354

Barents

sea, 287, 352, 353, 356, 358, 363

sea opening, 354, 357, 359

baroclinic, 47, 249, 257, 373

instability, 249, 250, 254, 257, 258, 267, 274, 364, 400

zone, 268, 268, 347, 379

barotropic, 47, 53, 168

instability, 250

streamfunction, 47, 53

vorticity equation, 104, 107, 109

basin mode, 23

bathymetry, 19, 20, 78, 91, 98, 268, 282, 286, 288, 289, 305, 321, 353, 355, 373, 420, 422
Beaufort gyre, 244, 272, 348, 353, 354, 363–365, 373, 374, 376–379, 381
high, 352, 363
Benguela current, 202, 244
Benjamin Franklin, 315
Bermuda, 152
Bermoulli function, 317
Bermoulli’s principle, 304, 317
Bert Rudels, xviii, 361, 373
beta ocean, 15, 155, 187, 188, 356, 360
spiral, 190
bifurcation latitude, 230, 231, 234, 237
streamline, 234
bolus velocity, 256, 256, 257, 267, 267, 270–272, 274, 350
Bosphorus, 290, 291
bottom Ekman layer, 60, 71, 92, 94, 345
stress, see stress, bottom water, 14, 187, 278, 281, 282, 323, 399
boundary condition, 25, 35, 35, 36, 66, 72, 110, 112, 113, 116, 170, 218, 403, 409
Dirichlet, 35
flux, 35
free-slip, 35, 116
impermeable, 35, 72, 109
insulating, 35
kinematic free surface, 35
mixed, 403, 408
Neumann, 35
no-slip, 35, 35, 71, 110, 113, 116, 118
restoring, 136, 145, 400, 408, 411
Robin, 36, 145
boundary layer, 50, 79, 103, 110–112, 115, 123, 124, 176, 204, 312, 315, 373, 401
Ekman, see Ekman, boundary layer equation, 112, 112
Boussinesq approximation, 34, 38, 41, 46, 65, 124
Brazil current, 85, 85, 90
Brunt–Väisälä frequency, 22, 154, 430, see also buoyancy, frequency
bulk formula, 79, 145, 400, 411
temperature, 126
buoyancy, 39, 59, 69, 154, 202, 212, 290, 291, 293, 311, 318, 342, 345, 346, 364, 367, 368, 371, 373, 413, 430, 432
flux, see flux, buoyancy frequency, 22, 39, 56, 59, 188, 246, 268, 375, 430
buoyant convection, 139, 140, 368
Bolling-Allerød, 394, 396
California current, 202, 244
Canadian Arctic archipelago, 287, 353, 359
basin, 244, 352–354
Cape Hatteras, 87, 88, 160, 279
Carl Wunsch, xviii, 1, 8, 14, 89, 246, 285, 297
unit vector, 427, 429
cascade, 246, 288
cast, 12
centrifugal force, 42, 42–45, 49, 58, 62, 75, 81, 250, 293, 428
chlorofluorocarbons, 7, 10, 12, 29, 280–282, 285, 302, 316
chlorophyll, 198, 199, 200, 421
Claes Rooth, 403
core ring, 241, 242
cascade, 285, 323
tongue, 127, 128, 131, 136, 242, 388, 401
conductivity–temperature–depth (CTD), 10, 10–13, 40, 77, 122, 135, 152, 193, 243
cold
continental shelf, 17, 287, 288, 355
slope, 17, 19, 86, 279, 288–290, 352, 355, 358
continuity equation, 34, 71, 72, 74, 107, 108, 179, 196, 220, 236, 266, 267, 313
convection, 82, 139, 140, 143, 149, 256, 257, 286, 287, 303, 306, 308, 359, 365, 368
buoyant, see buoyant convection
devective overturning, 148, 148
convergence, 50, 51, 51, 94, 95, 144, 147, 147, 207, 268, 272
conveyor belt, 323
cartesian coordinates
Cartesian, see Cartesian, coordinates
spherical, see spherical coordinates
Coriolis
effect, 49, 303
force, 38, 42, 42–45, 49, 58, 62, 75, 81, 250, 293, 428
Index

458

coupled ocean–atmosphere interaction, 401
critical state, 304
cross-shore, 200, 201
cryosphere, xvi, 1, 28
current meter, 4, 6, 7, 8, 11, 23, 33, 75, 88, 91, 160, 281, 282, 285, 325
Dansgaard–Oeschger events, 394, 395
data assimilation, 27, 98, 324
Davidson current, 202
Davis strait, 87, 99, 132, 287, 354, 355, 359
Deacon
Cell, xvi, 211, 272, 331, 332, 334, 350
George, see George Deacon
deep
water, 14, 14, 153, 276, 278, 279, 284–287, 297, 299, 301, 302, 314, 323, 327, 332, 336, 373, 396, 398, 407, 412
water formation, xv, 278, 279, 283, 285, 315, 331, 350, 388, 405, 406, 409
western boundary current, 279–281, 285, 299, 302, 312, 397
definition radius, 21, 22, 244, 250, 257, 293, 293, 346, 432
Denmark strait, 286, 288, 289, 303, 305, 306, 316
density, xv, 6, 430, 431
anomaly, 29, 29, 131, 145, 153, 159, 317, 430
ice, see ice density
neutral, see neutral density
potential, see potential, density
deep-integrated horizontal velocity, 87, 98, 99, 110, 121, 124, 205, 207, 209, 377, 430
detrainment, 139, 140, 143, 226, 287, 381, 430
diabatic, 147, 167, 319, 374
diagnostic, 47, 291
double, see double, diffusion
diffusive pycnocline, 318
diffusivity, 32, 35, 35, 259, 261, 267, 311, 430, 432
diapycnic, 261, 261–263, 269
diffusion, 246, 246, 247, 254, 261, 262, 265, 275, 343
horizontal, 257, 258, 262, 330
isopycnic, 255, 256, 256, 261–265, 266, 336
kinematic, 245
molecular, 247
quasi-Stokes, 267
tensor, 262, 263, 265, 269, 270, 308
turbulent, 247
vertical, 177, 262, 264, 295, 297–299, 336
Dirac delta function, 67, 147
direct method, 386, 387, 415
directional derivative, 424
discretization, 26
dispersion relation, 22–24
dissipation, 23, 32, 37, 57, 74, 92, 148, 150, 245, 261–263, 266, 296, 368, 430
diurnal
cycle, 129, 134, 139
pycnocline, 134, 135
thermocline, 134
theorem, 32, 66, 117, 308, 313, 424
doldrums, 81
double
diffusion, 188, 246, 248, 357
estuary, 361
down-gradient transport, 254, 267, 269
drifter, 10, 10, 12, 33, 100, 160, 174, 193, 196, 199, 201, 202, 239, 241, 349, 419, 421
dynamic
height, 60, 63, 63–65, 76, 159, 161, 187, 431
pressure, 45, 69, 69, 159, 161, 179, 195, 205, 242, 260
dynamically
active, 34, 56
passive, 34, 274, 360, 416
Earth
angular rotation rate, 431
radius, 68, 431
surface area, 431
east
Australian current, 85, 91, 388
easterlies, 80, 205, 206
compensation, 341, 343, 350
diffusivity, see diffusivity, eddy
efficiency, 272, 364, 375, 378
flux, see flux, eddy
induced transport velocity, 256, 267, 268, 272, 373
kinetic energy, 244, 244, 245, 255
Mediterranean, 243
Index

parameterization, 238, 254, 255, 257, 258, 266, 268, 275, 346, 351
permitting, 28, 98, 331, 400
saturation, 343, 343, 347, 348, 350, 351, 365, 365, 373, 378, 381
submesoscale, 244, 258
suppressing, 28, 257, 329, 330, 333, 336, 343
synoptic, 81, 129, 250
viscosity, see viscosity, eddy

Ekman
bottom boundary layer, see bottom, Ekman layer boundary layer, 48, 56, 60
number, 58, 432
spiral, 59
velocity, 49, 57, 59, 60, 70, 71, 107, 207, 283
El Niño, 129, 211, 234, 401
energy
available potential, see available potential energy
flux, see flux, energy
internal, see internal, energy
kinetic, see kinetic energy and eddy, kinetic energy mechanical, 38, 139–141, 147, 148, 275, 368, 373
potential, see potential, energy
thermal, 136, 139, 140, 148, 383
equation of state, 6, 29, 29–31, 34, 36, 40, 41, 130, 177, 295, 310, 405, 412
equatorial
countercurrent, 83
undercurrent, 2, 192, 202–205, 219, 236, 246, 401
Etel potential vorticity, 56, 56, 77, 430
Eulerian view, 33, 142, 143, 257, 270
Eulerian-mean velocity, 257, 332
euphotic zone, 147, 177, 198
Eurasian basin, 244, 353, 360, 365, 370
expendable bathythermograph, 10, 13
extensive quantity, 32
extrinsic factor, 21, 21, 341, 342

Falklands current, 85
Faroe bank channel, 287, 288
fictitious force, 42, 43
float, 10, 11, 11–13, 62, 88, 143, 153, 160, 279, 349
Florida current, 85
fluid circulation, 66
flux, 32, 32, 33, 35, 51, 70, 72, 138, 148, 189, 213
224, 225, 261–263, 284, 286, 303, 304, 308, 310, 358, 381, 387, 388, 403
buoyancy, 154, 217, 218, 413
eddy, 259, 273
energy, 34, 382, 383, 385–387, 391, 411
freshwater, xvi, 35, 36, 138, 146, 147, 152
154, 310, 358, 359, 391, 392, 402–404, 408, 415, 416
heat, xvi, 36, 104, 136, 137, 140–142, 144–148, 151, 154, 255, 264, 310, 316, 318, 356, 358
ice, 359
latent heat, 388, 416, 422
mass, 138, 385
momentum, 35, 48, 259
sensible heat, 140, 145, 388, 401, 422
surface, 136, 153, 389, 403, 406, 415, 420
surface heat, 136, 136, 137, 144, 151, 152, 154
385, 387, 388, 392, 399, 400, 402, 403, 409–411, 415
thickness, 267, 268
top of the atmosphere, 387, 431
tracer, 144, 251, 260, 274
virtual salt, 138, 146, 147, 147, 367, 403, 405–407, 412, 414
volume, 53, 292, 303, 304, 317, 358, 359, see also transport

Fofonoff
gyre, 115, 116, 125
Nicholas, see Nicholas Fofonoff

form drag, 338, 339, 341, 345, 350
fractal, 20
Fram
expedition, 75, 76, 353
strait, 287, 352–359, 361, 362, 366, 370
friction velocity, 367, 368, 370
frictional boundary layer, 110
Fridtjof Nansen, 75, 76, 333
front, 159, 210, 242, 244, 249, 256–258, 274, 275, 325, 326, 337, 347, 349
fundamental theorem of calculus, 424
<table>
<thead>
<tr>
<th>Index</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>generalized Sverdrup transport, 206, 206, 207</td>
<td>Henry Stommel, 96, 105, 166, 175, 300, 403</td>
</tr>
<tr>
<td>geoid, 9, 11</td>
<td>horse latitudes, 81</td>
</tr>
<tr>
<td>geophysical fluid dynamics, 21, 31</td>
<td>Humboldt current, 302</td>
</tr>
<tr>
<td>geopotential, 64</td>
<td>hydrodynamic instability, 56, 246, 248</td>
</tr>
<tr>
<td>George Deacon, 331</td>
<td>hydrography, 6, 8, 88, 89, 187, 188, 281–283, 325</td>
</tr>
<tr>
<td>geostrophic interior, 60, 60</td>
<td>hysteresis, 414</td>
</tr>
<tr>
<td>glacial, 394, 394</td>
<td>Bergen, 76</td>
</tr>
<tr>
<td>glaciation, see ice, age</td>
<td>cap, 20</td>
</tr>
<tr>
<td>glider, 10, 11, 33</td>
<td>density, 367, 432</td>
</tr>
<tr>
<td>global climate system, xvi</td>
<td>flux, see flux, ice</td>
</tr>
<tr>
<td>gradient operator, 424</td>
<td>rafted debris, 394</td>
</tr>
<tr>
<td>gravitational acceleration, 21, 34, 45, 64, 76, 140, 159, 205, 431</td>
<td>shelf, 20</td>
</tr>
<tr>
<td>acceleration, 21, 34, 45, 64, 76, 140, 159, 205, 431</td>
<td>stress, see stress, ice</td>
</tr>
<tr>
<td>adjustment, 294</td>
<td>tethered profiler, 243</td>
</tr>
<tr>
<td>instability, 149, 188</td>
<td>Iceland–Faroe passage, 286, 288</td>
</tr>
<tr>
<td>potential, 9, 44, 64, 65, 140</td>
<td>incompressibility, 33, 34, 34, 36–38, 40, 50, 92, 124, 317</td>
</tr>
<tr>
<td>greenhouse effect, 287, 352, 355, 358</td>
<td>Indonesian passages, 91, 121, 212, 322, 330</td>
</tr>
<tr>
<td>Greenland–Iceland–Scotland ridge, 286, 287–289, 352, 355, 358</td>
<td>throughflow, 90, 98, 119, 216</td>
</tr>
<tr>
<td>Gulf Stream, xi, 85, 88, 89, 98, 100, 123, 142, 160, 239, 241, 243, 244, 260, 264, 279, 284, 388, 397, 399, 400, 421</td>
<td>inertia-gravity wave, 22</td>
</tr>
<tr>
<td>extension, 87, 240, 244</td>
<td>inertial, 57, 100, 100, 102, 105, 106, 110, 113, 115, 125</td>
</tr>
<tr>
<td>gyre, xiv, 82, 208, 323, 325</td>
<td>frequency, 44</td>
</tr>
<tr>
<td>subpolar, see subpolar, gyre</td>
<td>length scale, 105, 115, 268, 432</td>
</tr>
<tr>
<td>subtropical, see subtropical, gyre</td>
<td>oscillation, 21, 44, 57, 421</td>
</tr>
<tr>
<td>tropical, see tropical, gyre</td>
<td>period, 58</td>
</tr>
<tr>
<td>Hadley circulation, 81</td>
<td>initial condition, 36, 36, 72, 78, 291, 296, 369, 373, 406, 417</td>
</tr>
<tr>
<td>haline contraction coefficient, 15, 30, 68, 179, 363, 368, 430</td>
<td>interfacial vertical velocity, 72, 72, 73, 430</td>
</tr>
<tr>
<td>halocline, 243, 356, 363–365, 378</td>
<td>interglacial, 394, 394</td>
</tr>
<tr>
<td>Harald Sverdrup, 97</td>
<td>intermediate water, 14, 278, 328, 358, 361, 362</td>
</tr>
<tr>
<td>heat conservation, 34, 261, 262</td>
<td>internal energy, 33, 34</td>
</tr>
<tr>
<td>engine, 297</td>
<td>gravity wave, 59, 238, 246</td>
</tr>
<tr>
<td>flux, see flux, heat</td>
<td>international polar year, 352</td>
</tr>
<tr>
<td>flux method, 386, 415</td>
<td>intertropical convergence zone, 81, 129, 129, 230, 297, 388, 391, 392</td>
</tr>
<tr>
<td>Heaviside function, 148</td>
<td>inverse modelling, 14, 326, 355, 422</td>
</tr>
<tr>
<td>Heinrich event, 394, 394–396</td>
<td>inviscid, 37, 37, 50, 74, 107, 168, 189, 205, 219, 236, 311, 313</td>
</tr>
<tr>
<td>Henry Stommel, 96, 105, 166, 175, 300, 403</td>
<td>Irminger sea, 287</td>
</tr>
<tr>
<td>horizontal momentum equations, 56, 71, 428</td>
<td>irrotational, 65, 66</td>
</tr>
</tbody>
</table>
island rule, 98, 119–121
isopycnic, xv
slope, 264, 265, 270, 272, 274, 432
Jacobian, 115, 125, 189
Kelvin wave, 293
Kelvin–Helmholtz instability, 246, 305
Kerguelen plateau, 19, 189, 320, 321
kinetic energy, 23, 38, 139, 148, 150, 250, 251, 273, 275, 296, 309, 317, 318, 364, 367
Kot, 432
Kronecker delta function, 73, 226
Kuroshio current, 85, 89, 100, 163, 241, 244, 264, 388, 399
Labrador current, 85, 87, 99
Lagrangian view, 12, 33, 142, 143, 349, 416, 425
Lake Agassiz, 396
Laplacian, 270, 425, 426, 427
last glacial maximum, 394
latent heat capacity, 145, 362, 366, 367, 431
flux, see flux, latent heat
lateral induction, 143, 172–174
layer thickness, 54, 68, 72, 73, 104, 162, 168, 170, 171, 176, 180–183, 189, 197, 219, 226, 227, 253, 255, 256, 261, 266, 266–268, 270, 292, 301, 312, 430
Leeuwin current, 202
Legeckis wave, 242
level of no motion, 65, 98, 160, 161, 191, 193, 195, 242, 283
liquid freshwater content, 358, 380, 380
loop current, 85
Luigi Ferdinando Marsili, 291
Luyten–Pedlosky–Stommel (LPS) model, 166–170, 175, 176, 190, 204, 213, 219, 226, 227, 310
Mach number, 34, 432
marginal sea, 20, 276, 288, 303, 304, 306, 321
material conservation, 37, 56, 74, 190
derivative, 33, 34, 36, 70, 71, 104, 425, 427, 428
meander, 116, 141, 240, 241, 241, 248, 249, 324
meddy, 243
Mediterranean, 16
eddy, see meddy
outflow, 242, 247, 289, 305, 306
water, 242, 290, 306
mediterranean
Arctic, see Arctic, mediterranean sea
meridional, xv
density transport, 224, 225
heat transport, 165, 212, 224, 383–387, 396, 397, 400, 415, 416
overturning circulation, see deep, meridional overturning circulation
volume transport, 119, 121, 189, 224, 339, 340, 344
mesoscale, see eddy, mesoscale
metric terms, 35, 427
mid-Atlantic ridge, 19
mid-ocean ridge, 18, 19, 99
Mindanao current, 194
depth, 133, 134–137, 139–141, 143, 144, 147, 150–152, 154, 173, 174, 422, 430
mixing, 32, 245, 251, 252, 259, 274
mixing length, 259, 260, 274
model resolution, 27, 28, 89, 343
Monin–Obukhov depth, 140, 140–142, 150, 371
moon, 200
mooring, 6, 7, 11, 13, 23, 284, 325, 419, 421
multiple equilibria, 403, 404, 406, 411
Munk length scale, 106, 106, 113, 432
model, 96, 112, 114, 118–120
Walter, see Walter Munk
nautical mile, 432
navigation, 4, 11, 12
neutral density, 31, 326, 330
New Guinea coastal undercurrent, 194
Nicholas Fofonoff, 115
ninety east ridge, 19
Niskin bottle, 10
nitrate, 198, 235
non-divergent, 34, 65, 87, 109, 271
nonhydrostatic, 59
north Atlantic current, 87, 142, 287
deep water (NADW), 278, 279, 280, 283–285, 289, 302, 314, 322, 324, 328–332, 336, 337, 341, 395, 396
Index

Brazil current, 85
equatorial

counter current, 192
current, 83, 192

Norwegian

Atlantic current, 354, 355, 356, 358
coastal current, 354

numerical model, xii, 1, 14, 23, 24, 28, 78, 88, 99–104, 113, 137, 167, 174, 205, 206, 211, 249, 254, 255, 290, 293, 298, 302, 327, 328, 331, 334, 336, 338, 341, 343, 345, 381, 403, 414, see also general circulation model (GCM)
nutrient, xi, 28, 198, 235

obduction, 142, 143, 153, 163
observing platforms, 10, 418

ocean forcing, 25

ocean general circulation, xiii, 1, 1, 28, 31, 34, 42, 50

ocean surface topography, 9

oceanographic atlas, 418

one-dimensional mixed layer model, 139, 139, 141–143, 147, 151, 154

outcrop, 155, 161, 162, 168, 175, 181, 182, 190

overflow, 280, 287, 288, 289, 304–306, 316, 358

overturning
cell, xv, 208, 210, 284, 300, 322, 323, 327, 333, 396, 398, 407
streamfunction, 272, 274, 275, 331, 364, 397–399, 408, 415, 416, see also meridional, overturning streamfunction

oxygen, 7, 10, 12, 13, 28, 29, 143, 279, 316

Pacific ocean, see north, Pacific ocean and south, Pacific ocean parameterization, 28, 72, 137, 145, 150, 238, 254, 255, 265, 267, 268, 274, 364, 367
eddy, see eddy, parameterization

parcel theory, 148, 274

passive tracer, see dynamically, passive permanent

halocline, 356

pycnocline, 15, 141–143, 153, 175, 356

thermocline, 14, 15, 141, 153, 162, 163, 174, 256, 350

Peru

coastal current, 202, 202
current, 202, 244

Peter Rhines, 170, 268

pinniped, 11

planetary vorticity, 30, 55, 56, 66, 77, 97, 105, 124, 179, 204, 219

polar night, 360, 366

pool, 169, 169, 170, 172, 184, 186, 189

position vector, 52, 429

potential
density, 29, 153, 187, 236, 430
energy, 38, 64, 139, 140, 149, 270, 272, 273, 296, 297, 307–309, 317, 318, 364, 400
temperature, 5, 5, 29–31, 40, 167, 178, 187, 223, 236, 259, 282, 310, 384

large scale, 162

planetary, 162, 163, 189

vorticity homogenization, 171, 172, 184, 186

practical salinity scale, 6, 31, 78

pressure, 4, 4, 430–432
dynamic, see dynamic, pressure reference, see reference, pressure profilers, 11

prognostic, 47

proxies, 392–396

diffusive, see diffusive pycnocline

diurnal, see diurnal, pycnocline

permanent, see permanent, pycnocline

seasonal, see seasonal, pycnocline

diffusive streamfunction, 272

radiative heating, 34

radius of influence, 418, 418

reanalysis data, 79, 353, 386, 420, 422

reduced gravity, 69, 76, 178, 179, 227, 260, 263, 268, 291, 432

reference
density, 30, 45, 63, 178, 430, 431

pressure, 5, 29, 63, 65, 78

salinity, 64, 359, 380

relative vorticity, 54, 55, 66, 67, 76, 93, 100, 101, 105, 117, 162, 204, 219, 243, 337, 431

remote
sensor, 4, 8, 79

remote wind-driven overturning, 332, 333, 335
residual method, 386, 386, 387
velocity, 267
restoring constant, 136, 137
equation, 138, 145, 146, 146, 151, 153, 401, 401, 403
temperature, 136, 144, 146, 151–153, 295, 400, 404, 407–409
Reykjanes ridge, 99, 288
Reynolds number, 37, 37, 50, 432
Rhines Peter, see Peter Rhines scale, 105, 115, 268, 432
Richardson number, 136, 137, 144, 145, 146, 151, 153, 295, 400, 404, 407–409
temperature, 136, 144, 146, 151–153, 295, 400, 404, 407–409
Somali upwelling, 200
sound speed, 22, 34, 39, 41, 432
source term, 32, 34, 37, 38, 144
south
equatorial current, 83, 192, 192, 207
specific heat capacity, 34, 140, 144, 224, 362, 366, 431
volume, 63, 64, 65
spherical coordinates, 35, 45, 178, 209, 226, 318, 423, 426, 426–428, 429
spice, 188
stable equilibrium, 406, 414
stable, 357
station, 12, 12, 13, 40, 60–64, 76–78, 141, 143, 319, 319, 361
steady circulation, 12, 27, 39, 44, 250, 251
Stefan–Boltzmann constant, 145, 383, 432
law, 145, 383, 411
steric height, 64
stirring, 32, 245, 245, 251, 252, 255, 274, 276, 368
Stokes’ theorem, 66, 117, 424
Stommel
abyssal model, 279, 300–302, 312, 314, 318
demon, 175, 175
gyre model, 92, 96, 97, 105, 111, 111, 112, 117, 119, 123, 416
Henry, see Henry Stommel

Cambridge University Press
978-0-521-76843-6 — Ocean Circulation in Three Dimensions
Barry A. Klinger, Thomas W. N. Haine
Index
More Information

© in this web service Cambridge University Press
www.cambridge.org
length scale, 105, 106, 112, 432
overturning model, 404
barotropic, see barotropic, streamfunction
meridional overturning, see meridional, overturning streamfunction
overturning, see overturning, streamfunction
quasi-Stokes, see quasi-Stokes streamfunction
Sverdrup, see Sverdrup, streamfunction
Sverdrup transport, see Sverdrup, streamfunction
streamline, 51, 52, 53, 82, 90, 115, 124, 125, 159, 162, 169, 170, 182, 184, 212, 213, 217, 228, 230, 256, 317, 331, 334, 416
streamtube model, 305
bottom, 70, 110, 111, 117, 119, 123
frictional, 48, 48, 60
generalized wind, 205
ice, 353, 361
interfacial form, 346
Reynolds, 258, 259
tensor, 4
viscous, 48, 59
subcritical, 304
subduction, 19, 143, 143, 153, 168, 168, 169, 172, 172–175, 182, 190, 194, 204, 213, 227, 399
subpolar
cell, 211, 211, 331, 334
gyre, 83, 84, 85, 87, 99, 100, 159, 161, 167, 175, 176, 198, 208, 209, 211, 239, 283
subtropical
cell, 164, 192, 195, 203, 210, 211–213, 216, 222, 228, 232, 233, 329, 331, 332, 392, 398, 399
supergyre, 102
Sverdrup, 53, 91, 432
Harald, see Harald Sverdrup
relation, 68, 107
streamfunction, 102, 109, 122, 163, 202, 204, 206, 207, 209–211, 230–232, 430
swamp ocean, 137, 138
synoptic eddy, see eddy, synoptic

target
density, 294, 311
salinity, 138, 407
temperature, 136, 136, 137, 146, 151, 400, 409
taylor column, 46, 54
temperature, 5, 418, 432
absolute, see absolute temperature
bulk, see bulk, temperature
conservative, see conservative temperature
potential, see potential temperature
restoring, see restoring, temperature
sea ice, see sea ice, temperature
sea-surface, see sea-surface, temperature (SST)
skin, see skin temperature
target, see target temperature
tensor, 262, 263, 268, 269
diffusivity, see diffusivity, tensor
stress, see stress, tensor
TEOS-10, xvi, 31, 31, 65, 77, 188, 370, 431
themes, xiii
thermal
equator, 127, 129, 131
expansion coefficient, 15, 30, 140, 148, 360, 363, 368, 430
wind equations, 46, 46, 47, 63, 65, 62, 268, 376
thermostat, 4–6
thermobaricity, 30
thermocline, 155
diurnal, see diurnal, thermocline
permanent, see permanent, thermocline
problem, 176
seasonal, see seasonal, thermocline
thermohaline overturning, 291, 297, 298, 332
thickness
advection, 255, 256, 265, 270
flux, see flux, thickness
layer, see layer, thickness
sea ice, see sea ice, thickness
thin shell, 428
three-dimensional flow, xv
tide, 1, 9, 21, 82, 246, 246, 431
Index

barrier, 252

Ekman, see Ekman, transport

generalized Sverdrup, see generalized Sverdrup

absolute, see absolute vorticity

planetary, see planetary vorticity

potential, see potential vorticity

relative, see relative vorticity

shallow water potential, see shallow water, potential vorticity

Walter Munk, 8, 96, 106, 246, 297, 299, 311

Walvis ridge, 282, 303

warm

core ring, 241, 242, 243

pool, 127, 401

route, 285, 323, 323

water mass, 17, 103, 275, 278, 278, 304, 306, 316, 326, 327, 360, 361, 395, 396

wave breaking, 126, 148, 238, 246

weather, 25, 27, 79, 81, 81, 129, 136, 249, 250, 254, 352, 386, 390, 422

West

Greenland current, 87, 99, 121, 354

Spitsbergen current, 354, 355

westerlies, 81, 205, 206, 333, 335, 340

western

Index

336, 337, 344, 388, 390, 392, 397–399, 415, see also deep, western boundary current

intensification, xi, \textit{84, 96}, 96

William Young, 170
wind stress, \textit{see stress, wind}

Younger Dryas, \textit{394}, 396