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Markov Processes and Ergodic Properties

1.1 Introduction

This book, as the title indicates, is about ergodic control of diffusion processes. The

operative words here are ergodic, control and diffusion processes. We introduce two

of these, diffusion processes and ergodic theory, in this chapter. It is a bird’s eye

view, sparse on detail and touching only the highlights that are relevant to this work.

Further details can be found in many excellent texts and monographs available, some

of which are listed in the bibliographical note at the end. The next level issue of

control is broached in the next chapter.

We begin with diffusion processes, which is a special and important subclass of

Markov processes. But before we introduce Markov processes, it is convenient to

recall some of the framework of the general theory of stochastic processes which

provides the backdrop for it.

Let (Ω,F,P) be a complete probability space, or in other words, Ω is a set called

the sample space, F is a σ-field of subsets of Ω (whence (Ω,F) is a measurable

space), and P is a probability measure on (Ω,F). Completeness is a technicality that

requires that any subset of a set having zero probability be included in F. A random

process {Xt} defined on (Ω,F,P) is a family of random variables indexed by a time

index t which can be discrete (e.g., t = 0, 1, 2, . . . ) or continuous (e.g., t g 0). We

shall mostly be interested in the continuous time case. For notational ease, we denote

by X the entire process. For each t * R+, Xt takes values in a Polish space S , i.e.,

a separable Hausdorff space whose topology is metrizable with a complete metric.

This is a convenient level of generality to operate with, because an amazingly large

body of basic results in probability carry over to Polish spaces and most of the spaces

one encounters in the study of random processes are indeed Polish. Let d( · , · ) be

a complete metric on S . For any Polish space S , P(S ) denotes the Polish space of

probability measures on S under the Prohorov topology [32, chapter 2]. Recall that

if S is a metric space, then a collection M ¢P(S ) is called tight if for every ε > 0,

there exists a compact set Kε ¢ S , such that µ(Kε) g 1 2 ε for all µ * M. The

celebrated criterion for compactness in P(S ), known as Prohorov’s theorem, states

that for a metric space S if M ¢ P(S ) is tight, then it is relatively compact and,
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2 Markov Processes and Ergodic Properties

provided S is complete and separable, the converse also holds [24, theorems 6.1 and

6.2, p. 37], [55, p. 104].

We shall usually have in the background a filtration, i.e., an increasing family

{Ft} of sub-σ-fields of F indexed by t again. Intuitively, Ft corresponds to informa-

tion available at time t. Again, for technical reasons we assume that it is complete

(i.e., contains all sets of zero probability and their subsets) and right-continuous (i.e.,

Ft = +s>tFs). We say that X is adapted to the filtration {Ft} if for each t, Xt is

Ft-measurable. A special case of a filtration is the so-called natural filtration of X,

denoted by FX
t and defined as the completion of +t">tσ(Xs : s f t"). Clearly X is

adapted to its own natural filtration. An important notion related to a filtration is that

of a stopping time. A [0,>]-valued random variable τ is said to be a stopping time

w.r.t. the filtration {Ft} (the filtration is usually implicit) if for all t g 0, {τ f t} ¢ Ft.

Intuitively, what this says is that at time t, one knows whether τ has occurred already

or not. For example, the first time the process hits a prescribed closed set is a stop-

ping time with respect to its natural filtration, but the last time it does so need not be.

We associate with τ the σ-field Fτ defined by

Fτ = {A * F : A + {τ f t} * Ft for all t * [0,>)} .

Intuitively, Fτ are the events prior to τ.

So far we have viewed X only as a collection of random variables indexed by t.

But for a fixed sample point in Ω, it is also a function of t. The least we shall assume

is that it is a measurable function. A stronger notion is progressive measurability,

which requites that for each T > 0, the function (t, ω) ³ Xt(ω), (t, ω) * [0,T ] × Ω,

be measurable with respect toBT ×FT , whereBT denotes the Borel σ-field on [0,T ].

The sub-σ-field of [0,>) × Ω generated by the progressively measurable processes

is known as the progressively measurable σ-field. If a process is adapted to Ft and

has right or left-continuous paths, then it is progressively measurable [47, p. 89].

There is one serious technicality which has been glossed over here. Two random

processes X, X" are said to be versions or modifications of each other if Xt = X"t a.s.

for all t. This defines an equivalence relation and it is convenient to work with such

equivalence classes. That is, when one says that X has measurable sample paths,

it is implied that it has a version which is so. The stronger equivalence notion of

P
�

Xt = X"t for all t g 0
�

= 1 is not as useful. We shall not dwell on these technicali-

ties too much. See Borkar [32, chapter 6], for details.

We briefly mention the issue of the actual construction of a random process. In

practice, a random process is typically described by its finite dimensional marginals,

i.e., the laws of (Xt1 , . . . , Xtn ) for all finite collections of time instants t1 < · · · < tn,

n g 1. In particular, all versions of a process have the same finite dimensional distri-

butions. These are perforce consistent, i.e., if B ¢ A are two such collections, then the

law for B is the induced law from the law for A under the appropriate projection. The

celebrated Kolmogorov extension theorem gives us the converse statement: Given a

consistent family of such finite dimensional laws, there is a unique probability mea-

sure on S [0,>) consistent with it. Thus we can let Ω = S [0,>), F the product σ-field,

www.cambridge.org/9780521768405
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76840-5 — Ergodic Control of Diffusion Processes
Ari Arapostathis , Vivek S. Borkar , Mrinal K. Ghosh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Introduction 3

P denote this unique law, and set Xt(ω) = ω(t), where ω = {ω(t) : t g 0} denotes a

sample point in Ω. This is called the canonical construction of the random process

X. While it appears appealingly simple and elegant, it has its limitations. The most

significant limitation is that F contains only “countably described sets,” i.e., any set

in F must be describable in terms of countably many time instants. (It is an inter-

esting exercise to prove this.) This eliminates many sets of interest. Thus it becomes

essential to “lift” this construction to a more convenient space, such as the space

C([0,>); S ) of continuous functions [0,>) �³ S or the space D([0,>); S ) of func-

tions [0,>) �³ S that are continuous from the right and have limits from the left at

each t (r.c.l.l.). We briefly sketch how to do the former, as that’s what we shall need

for diffusion processes.

The key result here is that if X is stochastically continuous, in other words if

P (d(Xs, Xt) > ε)³ 0 (1.1.1)

for any ε > 0 as s³ t, and for each T > 0, the modulus of continuity

wT (X, δ) := sup
�

d(Xs, Xt) : 0 f s f t f T, |t 2 s| < δ�³ 0 a.s., (1.1.2)

as δ³ 0, then X has a continuous version. The proof is simple: restrict X to rationals,

extend it uniquely to a continuous function on [0,>) (which is possible because

(1.1.2) guarantees uniform continuity on rationals when restricted to any [0,T ], for

T > 0), and argue using stochastic continuity that this indeed yields a version of X.

A convenient test for (1.1.1) – (1.1.2) to hold is the Kolmogorov continuity criterion

(see Wong and Hajek [122, pp. 57]), that for each T > 0 there exist positive scalars

a, b, and c satisfying

E
�

d(Xt, Xs)
a� f b|t 2 s|1+c " t, s * [0,T ] .

Note that the above procedure a.s. defines a map that maps an element of Ω to

the continuous extension of its restriction to the rationals. Defining the map to be

the function that is identically zero on the zero probability subset of Ω that is left

out, we have a measurable map Ω �³ C([0,>); S ). The image µ of P under this map

defines a probability measure on C([0,>); S ). We may thus realize the continuous

version as a canonically defined random process X" on the new probability space

(C([0,>); S ),G, µ), whereG is the Borel σ-field of C([0,>); S ), as X"t (ω) = ω(t) for

ω * C([0,>); S ). An analogous development is possible for the space D([0,>); S )

of paths [0,>) ³ S that are right-continuous and have left limits. This space is

Polish: it is separable and metrizable with a complete metric ds (due to Skoro-

hod) defined as follows [55, p. 117]. Let Λ denote the space of strictly increasing

Lipschitz continuous surjective maps λ from R+ to itself such that

γ(λ) := ess sup
tg0

|log λ"(t)| < > .
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4 Markov Processes and Ergodic Properties

With ρ a complete metric on S , define

dT (x, y, λ) := sup
tg0

�

1 ' ρ�x(t ' T ), y(λ(t) ' T )
��

, T > 0 ,

ds(x, y) := inf
λ*Λ

�

γ(λ) (
� >

0

e2sds(x, y, λ) ds

�

.

Convergence with respect to ds has the following simple interpretation: xn ³ x in

D([0,>); S ) if there exists a sequence {λn * Λ : n * N} such that λn(t)³ t uniformly

on compacta, and sup[0,T ] ρ(xn ç λn, x)³ 0 for all T > 0. This topology is known as

the Skorohod topology.

A useful criterion due to Chentsov for the existence of a r.c.l.l. version that ex-

tends the Kolmogorov continuity criterion is that for any T > 0 there exist positive

constants a, b, c and C satisfying [66, pp. 159–164]

E

%

|Xt 2 Xr |a|Xr 2 Xs|b
%

f C|t 2 s|1+c , "s < r < t .

1.2 Markov processes

Before defining Markov processes, it is instructive to step back and recall what a de-

terministic dynamical system is. A deterministic dynamical system has as its back-

drop a set Σ called the state space in which it evolves. Its evolution is given by a time

t map Φt, t * R, with the interpretation that for x * Σ, x(t) := Φt(x) is the position of

the system at time t if it starts at x at time 0. The idea is that once at x, the trajectory

{x(t) : t g 0} is completely specified, likewise for t f 0. This in fact is what qualifies

x(t) as the state at time t in the sense of physics: x(t) is all you need to know at time

t to be able to determine the future trajectory {x(s) : s g t}. Thus Φ0(x) = x, and

Φt ç Φs = Φs ç Φt = Φs+t, i.e., {Φt : t * R} is a group.

A two-parameter version is possible for time-dependent dynamics, i.e., when the

future (or past) trajectory depends on the position x as well as the precise time t0

at which the trajectory is at x. Thus we need a two-parameter group Φs,t, satisfying

Φt,t(x) = x, and Φs,t ç Φu,s = Φu,t for all u, s, and t.

Clearly for stochastic dynamical systems, it does not make sense to demand that

the complete future trajectory be determined by the present position. Nevertheless

there is a natural generalization of the notions of a state and a dynamical system.

We require that the (regular) conditional law of {Xs : s g t}, given {Xu : u f t},
should be the same as its conditional law given Xt alone. In other words, knowing

how one arrived at Xt tells us nothing more about the future than what is already

known by knowing Xt. From an equivalent definition of conditional independence

[32, p. 42], this is equivalent to the statement that {Xs : s > t} and {Xs : s < t} are

conditionally independent given Xt for each t. This definition is symmetric in time.

Thus, for example, it is also equivalent to: for each t, the regular conditional law of

{Xs : s < t}, given {Xs : s g t}, is the same as its regular conditional law given Xt.

In fact, a more general statement is true: for any t1 < t2, {Xs : s < t1 or s > t2} and
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1.2 Markov processes 5

{X(s) : t1 < s < t2} are conditionally independent given {Xt1 , Xt2 }. This also serves

as an equivalent definition. Though not very useful in the present context, this is the

definition that extends well to indices more general than time, such as t * R2. These

are the so-called Markov random fields.

Since finite dimensional marginals completely specify the law of a stochastic

process, an economical statement of the Markov property is: For every collection

of times 0 f t f t1 < · · · < tk < >, and Borel subsets A1, . . . , Ak ¢ S , it holds that

P

�

Xti * Ai, i = 1, . . . , k | FX
t

�

= P
�

Xti * Ai, i = 1, . . . , k | Xt

�

.

A stronger notion is that of the strong Markov property, which requires that

P

�

Xτ+ti * Ai, i = 1, . . . , k | FX
τ

�

= P
�

Xτ+ti * Ai, i = 1, . . . , k | Xτ
�

a.s. on {τ < >}, for every
�

FX
t

�

-stopping time τ. If X has the Markov, or strong

Markov property, then it said to be a Markov, or a strong Markov process, respec-

tively.

For t > s and x * S , let P(s, x, t, dy) denote the regular conditional law of Xt

given Xs = x. This is called the transition probability (kernel) of X. In particular,

P : (s, x, t) �³ P(s, x, t, S ) is measurable. By the filtering property of conditional

expectations:

E

%

E

%

f (Xt) | FX
r

% �

�

� FX
s

%

= E

%

f (Xt) | FX
s

%

, s f r f t ,

which, coupled with the Markov property, yields

P(s, x, t, dy) =

�

S

P(s, x, r, dz) P(r, z, t, dy) , s f r f t .

These are called the Chapman–Kolmogorov equations. While the transition proba-

bility kernels of Markov processes must satisfy these, the converse is not true [57].

Let B(S ) denote the space of bounded measurable functions S �³ R. Define

Ts,t f (x) :=

�

P(s, x, t, dy) f (y) , t g s g 0 , f * B(S ) .

Then by the Chapman–Kolmogorov equations, {Ts,t : 0 f s f t} is a two-parameter

semigroup of operators, i.e., it satisfies

Tt,t = I , Tr,t ç Ts,r = Ts,t , 0 f s f r f t ,

where I is the identity operator. This is weaker than the group property for deter-

ministic flows. However, this is inevitable because of the irreversibility of stochastic

processes.

Let Cb(S ) denote the space of bounded continuous real-valued functions on S .

The process X above is said to be Feller if {Ts,t : 0 f s f t} maps Cb(S ) into

Cb(S ), and strong Feller if it maps B(S ) into Cb(S ). The former case is obtained if

the transition probability kernel P(s, x, t, dy) is continuous in the initial state x. The

latter requires more – the kernel should have some additional smoothing properties.

www.cambridge.org/9780521768405
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76840-5 — Ergodic Control of Diffusion Processes
Ari Arapostathis , Vivek S. Borkar , Mrinal K. Ghosh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Markov Processes and Ergodic Properties

For example, when S = R, the Gaussian kernel

P(s, x, t, dy) =
1
:

2πt
e2

(x2y)2

2(t2s) dy

does have this property. More generally, if the transition kernel is of the form

P(s, x, t, dy) = p(s, x, t, y)λ(dy)

for a positive measure λ and the density p is continuous in the x variable, then the

strong Feller property follows by the dominated convergence theorem.

An important consequence of the Feller property is that it implies the strong

Markov property for Markov processes with right-continuous paths. To see this,

one first verifies the strong Markov property for stopping times taking values in
�

k
2n : k g 0

�

for n * N fixed. This follows by a straightforward verification [55,

p. 159] which does not require the Feller property. Given a general a.s.-finite stopping

time τ, the property then holds for τ(n) :=
�2nτ�+1

2n which is also seen to be a stopping

time for all n g 1. As n ± >, τ(n) ³ τ. Using the right-continuity of paths along

with the Feller property and the a.s. convergence property of reverse martingales, the

strong Markov property for τ can be inferred from that for τ(n).

In the case of Feller processes, we may restrict {Ts,t} to a semigroup on Cb(S ). Of

special interest is the case when the transition probability kernel P(s, x, t, dy) depends

only on the difference r = t 2 s. By abuse of terminology, we then write P(r, x, dy)

and also Tr = Ts,s+r. Then Tt, t g 0 defines a one-parameter semigroup of operators.

A very rich theory of such semigroups is available, with which we deal in the next

section. It is worth noting here that this is a special case of the general theory of

operator semigroups. These are the so-called Markov semigroups, characterized by

the additional properties:

(a) Tt(α f + βg) = αTt f + βTtg for all α, β * R and f , g * Cb(S );

(b) f g 0 =ó Tt f g 0;

(c) !Tt f ! f ! f !, where ! f ! := sups*S | f (s)|;
(d) Tt1 = 1, where 1 is the constant function c 1.

We now give some important examples of Markov processes.

Example 1.2.1 (i) Poisson process: Let λ > 0. A Z+-valued stochastic process

N = {Nt : t g 0} is called a Poisson process with parameter λ if

(a) N0 = 0;

(b) for any 0 f t0 < t1 < · · · < tn,

Nt1 2 Nt0 , Nt2 2 Nt1 , . . . , Ntn 2 Ntn21

are independent, i.e., N has independent increments;

(c) t �³ Nt is a.s. right-continuous;
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1.2 Markov processes 7

(d) for t g s g 0, Nt 2 Ns has the Poisson distribution with parameter λ, i.e.,

P (Nt 2 Ns = n) =
λn(t 2 s)ne2λ(t2s)

n!
, n = 0, 1, . . .

It can be verified that N is a Markov process with transition function

P(t,m, {n}) = (λt)n2me2λt

(n 2 m)!
, n g m .

(ii) One-dimensional Brownian motion: A real-valued process B = {Bt : t g 0} is

called a one-dimensional Brownian motion (or Wiener process) if

(a) B0 = 0;

(b) t �³ Bt is a.s. continuous;

(c) for t > s g 0, Bt2Bs has the Normal distribution with mean 0 and variance

t 2 s;

(d) for any 0 f t0 < t1 < · · · < tn,

Bt1 2 Bt0 , Bt2 2 Bt1 , . . . , Btn 2 Btn21

are independent.

Then B is a Markov process with transition function

P(t, x, A) =
1
:

2πt

�

A

e2
(y2x)2

2t dy .

(iii) In general, any stochastic process with independent increments is a Markov

process.

(iv) d-dimensional Brownian motion: An Rd-valued process W = {Wt : t g 0},
where Wt = (W1

t , . . . ,W
d
t ), is called a d-dimensional Brownian motion if

(a) for each i, W i
= {W i

t : t g 0} is a one-dimensional Brownian motion;

(b) for i � j, the processes W i and W j are independent.

Then W is a Markov process with transition function

P(t, x, A) =
1

(2πt)d/2

�

A

e2
|y2x|2

2t dy .

There are several ways of constructing Markov processes. We list the common

ones below.

(1) Via the theorem of Ionescu–Tulcea: Once an initial law λ at t0 and the transi-

tion probability kernel are prescribed, one can write down the finite dimensional

marginals of the process:

P
�

Xtk * Ak, 0 f k f n
�

=

�

A0

λ(dy0)

�

A1

P(t0, y0, t1, dy1)

· · ·
�

An

P(tn21, yn21, tn, dyn) .
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8 Markov Processes and Ergodic Properties

These are easily seen to form a consistent family and thus define a unique law

for X, by the theorem of Ionescu–Tulcea [93, p. 162]. This may be lifted to a suit-

able function space such as C([0,>); S ) by techniques described in Section 1.1.

(2) Via dynamics driven by an independent increment process: A typical instance of

this is the equation

Xt = X0 +

� t

0

h(Xs) ds +Wt , t g 0 ,

where W is a Brownian motion. Suppose that for a given trajectory of W, this

equation has an a.s. unique solution X (this requires suitable hypotheses on h).

Then for t > s,

Xt = Xs +

� t

s

h(Xr) dr +Wt 2Ws , t g 0 ,

and therefore Xt is a.s. specified as a functional of Xs and the independent in-

crements {Wu 2 Ws : s f u f t}. The Markov property follows easily from

this. Later on we shall see that the a.s. uniqueness property used above holds for

a very general class of equations. One can also consider situations where W is

replaced by other independent increment processes.

(3) Via change of measure: Suppose X is a Markov process constructed canoni-

cally on its path space, say C([0,>); S ). That is, we take Ω = C([0,>); S ), F its

Borel σ-field, and P the law of X. Then Xt(ω) = ω(t) for t g 0 and ω * Ω. Let

X[s,t] denote the trajectory segment {Xr : s f r f t}. Let FX
s,t be the right-

continuous completion of σ{Xr : s f r f t}. A family {Λs,t : s < t} of

FX
s,t-measurable random variables is said to be a multiplicative functional if

Λr,sΛs,t = Λr,t for all r < s < t. If in addition {Λ0,t : t g 0} is a nonnegative

martingale with mean equal to one, we can define a new probability measure P̂

on (Ω,F) as follows: If Pt and P̂t denote the restrictions of P and P̂, respectively,

to FX
t for t g 0, then

dP̂t

dPt

= Λ0,t , t g 0 . (1.2.1)

Since F =
�

tg0 F
X
t , it follows by the martingale property of {Λ0,t : t g 0} that

(1.2.1) consistently defines a probability measure on (Ω,F). Let E and Ê denote

the expectations under P and P̂, respectively. For any f * B(S ) and s < t, one

has the well-known Bayes formula

Ê

%

f (Xt) | FX
s

%

=

E

%

f (Xt)Λ0,t | FX
s

%

E
�

Λ0,t | FX
s

� =

E

%

f (Xt)Λ0,t | FX
s

%

Λ0,s

.

From the multiplicative property, the right-hand side is simply

E

%

f (Xt)Λs,t | FX
s

%

= E
�

f (Xt)Λs,t | Xs

�

,

in other words, a function of Xs alone. Thus X remains a Markov process un-

der P̂. We shall later see an important instance of this construction when we

construct the so-called weak solutions to stochastic differential equations.
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1.3 Semigroups associated with Markov processes 9

(4) Via approximation: Many Markov processes are obtained as limits of simpler

Markov (or even non-Markov) processes. In the next section, we discuss the

semigroup and martingale approaches to Markov processes. These provide the

two most common approximation arguments in use. In the semigroup approach,

one works with the semigroup {Tt} described above. This specifies the transition

probability kernel via
�

P(t, x, dy) f (y) = Tt f (x) , f * Cb(S ) ,

and therefore also determines the law of X once the initial distribution is given.

One often constructs Markov semigroups {Tt} as limits (in an appropriate sense)

of a sequence of known Markov semigroups {T n
t : n g 1} as n ± >. See Ethier

and Kurtz [55] for details and examples. The martingale approach, on the other

hand, uses the martingale characterization, which characterizes the Markov pro-

cess X by the property that for a sufficiently rich class of f * Cb(S ) and an oper-

ator L defined on this class, f (Xt) 2
� t

0
L f (Xs) ds, t g 0, is an

�

FX
t

�

-martingale.

As the martingale property is preserved under weak (Prohorov) convergence of

probability measures, this allows us to construct Markov processes as limits in

law of other Markov or sometimes non-Markov processes. The celebrated dif-

fusion limit in queuing theory is a well-known example of this scheme, as are

many systems of infinite interacting particles.

We conclude this section by introducing the notion of a Markov family. This is a

family of probability measures {Px : x * S } on (Ω,F) along with a stochastic process

X defined on it such that the law of X under Px for each x is that of a Markov pro-

cess corresponding to a common transition probability kernel (i.e., with a common

functional dependence on x), with initial condition X0 = x. This allows us to study

the Markov process under multiple initial conditions at the same time. We denote a

Markov family by
�

X, (Ω,F), {Px}x*S
�

.

1.3 Semigroups associated with Markov processes

Let E be a Polish space, and
�

X, (Ω,F), {Ft}t*R+ , {Px}x*E
�

a Markov family. We define

a one-parameter family of operators Tt : B(E)³ B(E), t * R+, as follows:

Tt f (x) := Ex

�

f (Xt)
�

=

�

E

P(t, x, dy) f (y) , f * B(E) . (1.3.1)

The following properties are evident

(i) for each t, Tt is a linear operator;

(ii) !Tt f !> f ! f !>, where ! · !> is the L>-norm;

(iii) Tt is a positive operator, i.e., Tt f g 0 if f g 0;

(iv) Tt1 = 1, where 1 denotes the function identically equal to 1;

(v) T0 = I, where I denotes the identity operator;

(vi) Tt+s = TtTs.
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10 Markov Processes and Ergodic Properties

Thus {Tt : t g 0} is a contractive semigroup of positive operators on B(E). We

next define another semigroup, which is in a sense dual to {Tt : t g 0}.
LetMs(E) denote the space of all finite signed measures on (E,B(E)), under the

topology of total variation norm. For t * R+, we define S t : Ms(E)³ Ms(E) by

�

S t µ
�

(A) :=

�

E

P(t, x, A) µ(dx) .

Then properties (i)–(vi) hold for {S t}, under the modification !S t µ!TV f !µ!TV for

property (ii) and S t µ(E) = µ(E) for property (iv).

Let f * B(E). We define an operatorA on B(E) by

A f = lim
t³0

Tt f 2 f

t

in L>-norm, provided the limit exists. We refer to the set of all such functions f as

the domain of A and denote it by D(A). The operator A is called the infinitesimal

generator of the semigroup {Tt}. Let

B0 :=
�

f * B(E) : !Tt f 2 f ! ³ 0, as t ³ 0
�

.

It is easy to verify that B0 is a closed subspace of B(E) and that Tt f is uniformly

continuous in t for each f * B0. Also Tt(B0) ¢ B0 for all t * R+ and D(A) ¢ B0.

Thus {Tt} is a strongly continuous semigroup on B0. For Feller processes we have

Tt : Cb(E)³ Cb(E) and the previous discussion applies with Cb(E) replacing B(E).

The following result is standard in semigroup theory.

Proposition 1.3.1 For a strongly continuous semigroup {Tt} on a Banach space X
with generatorA, the following properties hold:

(i) if f * X, then
� t

0
Ts f ds * D(A) for all t * R+, and

Tt f 2 f = A
� t

0

Ts f ds ;

(ii) if f * D(A), then Tt f * D(A) for all t * R+, and

d

dt
Tt f = ATt f = TtA f ,

or equivalently,

Tt f 2 f =

� t

0

ATs f ds =

� t

0

TsA f ds , t * R+ .

We describe briefly the construction of a semigroup from its infinitesimal genera-

torA. For this purpose we introduce the notion of the resolvent of a semigroup {Tt}.
This is a family of operators {Rλ}λ>0 on B(E) defined by

Rλ f (x) =

� >

0

e2λtTt f (x) dt = Ex

�� >

0

e2λt f (Xt) dt

�

, x * E .
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