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1

Preliminaries

We begin by reviewing some simple concepts regarding set systems, graphs,

metric spaces, and computational complexity which will be used throughout

this book. For more information on these topics see, for example, [48, 49, 79].

1.1 Sets, set systems, and partially ordered sets

In this section, we introduce useful terminology regarding sets, set systems,

and partially ordered sets.

A finite set V of cardinality n will also be called an n-set and the n-set

{1, 2, . . . , n} will be denoted by 〈n〉. A set system (over V ) is a subset V of the

power set P(V ) of V , i.e., the set consisting of all subsets of V . The subsets in

V are often also called the clusters in V . For any non-negative integer k ∈ N≥0,

the set system consisting of all k-subsets of V will also be denoted by
(

V
k

)

, and

the set system consisting of all subsets of V of cardinality at least/at most k

will also be denoted by P≥k(V ) or P≤k(V ), respectively. Given a subset A of

a set V and an element x ∈ V , we denote the union A ∪ {x} also by A + x

and the difference A \ {x} = {a ∈ A : a 
= x} also by A − x . Also, given two

subsets A, B of V , we may write A − B for A \ B.

Set systems are special instances of partially ordered sets, i.e., sets U toge-

ther with a binary relation “ �” defined on U such that

u1 � u2 and u2 � u3 ⇒ u1 � u3

and

u1 � u2 and u2 � u1 ⇐⇒ u1 = u2
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2 Preliminaries

holds for all u1, u2, u3 ∈ U in which case the binary relation “�” — or as

well the (also transitive!) binary relation “≺” defined by “u ≺ u′ ⇐⇒ u �

u′ and u 
= u′” — is called a partial order. For any partially ordered set U , we

denote by

max(U ) = max �(U ) := {u ∈ U : ∀u′∈U u � u′ ⇒ u = u′}

the set of maximal elements in U (relative to the partial order “�”) and by

min(U ) = min �(U ) := {u ∈ U : ∀u′∈U u′ � u ⇒ u = u′}

the set of minimal elements in U (relative to the partial order “�”), we denote,

for any u ∈ U , by U�u the set of all u′ ∈ U with u′ � u and by U≺u the set

of all u′ ∈ U�u that are distinct from u. We also consider any subset U ′ of a

partially ordered set U = (U,�) as being itself a partially ordered set relative

to the restriction of the binary relation � to U ′ which we keep denoting by � as

long as no misunderstanding can arise. In particular, we denote by U ′
�u the set

U�u ∩U ′ and by U ′
≺u the set U≺u ∩U ′. Furthermore, the elements in max(U≺u)

will sometimes also be called the children of u, and we will therefore denote

the set max(U≺u) also by chldU (u).

In particular, we denote, for any set system V ⊆ P(V ) over a set V and any

subset L of V , by V⊆L the set of all U ∈ V with U ⊆ L and by V⊂L the set

of all U ∈ V⊆L with U � L . We will also denote by
⋃

V the union
⋃

U∈V U

of all clusters in a set system V and by
⋂

V the intersection
⋂

U∈V U of all

clusters in V .

Of particular significance will be partitions and hierarchies. A set system

V ⊆ P(V ) is defined to be a partition if it is contained in the set P≥1(V ) :=

{U ⊆ V : U 
= ∅} consisting of all non-empty subsets of V and U1 ∩ U2 = ∅

holds for any two distinct clusters U1, U2 in V , it is called a partition of V if,

in addition,
⋃

V = V holds, it is called a bipartition or a split (of V ) if it is a

partition (of V ) and contains exactly two distinct clusters, and every cluster in

a partition will also be called a part of that partition. Often, we will also refer

to splits by the letter S and denote a split S of the form {A, B} by A|B. We will

not distinguish between A|B and B|A as both terms stand for the same split

{A, B}. Given a split S = A|B, the number min{|A|, |B|} will also be called its

size and denoted by ‖S‖ or, as well, by ‖A|B‖. A split of size 1 is also called

trivial, and a split of size k a k-split. And, given an element x ∈ X and a split

S = A|B with x ∈ A ∪ B, we denote that subset, A or B, in S that contains

the element x by S(x) and its complement in A ∪ B by S(x).

Clearly,
⋃

U1∪
⋃

U2 =
⋃

(U1∪U2) holds for any two subcollections U1,U2

of a set system V ⊆ P(V ) while a set system V ⊆ P≥1(V ) is a partition if
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1.1 Sets, set systems, and partially ordered sets 3

and only if
⋃

U1 ∩
⋃

U2 =
⋃

(U1 ∩ U2) holds for any two subcollections

U1,U2 of V .

Further, a set system H ⊆ P(V ) is defined to be a hierarchy (over V ) if it

is contained in P≥1(V ) and H1 ∩ H2 ∈ {∅, H1, H2} holds for any two clusters

H1, H2 ∈ H. Clearly, chldH(H) must be a partition for every H in a hierarchy

H: Indeed, if H1 and H2 are two distinct children of some cluster H in a

hierarchy H, we must have H1 ∩ H2 = ∅ as neither H1 ∩ H2 = H1 nor

H1 ∩ H2 = H2 can hold.

It is easy to see that, conversely, a set system V ⊆ P≥1(V ) must be a hier-

archy if chldV (U ) is a partition for every U in V provided V is finite and a

member of V: Indeed, if this holds and if U1 and U2 are any two clusters in

V , there exists — in view of V ∈ V — an inclusion-minimal cluster U in V

containing U1 ∪U2. If U = U1 or U = U2 holds, we have U1 ∩U2 ∈ {U1, U2}.

Otherwise, there exist largest proper subsets U ′
1, U ′

2 of U in V that contain U1

and U2, respectively, and we must have U ′
1 
= U ′

2 by the choice of U (as, other-

wise, U ′
1 = U ′

2 would be a smaller cluster than U in V that contains U1 ∪ U2).

So, U ′
1 and U ′

2 must be distinct members of the partition chldV (U ) and, there-

fore, disjoint, implying that also U1 ∩ U2 ⊆ U ′
1 ∩ U ′

2 = ∅ must be empty. So,

U1 ∩ U2 ∈ {U1, U2,∅} must indeed hold for any two clusters U1 and U2 in V .

It is also easy to see that every hierarchy H over an n-set contains at most

2 n − 1 clusters: Indeed, this clearly holds in case n := 1, and if it holds for

any hierarchy over any proper subset of an n-set V , then it holds for H, too, in

view of H ⊆ V + ˙
⋃

H∈chldH(V )H⊆H and, hence,

|H| ≤ 1 +
∑

H∈chldH(V )

|H⊆H |,

the fact that
∑

U∈V |U | ≤ n must hold for every partition V ⊆ P(V ), and that

H⊆H is a hierarchy over H for every H ∈ H. So,

|H| ≤ 1 +
∑

H∈chldH(V )

(2 |H | − 1) ≤ 1 + 2 n − |chldH(V )| ≤ 2 n − 1

must hold in case 2 ≤ |chldH(V )|. And it must hold in case |chldH(V )| < 2 as

this implies that even 1+
∑

U∈chldH(V )(2 |U |−1) ≤ 1+2 (n−1)−1 = 2 n−2

must hold.

In particular, we have |H| = 2 n − 1 if and only if V ∈H holds, chldH(V ) is

a split of V , and |H⊆U | = 2 |U | − 1 holds for both clusters U ∈ chldH(V ) —

so, by recursion, this holds if and only if V ∈ H holds and chldH(U ) is a split

of U for every cluster U ∈ H with |U | ≥ 2.
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4 Preliminaries

More generally, the following fact is well known and easy to see:

Lemma 1.1 Given a hierarchy H over a finite set V of cardinality n, the

following assertions are equivalent:

(i) |H| = 2 n − 1 holds.

(ii) H contains V and chldH(H) is a split of H for every cluster H ∈ H with

|H | ≥ 2.

(iii) H is a maximal hierarchy over V , i.e., U ∈ H holds for every subset U

of V with U ∩ H ∈ {U, H,∅} for every cluster H ∈ H.

(iv) H contains V and all one-element subsets of V , and H2 − H1 ∈ H holds

for any two subsets H1, H2 ∈ H with H1 ∈ chldH(H2).

Proof We have seen already that (i) ⇐⇒ (ii) holds. And it is also clear that

(i) ⇒ (iii) holds: Otherwise, there would exist a hierarchy over V containing

more than 2 n −1 clusters. And (iii) ⇒ (iv) holds as U ∩ H ∈ {U, H,∅} holds

for every cluster H ∈ H for U := V or U a one-element subset of V . It also

holds for U := H2 − H1 ∈ H in case H2 ∈ H holds and H1 is a child of H2:

Indeed, U ⊆ H holds in case H2 ⊆ H , H ⊆ U holds in case H ⊆ H2 and

H ∩ H1 = ∅, and H ∩ U = ∅ holds in case H ∩ H2 = ∅ and in case H ⊆ H1.

Finally, if neither H2 ⊆ H nor H ∩ H1 = ∅ nor H ⊆ H1 holds, we would

necessarily have H � H2 (in view of H ∩ H2 
= H2,∅) and H1 � H (in view

of H ∩ H1 
= H,∅) in contradiction to our assumption that H1 is a child of H2

and that, therefore, {U ∈ H : H1 � U � H2} = ∅ holds.

Finally, we have (iv) ⇒ (ii) as chldH(H) must be a partition of H for every

H ∈ H whenever H contains all one-element subsets of V , and it must, of

course, be a bipartition of H if H−H ′ ∈ H holds for any H ′ ∈ chldH(H).

Note that hierarchies over a set V are sometimes required to also contain V

or the empty set or, as well, all one-element subsets of V — see e.g., [28]

where it was shown that a hierarchy H over an arbitrary set V is a max-

imal hierarchy over V if and only if H satisfies the condition (iv) and, in

addition,
⋃

C,
⋂

C ∈ H holds for any “chain” C of clusters contained in H

(i.e., any subset C of H with C1 ∩ C2 ∈ {C1, C2} for all C1, C2 ∈ C) with
⋂

C 
= ∅.

1.2 Graphs

A graph is a pair G = (V, E) consisting of a non-empty set V , the vertex set

of G, and a subset E of
(

V
2

)

, the edge set of G. G is called finite if its vertex
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1.2 Graphs 5

u

v

e

Figure 1.1 A (non-connected) graph with nine vertices and 12 edges.

set — and, hence, also its edge set — is finite. The elements of V and E are also

called the vertices and the edges of G, respectively. Two graphs G = (V, E)

and G ′ = (V ′, E ′) are called isomorphic if and only if there exists a bijective

map ι : V → V ′ with {u, v} ∈ E ⇐⇒ {ι(u), ι(v)} ∈ E ′ for all u, v ∈ V .

Clearly, graphs can be viewed as particularly simple set systems, that is, set

systems V for which any cluster e ∈ V has cardinality 2. In Figure 1.1, we

present a (drawing of a) graph: Vertices are represented by dots, and edges by

straight line segments.

Two vertices u and v of a graph G are called adjacent if {u, v} is an edge of

G. For any edge e = {u, v} of G, we call the vertices u and v the endpoints of

e, and we will say that an edge e ∈ E and a vertex v ∈ V are incident if (and

only if ) v ∈ e holds. The vertices that are adjacent to a vertex v of G are also

called the neighbors of v in G, the set of neighbors of v in G is denoted by

NG(v) or just N (v), and the set of edges that are incident to v by EG(v) or just

E(v). The number of edges that are incident to a vertex v — or, equivalently,

the number of neighbors of v — is called its degree, denoted by deg(v) or,

more specifically, by degG(v).

For instance, referring to Figure 1.1, the vertex u has degree 4 and is adjacent

to the vertex v, and the edge e is incident to both, u and v.

A vertex of degree 1 is called a leaf (of G), and the unique edge e of G

that is incident to a leaf a is denoted by eG(a). Any such edge is also called

a pendant edge while the unique vertex in eG(a) distinct from a is denoted

by vG(a).

Every vertex that is not a leaf is called an interior vertex of G, and every

edge that is not a pendant edge is called an interior edge. We denote the set of

interior vertices and edges of G by Vint (G) and Eint (G), respectively. Clearly,

“plucking off” all of the leaves and pendant edges from a graph G = (V, E)

yields a graph with vertex set Vint (G) and edge set Eint (G) that we dub the

graph derived from G and denote, for short, by ∂G.

A pair of distinct leaves a, b is said to form a cherry (in G) — or, just, to

be a cherry (of G) — if vG(a) = vG(b) holds, i.e., if both leaves are adjacent
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6 Preliminaries

to the same vertex (which then must necessarily be an interior vertex, having

degree at least 2). If v has degree 3, the unique edge e ∈ E(v) that is distinct

from the two pendant edges eG(a) and eG(b) will be denoted by eG(a, b).

Frequently, we will refer to subgraphs of a given graph: A graph G ′ =

(V ′, E ′) is a subgraph of a graph G = (V, E) if V ′ ⊆ V and E ′ ⊆ E

holds, and it is the subgraph of G induced on V ′ by G, also denoted by G[V ′],

if — in addition — E ′ = EV ′ := E ∩
(

V ′

2

)

holds, that is, if and only if G ′ is

the largest subgraph of G with vertex set V ′.

A path p in a graph G = (V, E) is a sequence v0, v1, . . . , vℓ of consec-

utively adjacent vertices of G, i.e., with ei := {vi−1, vi } ∈ E for all i =

1, . . . , ℓ, such that vi−1 
= vi+1 holds for all i ∈ {1, . . . , ℓ−1} — more specif-

ically, any such sequence v0, v1, . . . , vℓ will be called a path of length ℓ while

the vertices v0, v1, . . . , vℓ and the edges e1 = {v0, v1}, . . . , eℓ = {vℓ−1, vℓ}

will be called the vertices and the edges of p or, as well, the vertices and edges

that are passed by p, and the sets {v0, v1, . . . , vℓ} and {e1, . . . , eℓ} will also be

denoted by V (p) and E(p), respectively. The vertex v0 is also called the start-

ing point, and the vertex vℓ the end point of p (though sometimes also both

vertices, v0 and vℓ, may be referred to as its endpoints), and p is also called a

path from v0 to vℓ.

A path p is called proper if all of its vertices except perhaps its starting

and its end point are distinct, i.e., if vi 
= v j holds for all i, j ∈ {0, 1, . . . , ℓ}

with i 
= j and {i, j} 
= {0, ℓ}, and it is called a (cyclically) closed path if its

starting and its end point coincide, i.e., if v0 = vℓ holds, its length is positive

and, hence, exceeds 2, and also v1 
= vℓ−1 holds.

In Figure 1.1, there is exactly one proper path of length 1, 2, 4, and 5, respec-

tively, from u to v, and two such paths of length 3.

A graph G = (V, E) is connected if there exists, for any two vertices u, v ∈

V of G, a path in G with endpoints u and v. More generally, a subset U ⊆ V

of the vertex set V of a graph G = (V, E) is connected (relative to G) if the

associated induced subgraph G[U ] is connected. And a subset F ⊆ E of the

edge set E of a graph G = (V, E) is connected (relative to G) if the graph
(
⋃

F, F
)

is connected.

A connected component of a graph G = (V, E) is an inclusion-maximal

connected subset U ⊆ V of V or, equivalently, an inclusion-minimal non-

empty subset U of V for which e ⊆ U holds for all e ∈ E with e ∩U 
= ∅. So,

the graph in Figure 1.1, for example, “contains” exactly two distinct connected

components.

Clearly, any two connected components of a graph G either coincide or have

an empty intersection. We denote the set of connected components of a graph
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1.2 Graphs 7

G = (V, E) by π0(G), and we denote the (unique!) connected component of

G containing a given vertex v ∈ V by G(v).

It is also obvious that the set system π0(G) forms a partition of the vertex

set V of a graph G = (V, E) and that, if G is a connected graph with at least

one interior vertex, the set Vint (G) of its interior vertices is a connected subset

of G and the associated induced — and necessarily connected — subgraph

G[Vint (G)] coincides with the derived graph ∂G. More precisely, a graph G

with Vint (G) 
= ∅ is connected if and only if the derived graph ∂G is connected

and G contains no isolated vertices or isolated edges, i.e., vertices or edges that

form a connected component of G.

We will say that an edge e ∈ E separates a vertex v ∈ V from a vertex

u ∈ V if G(v) = G(u) holds while the two connected components G(e)(u)

and G(e)(v) of the graph G(e) := (V, E − e) containing u and v, respectively,

are distinct — that is, if there is a path in G connecting u and v, but every such

path passes e. The set of all edges of G separating the vertices u and v will

be denoted by EG(u|v) or simply E(u|v). And any edge e = {u, v} ∈ E that

separates its two endpoints u and v will be called a bridge.

More generally, we call a subset E ′ of E an edge-cutset of G if G(v) dif-

fers from (V, E − E ′)(v) for at least one vertex v ∈ V . Analogously, a sub-

set U ⊆ V is a vertex-cutset of G if there exist two vertices u, u′ ∈ V − U

with G(u)= G(u′), but G[V − U ](u) 
= G[V − U ](u′). In particular, a vertex

v ∈ V such that {v} is a vertex-cutset of G is called a cut vertex of G.

A cycle is a finite connected graph all of whose vertices have degree 2.

Clearly, a graph G = (V, E) is a cycle if and only if it is finite and we

can label its vertices as v1, v2, . . . , vℓ (ℓ := |V |) so that E coincides with

{{v1, v2}, . . . , {vℓ−1, vℓ}, {vℓ, v1}} in which case the sequence v0 := vℓ, v1, v2,

. . . , vℓ forms a proper closed path in G that encompasses all vertices and edges

of G. A cycle in a graph G is a subgraph of G that is a cycle. The graph in

Figure 1.1 contains exactly four cycles of length 3 and 5, and three of length 4

and 6, respectively.

Clearly, an edge e in a finite graph G is contained in a cycle in G if and only

if it is contained in ∂k G for every natural number k ∈ N≥0 (where ∂k G is,

of course, defined recursively by ∂0G := G and ∂k+1G := ∂(∂k G) for every

k ∈ N≥0).

A graph T = (V, E) is a tree if it is connected and contains no cycles or

equivalently, as every “shortest” closed path “is” a cycle, no closed path. A

subgraph T ′ = (V ′, E ′) of a tree T that is connected is called a subtree of T in

which case it must coincide with the induced subgraph T [V ′] of T with vertex

set V ′. An example of a tree is given in Figure 1.2.
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8 Preliminaries

Figure 1.2 An example of a tree.

A tree T = (V, E) is called binary if every interior vertex has degree 3, and

it is called a star tree if it has precisely one interior vertex which then must be

necessarily of degree |V |− 1. The unique interior vertex of a star tree will also

be called the central vertex of that tree.

The tree in Figure 1.2 has one interior vertex of degree 4 and is, therefore,

not binary. There are three cherries in this tree.

Note that, for any two distinct vertices u and v in a tree T = (V, E), there is

a unique edge ev→u ∈ E(v) in the intersection ET (u|v)∩ Ev . In consequence,

there is precisely one path in T from u to v for any two distinct vertices u and v

of T that we will denote by pT (u, v) or simply by p(u, v), while its vertex set

V (pT (u, v)) will be denoted by VT [u, v] and its edge set
(

that actually coin-

cides with ET (u|v)
)

also by ET [u, v]. Clearly, a subset U of V is connected if

and only if VT [u, v] ⊆ U holds for all u, v ∈ U implying that, given any sub-

set U of V , there exists a unique smallest connected subset of V that contains

U , viz. the subset VT [U ] :=
⋃

u,v∈U VT [u, v]. And we have ev→u 
= ev→u′

for three distinct vertices u, u′, v of T if and only if v ∈ VT [u, u′] holds.

Note that, for any three vertices u, v, w in a tree T = (V, E), there is a

unique vertex m ∈ V that is contained in the intersection VT [u, v]∩VT [v,w]∩

VT [w, u], called the median of u, v, w in T and denoted by med(u, v, w) =

medT (u, v, w).

Note also that, for every edge e = {u, v} of a tree T = (V, E), the subgraph

T (e) = (V, E − e) of T has precisely two connected components, viz. T (e)(u),

the one containing u, and T (e)(v), the one containing v. Note also that e ∈

ET [u′, v′] holds for some edge e ∈ E and any two vertices u′, v′ ∈ V if and

only if T (e)(u′) 
= T (e)(v′) or, equivalently, π0(T
(e)) = {T (e)(u′), T (e)(v′)}

holds.

In particular, one has

ET [u, w] = ET [u, v] △ ET [v,w] ⊆ ET [u, v] ∪ ET [v,w] (1.1)

for any three vertices u, v, w of a tree T = (V, E) (where A△B denotes, for

any two sets A, B, their symmetric difference A ∪ B − A ∩ B) as T (e)(u) 
=

T (e)(v) holds for any edge e ∈ E and any two vertices u, v ∈ V if and only
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1.2 Graphs 9

T (e)(u) = T (e)(w) 
= T (e)(v) or T (e)(u) 
= T (e)(w) = T (e)(v) holds for any

further vertex w ∈ V .

Further, a graph that, whether connected or not, at least contains no cycles is

called a forest. Clearly, a graph F = (V, E) is a forest if and only if the induced

graph F[U ] is a tree for every connected component U of F and, hence, just

as well for every connected subset U of V . Note that a graph G = (V, E) is a

forest if and only if every edge e = {u, v} ∈ E is a bridge.

In the context of graphs and trees, we will also follow popular practice and

freely use the term network instead of the term graph, in particular when refer-

ring to connected graphs that are not (necessarily) trees.

A surjective map ψ : V → U from the vertex set V of a graph G = (V, E)

onto another set U is called a contracting map (for G) if all subsets of V

of the form ψ−1(u) (u ∈ U ) are connected. Clearly, given an equivalence

relation ∼ on V , the canonical map V → V/ ∼ from V onto the set V/ ∼

of ∼-equivalence classes is a contracting map if and only if all ∼-equivalence

classes are connected.

Further, given a graph G = (V, E) and a contracting map ψ : V → U for

G, we denote by ψG the graph with vertex set U and edge set

ψ E := {{ψ(u), ψ(v)} : {u, v} ∈ E, ψ(u) 
= ψ(v)} .

Note that ψG is a tree whenever G is a tree T , and that the map

ψ⋆ : V → {⋆}∪̇ (V − Vint (G), ) : v �→

{

⋆ if v ∈ Vint (G),

v otherwise,

from V onto the disjoint union of the set V − Vint (G) of leaves of G and just

one additional element ⋆ not yet involved in G is a contracting map if and only

if Vint (G) is a connected subset of V . So, this holds in particular whenever G

is connected in which case the resulting graph ψ⋆G is a star tree.

We will say that a graph G ′ = (V ′, E ′) results from a graph G = (V, E)

by the contraction of an edge e ∈ E if G ′ = ψG holds for some contracting

map ψ : V → V ′ that only contracts the edge e, i.e., for which all but one of

the subsets of V of the form ψ−1(v′) (v′ ∈ V ′) have cardinality 1 while the

unique remaining subset of V of that form has cardinality 2 and is actually the

edge e.

Clearly, such a contracting map exists for every edge e ∈ E . For example,

the canonical map ψe : V → V/ ∼e from V onto the set V/ ∼e of equivalence

classes V/ ∼e of V relative to the equivalence relation ∼e defined by

u ∼e v ⇐⇒ u = v or {u, v} = e
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10 Preliminaries

is a contracting map that just contracts e. And it is also obvious that every

contracting map is a concatenation of such “elementary” contracting maps.

And if, even more specifically, e is a pendant edge containing exactly one

interior vertex v, we can choose this vertex as a canonical representative of the

∼e-equivalence class e ⊆ V of v in V/ ∼e and replace the map ψe : V →

V/ ∼e by the map

ψe : V → V − v : w �→

{

v if w ∈ e,

w else.

Note that, denoting the unique leaf in e by u, the graph ψeG resulting from

contracting the edge e in this way coincides with the subgraph

Ge := (V − u, E − e)

of G obtained by eliminating the pendant edge e and the leaf u in e.

Next, we state (without proof) some well-known simple facts that we will

use later in this book.

Lemma 1.2 (i) Given any finite graph G = (V, E), one has

2|E | = |{(v, e) ∈ V × E : v ∈ e}| =
∑

i≥1

i |V (i)|

where V (i) denotes, for every i ∈ N≥0, the set

V (i) := {v ∈ V : deg(v) = i}

of vertices of degree i in G.

(ii) A finite graph G = (V, E) is a tree if and only if it is connected and

|V | = |E | + 1 holds.

(iii) For every finite tree T = (V, E) with at least two vertices, one has
∑

i≥1(2 − i)|V (i)| = 2 or, equivalently,

|V (1)| = 2 + |V (3)| + 2|V (4)| + 3|V (5)| + · · ·

and, denoting by V (i | j) the set of vertices of degree i that are adjacent to

exactly j leaves (which clearly is empty if j < 0 holds), one also has
∑

i>1

|V (i |i−1)| = 2 +
∑

i

|V (i |i−3)| + 2
∑

i

|V (i |i−4)| + 3
∑

i

|V (i |i−5)| + · · ·

provided T is not a star tree: Indeed, if T is not a star tree, the graph ∂T :=

(Vint (T ), Eint (T )) derived from T by deleting all of its leaves and pendant

edges is a tree with at least two vertices, exactly
∑

i>1 |V (i |i−1)| leaves, and,
∑

i |V (i |i− j)| vertices of degree j in ∂T .
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