
Part I

Introduction to gravity and supergravity

Let no one ignorant of Mathematics enter here.

Inscription above the doorway of Plato’s Academy

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76813-9 - Gravity and Strings
Tomas Ortin
Excerpt
More information

http://www.cambridge.org/9780521768139
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76813-9 - Gravity and Strings
Tomas Ortin
Excerpt
More information

http://www.cambridge.org/9780521768139
http://www.cambridge.org
http://www.cambridge.org


1
Differential geometry

The main purpose of this chapter is to fix our notation and to review the ideas and formulae
of differential geometry we will make heavy use of. There are many excellent physicist-
oriented references on differential geometry. Two that we particularly like are Refs. [481]
and [972]. Our approach here will be quite pragmatic, ignoring many mathematical details
and subtleties that can be found in the many excellent books on the subject.

1.1 World tensors

A manifold is a topological space that looks (i.e. it is homeomorphic to) locally (i.e. in
a patch) like a piece of Rd. d is the dimension of the manifold and the correspondence
between the patch and the piece of Rn can be used to label the points in the patch
by Cartesian Rn coordinates xμ. In the overlap between different patches the different
coordinates are consistently related by a general coordinate transformation (GCT) x′μ(x).
Only objects with good transformation properties under GCTs can be defined globally on
the manifold. These objects are tensors.

A contravariant vector field (or (1, 0)-type tensor or just “vector”) ξ(x) = ξμ(x)∂μ is
defined at each point on a d-dimensional smooth manifold by its action on a function

ξ : f −→ ξf = ξμ∂μf, (1.1)

which defines another function. These objects span a d-dimensional linear vector space at
each point of the manifold called the tangent space T(1,0)

p . The d functions ξμ(x) are the
vector components with respect to the coordinate basis {∂μ}.

A covariant vector field (or (0, 1)-type tensor or differential 1-form) is an element

of the dual vector space (sometimes called the cotangent space) T(0,1)
p and therefore

transforms vectors into functions. The elements of the basis dual to the coordinate basis
of contravariant vectors are usually denoted by {dxμ} and, by definition,

〈dxμ|∂ν〉 ≡ δμν , (1.2)

which implies that the action of a form ω = ωμdx
μ on a vector ξ(x) = ξμ(x)∂μ gives the
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4 Differential geometry

function1

〈ω|ξ〉= ωμξ
μ. (1.3)

Under a GCT, vectors and forms transform as functions, i.e. ξ′(x′) = ξ(x(x′)) etc., which
means for their components in the associated coordinate basis

∂x′ ρ

∂xμ
ξμ(x(x′)) = ξ′ ρ(x′), ωμ(x(x

′))
∂xμ

∂x′ ρ
= ω′

ρ(x
′). (1.4)

More general tensors of type (q, r) can be defined as elements of the space T(q,r)
p , which

is the tensor product of q copies of the tangent space and r copies of the cotangent space.
Their components Tμ1···μqν1···νr transform under GCTs in the obvious way.

It is also possible to define tensor densities of weight w whose components in a
coordinate basis change under a GCT with an extra factor of the Jacobian raised to the
power w/2. Thus, for weight w, the vector density components vμ and the form density
components wμ transform according to∣∣∣∣∂x′∂x

∣∣∣∣
w/2 ∂x′ ρ

∂xμ
vμ(x(x′)) = v′ ρ(x′),

wμ(x(x
′))

∂xμ

∂x′ ρ

∣∣∣∣∂x′∂x

∣∣∣∣
w/2

= w′
ρ(x

′),

(1.5)

where for the Jacobian we use the notation∣∣∣∣∂x′∂x

∣∣∣∣≡ det

(
∂x′ ρ

∂xμ

)
. (1.6)

An infinitesimal GCT2 can be written as follows:

δxμ = x′μ − xμ = εμ(x). (1.7)

The corresponding infinitesimal transformations of scalars φ and contravariant and covari-
ant world vectors (an alternative name for components in the coordinate basis) are:3

δφ = −ελ∂λφ ≡ −Lεφ,
δξμ = −ελ∂λξ

μ + ∂νε
μξν ≡ −Lεξμ ≡−[ε, ξ]μ,

δωμ = −ελ∂λωμ − ∂με
νων ≡ −Lεωμ,

(1.8)

1 Summation over repeated indices in any position will always be assumed, unless they are in parentheses.
2 This is an element of a one-parameter group of GCTs (the unit element corresponding to the value 0 of the

parameter) with a value of the parameter much smaller than 1.
3 We use the functional variations δφ≡ φ′(x)− φ(x) which refer to the value of the field φ at two different

points whose coordinates are equal in the two different coordinate systems. They are denoted in Ref. [1068]
by δ0. They should be distinguished from the total variations δ̃ = φ′(x′)− φ(x) which refer to the values
of the field φ at the same point in two different coordinate systems. The relation between the two is δφ=
δ̃φ− εμ∂μφ. The piece −ελ∂λφ that appears in δ variations is the “transport term,” which is not present in
other kinds of infinitesimal variations. The transformations δ do enjoy a group property (their commutator
is another δ transformation), whereas the transformations δ̃ or the transport terms by themselves do not.
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1.2 Affinely connected spacetimes 5

and, for weight-w scalar densities f, vector density components vμ, and the form density
components wμ,

δf = −ελ∂λf− w∂λε
λf ≡ −Lεf,

δvμ = −ελ∂λv
μ + ∂νε

μvν − w∂λε
λvμ ≡ −Lεvμ,

δwμ = −ελ∂λwμ − ∂με
νwν − w∂λε

λwμ ≡ −Lεwμ,
(1.9)

where Lε is the Lie derivative with respect to the vector field ε and [ε, ξ] is the Lie bracket
of the vectors ε and ξ. The definition of the Lie derivative can be extended to tensors or
weight-w tensor densities of any type:

LεTμ1···μpν1···νq =−δεT
μ1···μp

ν1···νq

= ερ∂ρT
μ1···μp

ν1···νq − ∂ρε
μ1T ρμ2···μpν1···νq + · · ·

+ ∂ν1ε
ρTμ1···μpρν2···νq − w∂λε

λTμ1···μpν1···νq . (1.10)

In particular the metric (a symmetric (0, 2)-type tensor to be defined later) and r-forms
(a fully antisymmetric (0, r)-type tensor) transform as follows:

δgμν = −ελ∂λgμν − 2gλ(μ∂ν)ε
λ = −Lεgμν ,

δBμ1···μr = −ελ∂λBμ1···μr − r(∂[μ1|ε
λ)Bλ|μ2···μr] = −LεBμ1···μr .

(1.11)

The main properties of the Lie derivative are that it transforms tensors of a given type into
tensors of the same given type, it obeys the Leibniz rule Lε(T1T2) = (LεT1)T2 + T1LεT2,
it is connection independent, and it is linear with respect to ε. Furthermore, it satisfies the
Jacobi identity

[Lξ1 , [Lξ2 ,Lξ3 ]] + [Lξ2 , [Lξ3 ,Lξ1 ]] + [Lξ3 , [Lξ1 ,Lξ2 ]] = 0, (1.12)

where the brackets stand for commutators of differential operators. The relation between
the commutator [Lξ,Lε] and the Lie bracket [ξ, ε] is

[Lξ,Lε] = L[ξ,ε]. (1.13)

Thus, the Lie bracket is an antisymmetric, bilinear product in tangent space that also
satisfies the Jacobi identity

[ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0, (1.14)

which one can use to give it the structure of Lie algebra.

1.2 Affinely connected spacetimes

The covariant derivative of world tensors is defined by

∇μφ = ∂μφ,

∇μξν = ∂μξ
ν + Γμρ

νξρ,

∇μων = ∂μων − ωρΓμν
ρ,

(1.15)
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6 Differential geometry

and on weight-w tensor densities by

∇μf = ∂μf− wΓμρ
ρf,

∇μvν = ∂μv
ν + Γμρ

νvρ − wΓμρ
ρvν ,

∇μwν = ∂μwν −wρΓμν
ρ − wΓμρ

ρwν ,

(1.16)

where Γ is the affine connection, and is added to the partial derivative so that the covariant
derivative of a tensor transforms as a tensor in all indices. This requires the affine
connection to transform under infinitesimal GCTs as follows:

δΓμν
ρ =−LεΓμνρ − ∂μ∂νε

ρ, (1.17)

and therefore it is not a tensor. In principle it can be any field with the above transformation
properties and should be understood as structure added to our manifold. A d-dimensional
manifold equipped with an affine connection is sometimes called an affinely connected
space and is denoted by Ld.

The definition of a covariant derivative can be extended to tensors of arbitrary type in
the standard fashion. Its main properties are that it is a linear differential operator that
transforms type-(p, q) tensors into (p, q + 1) tensors (hence the name covariant) and obeys
the Leibniz rule and the Jacobi identity.

Let us now decompose the connection into two (symmetric and antisymmetric) pieces
under the exchange of the covariant indices:

Γμν
ρ = Γ(μν)

ρ + Γ[μν]
ρ. (1.18)

The antisymmetric part is called the torsion and it is a tensor (which the connection is not)

Tμν
ρ =−2Γ[μν]

ρ. (1.19)

As we have said, the Lie derivative transforms tensors into tensors in spite of the fact
that it is expressed in terms of partial derivatives. We can rewrite it in terms of covariant
derivatives and torsion terms to make evident the fact that the result is indeed a tensor:

Lεφ = ελ∇λφ,
Lεξμ = ελ∇λξμ −∇νεμξν + ελTλρ

μξρ,

Lεωμ = ελ∇λωμ +∇μενων − ελωρTλμ
ρ,

(1.20)

etc. It should be stressed that this is just a rewriting of the Lie derivative, which
is independent of any connection. There are other connection-independent derivatives.
Particularly important is the exterior derivative defined on differential forms (completely
antisymmetric tensors) which we will study later in Section 1.7.

The additional structure of an affine connection allows us to define parallel transport.
In a generic spacetime there is no natural notion of parallelism for two vectors defined at
two different points. We need to transport one of them keeping it “parallel to itself” to
the point at which the other is defined. Then we can compare the two vectors at the same
point. Using the affine connection, we can define an infinitesimal parallel displacement of
a covariant vector ωμ in the direction of εμ by

δPεωμ = ενΓνμ
ρωρ. (1.21)
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1.2 Affinely connected spacetimes 7

If ωμ(x) is a vector field, we can compare its value at a given point xμ + εμ with the
value obtained by parallel displacement from xμ. The difference is precisely given by the
covariant derivative in the direction εμ:

ωμ(x
′)− (ωμ + δPεωμ)(x) = εν∇νωμ. (1.22)

A vector field whose value at every point coincides with the value one would obtain by
parallel transport from neighboring points is a covariantly constant vector field, ∇νωμ = 0.

If the vector tangential to a curve4 vμ = dxμ/dξ ≡ ẋμ is parallel to itself along the curve
(as a straight line in flat spacetime) then

vν∇νvμ = ẍμ + ẋρẋσΓρσ
μ = 0, (1.23)

which is the autoparallel equation. This is the equation satisfied by an autoparallel curve,
which is the generalization of a straight line to a general affinely connected spacetime.
There is a second possible generalization based on the property of straight lines of being
the shortest possible curves joining two given points (geodesics), but it requires the notion
of length and we will have to wait until the introduction of metrics.

We can understand the meaning of torsion using parallel transport: let us consider
two vectors εμ1 and εμ2 at a given point of coordinates xμ. Let us now consider at the
point of coordinates xμ + εμ1 the vector ε′μ2 obtained by parallel-transporting εμ2 in the
direction εμ1 and, at the point of coordinates xμ + εμ2 , the vector ε′μ1 obtained by parallel-
transporting εμ1 in the direction εμ2 . In flat spacetime, the vectors ε1, ε2, ε

′
1, and ε′2 form

an infinitesimal parallelogram since xμ + εμ1 + ε′μ2 = xμ + εμ2 + ε′μ1 . In a general affinely
connected spacetime, the infinitesimal parallelogram does not close and(

xμ + εμ1 + ε′μ2
)
−
(
xμ + εμ2 + ε′μ1

)
= ερ1ε

σ
2Tρσ

μ. (1.24)

Finite parallel transport along a curve γ depends on the curve, not only on the initial and
final points, so, if the curve is closed, the original and the parallel-transported vectors do
not coincide. The difference is measured by the (Riemann) curvature tensor Rμνρσ: let us
consider two vectors εμ1 and εμ2 at a given point xμ and let us parallel-transport the vector
ωμ from xμ to xμ + εμ1 and then to xμ + εμ1 + εμ2 . The result is

ωμ + (εν1 + εν2)Γνμ
ρωρ + ελ1ε

ν
2

(
∂λΓνμ

ρ + Γλδ
ρΓνμ

δ
)
ωρ +O(ε3). (1.25)

If we go to the same point along the route xμ to xμ + εμ2 and then to xμ + εμ1 + εμ2 we
obtain a different value, and the difference between the parallel-transported vectors is

Δωμ = ελ1ε
ν
2Rλνμ

ρωρ, (1.26)

where

Rμνρ
σ(Γ) = 2∂[μΓν]ρ

σ + 2Γ[μ|λ
σΓ|ν]ρ

λ. (1.27)

4 Here we use the mathematical concept of a curve: a map from the real line R (or an interval) given as
a function of a real parameter xμ(ξ), rather than the image of the real line in the spacetime. Thus, after
a reparametrization ξ′(ξ), we obtain a different curve, although the image is the same and physically we
would say that we have the same curve.
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8 Differential geometry

We can also define the curvature tensor (and the torsion tensor) through the Ricci
identities for a scalar φ, a vector ξμ, and a 1-form ωμ:

[∇μ,∇ν ]φ = Tμν
σ∇σφ,

[∇μ,∇ν ] ξρ = Rμνσ
ρξσ + Tμν

σ∇σξρ,
[∇μ,∇ν ]ωρ = −ωσRμνρ

σ + Tμν
σ∇σωρ,

(1.28)

or, for a general tensor,

[∇α,∇β ] ξμ1···ν1··· =−Rαβμ1
γξγ···

ν1··· − · · ·+Rαβγ
ν1ξμ1···

γ··· + · · ·+ Tαβ
γ∇γξμ1···ν1···,

(1.29)

and, using the antisymmetry of the commutators of covariant derivatives and the fact that
the covariant derivative satisfies the Jacobi identity, one can derive the following Bianchi
identities:

R(αβ)γ
δ = 0,

R[αβγ]
δ +∇[αTβγ]

δ + T[αβ
ρTγ]ρ

δ = 0,

∇[αRβγ]ρ
σ + T[αβ

δRγ]δρ
σ = 0.

(1.30)

(The last two identities are derived from the Jacobi identity of covariant derivatives acting
on a scalar and a vector, respectively.)

In general, if we modify the affine connection by adding an arbitrary tensor5 τμν
ρ,

Γμν
ρ→ Γ̃μν

ρ = Γμν
ρ + τμν

ρ, (1.31)

the curvature is modified as follows:

Rμνρ
σ(Γ̃) =Rμνρ

σ(Γ)− Tμν
λτλρ

σ + 2∇[μτν]ρ
σ + 2τ[μ|λ

στ|ν]ρ
λ. (1.32)

The Ricci tensor is defined by

Rμν =Rμρν
ρ = ∂μΓρν

ρ − ∂ρΓμν
ρ + Γμλ

ρΓρν
λ − Γρλ

ρΓμν
λ. (1.33)

In general it is not symmetric, but, according to the second Bianchi identity,

R[μν] =
1
2

∗
∇ρ

∗
Tμν

ρ + 1
2Rμνρ

ρ, (1.34)

where we have used the modified divergence
∗
∇μ and the modified torsion tensor

∗
Tμν

ρ,
∗
∇μ =∇μ − Tμρ

ρ,
∗
Tμν

ρ = Tμν
ρ − 2T[μ|σ

σδ|ν]
ρ. (1.35)

If we modify the connection as in Eq. (1.31), the Ricci tensor is also modified:

Rμρ(Γ̃) =Rμρ − Tμν
λτλρ

ν + 2∇[μτν]ρ
ν + 2τ[μ|λ

ντ|ν]ρ
λ. (1.36)

Another useful formula is the Lie derivative of the torsion tensor which, using the first
two Bianchi identities, can be rewritten in the form

LξTμνρ =∇μ
(
ξλTλν

ρ
)
+∇ν

(
ξλTμλ

ρ
)
−∇λ

(
ξρTμν

λ
)
− 3ξλR[λμν]

ρ + ξσ∇σTμνρ.
(1.37)

5 Only if τ transforms as a tensor can Γ̃ transform as a connection.
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1.3 Metric spaces 9

1.3 Metric spaces

To go further we need to add structure to a manifold: a metric in tangent space, i.e. an inner
product for tangent-space vectors (symmetric, bilinear) associating a function g(ξ, ε) with
any pair of vectors (ξ, ε). This corresponds to a symmetric (0, 2)-type tensor g symmetric
in its two covariant components gμν = g(μν):

ξ · ε≡ g(ξ, ε) = ξμενgμν . (1.38)

The norm squared of a vector is just the product of the vector with itself, ξ2 = ξ · ξ. The
metric will be required to be non-singular, i.e.

g ≡ det(gμν) �= 0, (1.39)

and locally diagonalizable into ημν = diag(+− · · · −) for physical and conventional
reasons. Thus, in d dimensions

sign g =
g

|g| = (−1)d−1. (1.40)

As usual, a metric can be used to establish a correspondence between a vector space and
its dual, i.e. between vectors and 1-forms: with each vector ξμ we associate a 1-form ωμ
whose action on any other vector ημ is the product of ξ and η, ω(η) = ξμηνgμν , which
means the relation between components ων = ξμgμν . It is customary to denote this 1-form
by ξμ, and the transformation from vector to 1-form is represented by lowering the index.

The inverse metric can be used as a metric in cotangent space, and its components are
those of the inverse matrix and are denoted with upper indices. The operation of raising
indices can be similarly defined, and the consistency of all these operations is guaranteed
because the dual of the dual is the original vector space. The extension to tensors of higher
ranks is straightforward.

The determinant of the metric can also be used to relate tensors and weight w tensor
densities, since it transforms as a density of weight w = 2 and the product of a tensor and
gw/2 transforms as a density of weight w.

Furthermore, with a metric we can define the Ricci scalar R and the Einstein tensor Gμν ,

R=Rμ
μ, Gμν =Rμν − 1

2gμνR, (1.41)

which needs not be symmetric (just like the Ricci tensor).
So far we have two independent fields defined on our manifold: the metric and the affine

connection. An Ld spacetime equipped with a metric is sometimes denoted by (Ld, g).
The affine connection and the metric are related by the non-metricity tensor Qμνρ,

Qμνρ ≡−∇μgνρ. (1.42)

If we take the combination ∇μgρσ +∇ρgσμ −∇σgμρ and expand it, we find that the
connection can be written as follows:

Γμν
ρ =

{
ρ

μ ν

}
+Kμν

ρ + Lμν
ρ, (1.43)
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10 Differential geometry

where {
ρ

μ ν

}
= 1

2g
ρσ{∂μgνσ + ∂νgμσ − ∂σgμν} (1.44)

are the Christoffel symbols, which are completely determined by the metric, and K is called
the contorsion tensor and is given in terms of the torsion tensor by

Kμν
ρ = 1

2g
ρσ{Tμσν + Tνσμ − Tμνσ} ,

K[μν]
ρ = −1

2Tμν
ρ, Kμνρ =−Kμρν .

(1.45)

Finally

Lμν
ρ = 1

2{Qμνρ +Qνμ
ρ −Qρμν} . (1.46)

Observe that the contorsion tensor depends on the metric whereas the torsion tensor does
not. Furthermore, observe that, since the contorsion and non-metricity tensors transform as
tensors, the piece responsible for the non-homogeneous term in the transformation of the
affine connection is the Christoffel symbol.

With a metric it is also possible to define the length of a curve γ, xμ(ξ), by the integral

s=

∫
γ

dξ
√
gμν(x)ẋμẋν . (1.47)

If we consider the above expression as a functional in the space of all curves joining two
given points, we can ask which of those curves minimizes it. The answer is given by the
Euler–Lagrange equations, which take the simple form

ẍμ + ẋρẋσ
{

μ

ρσ

}
= 0, (1.48)

if we parametrize the curve by its proper length s. This is the geodesic equation, and is
different from the autoparallel equation (1.23) whenever there is torsion and non-metricity.

In the standard theory of gravity metric and affine connection are not independent
variables since we want to describe only the degrees of freedom corresponding to a massless
spin-2 particle. To relate these two fields one imposes the metric postulate

Qμρσ =−∇μgρσ = 0, (1.49)

which makes the operations of raising and lowering of indices commute with the covariant
derivative. A connection satisfying the above condition is said to be metric compatible
and a spacetime (Ld, g) with a metric-compatible connection is called a Riemann–Cartan
spacetime and is denoted by Ud.

Sometimes a weaker condition is required: the vanishing of the trace-free part of the
non-metricity tensor Q̂

Q̂μνρ ≡Qμνρ − 1
dQμσ

σgνρ = 0. (1.50)

In this case, the non-metricity must take the form

Qμνρ =−Aμgνρ, ⇒ Lρμν =A(μgν)
ρ − 1

2gμνA
ρ, (1.51)
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