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A tour of matroids

1.1 Motivation

Matroids were introduced by Hassler Whitney, in a seminal1 paper [42]
that anticipated much of the early development of the subject.2 Since
its birth, the theory of matroids has undergone enormous growth, and it
remains one of the most active research areas in mathematics. We’ll give
you more historical nuggets about the development of matroid theory
along the way (often in footnotes), but not now.

Right now, as a tease, here’s a question for you: How are each of the
things3 in Figure 1.1 related to each other, and how are they related to
the following matrix?

B =
⎡
⎣

a b c d e

0 0 0 1 1
0 1 1 0 0
1 1 0 1 0

⎤
⎦.

This chapter should help you to answer this open-ended question,
with matroids playing the unifying role. In particular, you should be
able to find each of these pictures – and lots of matrices – in this and
subsequent chapters.

Typically, when you study mathematics, especially in the undergrad-
uate curriculum, you study topics separately, in individual courses like
linear algebra, abstract algebra, discrete math, combinatorics, geome-
try, graph theory, and so on. While it’s not illegal to think about a topic
from abstract algebra (algebraically closed fields, say) while you’re

1 There will be plenty of footnotes in the text. You can ignore them, or just glance at
them to decide if reading them is worth the effort. There is no reason we footnoted this
word – it’s just to get you used to looking down.

2 Hassler Whitney (1907–1989) was an outstanding mathematician with wide interests;
his fundamental work in algebraic topology, differential geometry and differential
topology earned him the Wolf Prize in 1983. He invented matroid theory in the 1930s
after working in graph theory. Whitney was an avid and accomplished rock climber,
and his grandson wrote about his famous unprotected ascent in 1929 of the Cannon
Cliff in NH, now named the Whitney–Gilman Ridge.

3 This is not a technical term.
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2 A tour of matroids
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Figure 1.1. Four pictures.

sitting in your complex analysis course, the textbooks for these courses
and the way most undergraduate courses are designed do not encourage
you to do so.

Our main point is this: much of the beauty and the richness of mathe-
matics comes from the many connections between the various branches
of mathematics. We believe the study of matroids is especially well
suited for this purpose.4 Figure 1.1 shows four objects that represent
the same matroid-dependence structure: a graph, a point–line incidence
geometry, a bipartite graph and an arrangement of vectors. Furthermore,
they are all equivalent – as matroids – to the column dependences of a
matrix, giving us a connection to linear algebra, as well.

Matroid theory uses linear and abstract algebra, graph theory,
combinatorics and finite geometry.

You shouldn’t understand any of the details yet – we haven’t given
any. This chapter is devoted to introducing you to matroids by giving you
lots of examples as they appear in several different areas of mathematics.

4 Well, of course we believe this – we’ve written a book about them.
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1.2 Introduction to matroids 3

After reading this chapter, you should be able to understand what a
matroid is from the viewpoint of graphs, linear algebra and geometry.

This text emphasizes the geometric approach popularized by Gian-
Carlo Rota.5 We learned Rota’s approach from his student Thomas
Brylawski, the Ph.D. advisor for both authors.6

Rota used the term “combinatorial pregeometry” instead of the term
matroid, but this is sufficiently awkward to have not caught on. Rota had
very strong feelings about terminology, believing the word “matroid” to
be “ineffably cacophonic.” In 1971, he and Kelly wrote:

Several other terms have been used in place of geometry, by the successive
discoverers of the notion; stylistically, these range from the pathetic to the
grotesque. The only surviving one is “matroid,” still used in pockets of the
tradition-bound British Commonwealth. [19]

1.2 Introduction to matroids

We will tell you what a matroid is very soon – we promise – but we
begin with two examples.

Example 1.1. Let A be the following matrix.

A =
[ a b c d

1 0 1 1
0 1 1 2

]
.

We care about the four columns7 a = (1, 0), b = (0, 1), c = (1, 1) and
d = (1, 2). More to the point, we are interested in those subsets of
columns that are linearly independent and those that are linearly depen-
dent. (Remember that a set of vectors is linearly dependent if some
non-trivial linear combination8 of the vectors is the zero vector.)

Now in our matrix A, every pair of vectors forms a linearly indepen-
dent (= not linearly dependent) subset of R2, but any subset of three
of these vectors forms a linearly dependent set because the vectors all
live in R2. (It is always true that when the number of vectors is larger
than the dimension of your space, the vectors are linearly dependent.)
Of course, the entire set of four vectors is linearly dependent.

How can we describe the linearly dependent subsets of {a, b,

c, d}? Here’s a surefire way that should appeal to the computer

5 Gian-Carlo Rota (1932–1999) was an eloquent mathematician and philosopher who
worked in combinatorics, but also made deep contributions to invariant theory and
analysis. He received the Steele Prize in 1988 for his paper On the foundations of
combinatorial theory [29] which is credited as “. . . the single paper most responsible
for the revolution that incorporated combinatorics into the mainstream of modern
mathematics.”

6 This last paragraph really belongs in the Preface, but scientists have proven that
nobody ever reads the Preface.

7 For convenience, we will sometimes write column vectors horizontally, like so: (1, 0).
8 This is the problem with definitions – they rely on other definitions.
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4 A tour of matroids

a = (1, 0)

c = (1, 1)

d = (1, 2)

b = (0, 1)

Figure 1.2. Four vectors.

programmer: list them all. In this case, it’s easy: {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, {a, b, c, d}. You should convince yourself that this is
not a good approach in general.

While there are many ways to “describe” these sets, we focus on a
geometric way that will be central to the rest of this text (you might want
to pay attention now). We will draw a picture that represents the linear
dependence and independence of the subsets of the four columns from
the example. The procedure has three easy steps.

Rank 2 matroid drawing procedure from a matrix

� Step 1: Draw the vectors in the plane. See Figure 1.2.
� Step 2: Draw a line in a “free” position – this means we want a

line that is not parallel to any of our vectors. Now extend or
shrink (and reverse, if necessary) each vector to see where it
would hit this free line. See Figure 1.3.9

� Step 3: Finally, to get a picture of the column vector
dependences corresponding to this matrix, just keep the line and
discard the original vectors. See Figure 1.4 for a picture of the
resulting “matroid,” which just consists of four collinear points.

Here are two important things that you might notice.

(1) The length of a vector doesn’t matter; for example, the picture in
Figure 1.4 would be the same if we replaced (1, 1) by (2, 2).

9 Hey – isn’t this really two steps?
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1.2 Introduction to matroids 5
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Figure 1.3. Our four vectors
and a “free” line.

a c db

Figure 1.4. A picture of the
matroid for the column
dependences of the
matrix A.

(2) We could replace a vector by its negative without changing our
picture in Figure 1.4; for instance, replacing (1, 2) by (−1,−2)
wouldn’t change which subsets of vectors were dependent.

Example 1.2. Let’s do another example. This time, let B be the fol-
lowing matrix:

B =
⎡
⎣

a b c d e

0 0 0 1 1
0 1 1 0 0
1 1 0 1 0

⎤
⎦.

As before, we wish to draw a picture that represents the column depen-
dences in the matrix. This time, we’ll think of this as projecting the
vectors onto a free plane, so we use the same drawing procedure as
before, substituting “plane” for “line” in step 2:

Rank 3 matroid drawing procedure from a matrix

� As before, draw the column vectors – or, better yet, make a
three-dimensional model of the vectors using some nice model
building kit (or, if no such kit is available, use toothpicks and
gumdrops).

� Next, find a plane P that is “free” with respect to your set – that
means a plane that is not parallel to any of your vectors. See
Figure 1.5.

� Finally, extend or shrink each of your vectors (or their negatives)
until the extended or shrunken vector meets your plane P . These
points in the plane will be the picture of your column vector
dependences. See Figure 1.6. Congratulations!
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6 A tour of matroids

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(0, 0, 1)

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(0, 0, 1)

Figure 1.5. Projecting vectors in R3 onto the plane x + y + z = 1.
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(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(0, 0, 1)Figure 1.6. The matroid
corresponding to the column
vectors of the matrix B with the
two-point lines omitted.

One more important comment about the picture in Figure 1.6 – by
convention, we don’t draw line segments connecting two points if they
are the only two points on that line. For example, the points b and d form
a two-point line, but we don’t draw this line. The main reason for this is
that no one else draws these lines,10 but adding these lines would also
increase the clutter in the picture (see Figure 1.7). There are four two-
point lines in this matroid: {b, d}, {b, e}, {c, d} and {c, e}. Remember –
even though we haven’t drawn two-point lines, they’re still there.

Our drawing procedure amounts to a way of reducing dimension: in
our first example, the rank of the matrix A was 2, but the corresponding
picture – the four-point line – is a one-dimensional object. (Recall the
rank of a matrix is the dimension of its row space or its column space –
these two subspaces have the same dimension.) In the second example,
the matrix rank for B is 3, but our matroid dependence picture was

10 We know this sends a mixed message about peer pressure, but that’s life.
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1.2 Introduction to matroids 7

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(0, 0, 1) Figure 1.7. The matroid
corresponding to the
column vectors of the
matrix B, with two-point
lines drawn.

two-dimensional. So, in each case, we have “rank = dimension + 1” for
the matroid dependence pictures we will draw.

It’s now time for our first definition of a matroid11 – you’ll see several
equivalent definitions in Chapter 2.

Definition 1.3. Let E be a finite set and let I be a family of subsets of Matroid definition

E. Then the family I forms the independent sets of a matroid M if:

(I1) I �= ∅; Non-triviality

(I2) if J ∈ I and I ⊆ J , then I ∈ I; Closed under subsets

(I3) if I, J ∈ I with |I | < |J |, then there is some element x ∈ J − I Augmentation

with I ∪ {x} ∈ I.

The set E is called the ground set of the matroid. In our example, E Ground set

was a set of vectors, but in another important example, E will be the
edges of a graph. The rank of a matroid, which is written r(M), is just Rank

the size of the largest independent set. The matroid associated to the
matrix A in Example 1.1 has rank 2, and the matroid associated to B in
Example 1.2 has rank 3. Most of the examples in this chapter have rank 3.
Also, the matroid rank equals the matrix rank – that seems fortuitous. Matroid rank = matrix rank

Bet you didn’t see that one coming.
This definition was first formally stated by Whitney [42]. He noticed

that the independence properties (I1), (I2) and (I3) were enjoyed by
linearly independent subsets of a vector space, and he wanted to under-
stand how much (or how little) of the special features of vectors depend
on the field of coefficients (more precisely, how much of linear algebra
is independent of coordinates).

We’ll prove that finite sets of vectors are examples of matroids in The-
orem 6.1 in Chapter 6. In that chapter, we concentrate on the connections
between matroids and matrices.

Theorem 6.1. Let E be the columns of a matrix A with entries in
a field F, and let I be the collection of all subsets of E that are lin-
early independent. Then M = (E, I) is a matroid, that is I satisfies the Matrices give matroids

independent set axioms (I1), (I2) and (I3).

11 Your job: Read the definition and turn it into sentences you can understand.
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8 A tour of matroids

Definition 1.4. A matroid whose ground set E is a set of vectors is
called a representable matroid.Representable matroid

Not all matroids are representable, and we’ll study these matroids in
some detail in Chapter 6. For now, note that it is very easy to see why
properties (I1) and (I2) are satisfied by subsets of linearly independent
vectors. It’s a bit more work to check that (I3) always holds – this is
really a fact from linear algebra. We defer the proof of Theorem 6.1 to
Chapter 6.

Example 1.5. It helps to understand a definition by looking at examples
where it is not satisfied. As an easy example, suppose E = {a, b, c, d}A not-matroid

and you are given the following subsets: ∅, a, b, c, d, ab, cd . If you
don’t mind, for the sake of brevity, we will write ab instead of {a, b},
cd instead of {c, d}, and so on.12

Could these subsets be the independent sets of some matroid? (Pause
to think!) The answer is no. While the subsets satisfy (I1) and (I2), axiom
(I3) is violated: c and ab both independent requires either ac or bc to be
independent.

By the way, it’s possible to add some new sets to I and satisfy
(I3). Of course, we could simply add all subsets of E to I, but this is
overkill. You should check that adding the two subsets ad and bc to I
works.

Example 1.6. This time, let E = {e1, e2, . . . , en}. Let k ≤ n and define
I to be all subsets of E with k or fewer elements. (For example, the
matroid from Example 1.1 has this property for n = 4 and k = 2.) Then
I satisfies (I1), (I2) and (I3). This is called the uniform matroid, and it’sUniform matroids

denoted Uk,n. You will see it frequently in this text; see Exercise 4.

The matroid Un,n is called the Boolean algebra, and we denote it byBoolean algebra

Bn. Every subset is independent, and this clearly satisfies (I1), (I2) and
(I3).13

Before finishing this section, we give two more matrix examples. In
particular, given the column vectors of a matrix, could we skip all the
vector drawing and jump straight to the matroid picture somehow? Well,
could we?

The answer is yes, if we’re a tiny bit clever.14 We use the following
picture drawing rules to go directly from our matrix A to a matroid
picture:

12 You really have no choice here.
13 George Boole (1815–1864) was the most famous logician of his day. Boole’s

daughter Alicia Boole Stott made important contributions to higher-dimensional
geometry, for instance, proving there are precisely six regular solids in four
dimensions, and constructing physical models of them.

14 It’s even easier if we’re very clever.
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1.2 Introduction to matroids 9

b a cd

d c ba

Figure 1.8. Two different
labelings for the column
dependences of A.

� each column vector will be represented by a point.
� if three vectors u, v and w are linearly dependent, then the correspond-

ing three points will be collinear.

Only using these two rules frees us up a little. For instance, we can
now represent the column dependences of

A =
[ a b c d

1 0 1 1
0 1 1 2

]
with either of the pictures in Figure 1.8. There are plenty15 of other
labelings of the four-point line that work.

Here’s why the drawing procedure works in this example:

Three vectors are linearly dependent ⇔
the vectors are coplanar ⇔
the three corresponding points in our matroid picture are collinear.

This is easy to see for vectors in R2: two vectors in the plane are
linearly independent as long as they point in different (not opposite)
directions. But, if they point in different directions, then they meet our
free line in distinct points, so they’re independent in the matroid.

What if a pair of vectors is linearly dependent? Two dependent vectors
will result in a pair of “multiple points” in the matroid, i.e., a dependent
set of size 2. It is even possible for our matroid to have dependent
singletons. Both of these pathologies occur in the next example.

Example 1.7. Let C be the following matrix.

C =
⎡
⎣

a b c d e f g

1 0 1 −1 0 2 0
1 −1 0 0 1 0 0
0 1 1 2 2 −4 0

⎤
⎦.

Since C is a rank 3 matrix, we expect our matroid picture to be planar.
Two features of this matrix we have not seen before deserve some
attention.

� g, which corresponds to the zero vector, is a dependent set of size 1.
� The pair df is a dependent set of size 2.

15 4! We’re excited about this!
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10 A tour of matroids
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d
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f

g

Figure 1.9. A picture of the
matroid on the columns of C.

Other dependent sets should be more familiar. For instance, note that
columns a, b and c are linearly dependent:

(1, 1, 0) + (0,−1, 1) − (1, 0, 1) = (0, 0, 0).

From the linear dependences in the matrix, we get the following depen-
dence story in the matroid:

(1) g is a dependent set.
(2) df is a dependent set; all other pairs of points taken from the set

{a, b, c, d, e, f } are linearly independent.
(3) abc, ade and aef are dependent; all other triples of points taken

from the set {a, b, c, d, e, f } that don’t contain both d and f are
linearly independent.

(4) Any set of four or more points is dependent.

The picture in Figure 1.9 gives all of the dependence information that
the matrix did (if we interpret four or more coplanar points as a dependent
set). For example, the three points a, c and e correspond to a linearly
independent set of vectors (since the three points are not collinear).
Note the two three-point lines abc and ade correspond to the two linear
dependences 1 · a + 1 · b − 1 · c = 0 and 1 · a + 1 · d − 1 · e = 0. As
usual, we don’t draw two-point lines, like ce or the line through b and
the double point df .

How do we represent the double point df ? And what is going on
with that weird cloud-like object that seems to have swallowed g? Well,
we16 have a fundamental problem with trying to represent dependent
sets of size 1 or 2 geometrically. For multiple points, this problem isn’t
too serious; we simply overlap our big black disks suggestively.

For the dependent set of size 1, we have a more fundamental problem.
It’s not really possible to draw this as a point in any reasonable way, so
we indicate this by enclosing g in a cloud.17 By the way, a dependentLoop = dependent singleton

singleton is called a loop, and you’ll see loops throughout the text. They
are more important than you might guess at first glance.

16 Everyone, really – not just us.
17 Did you know Montana is Big Sky country?
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