Cooperative Cellular Wireless Networks

A self-contained guide to the state-of-the-art in cooperative communications and networking techniques for next-generation cellular wireless systems, this comprehensive book provides a succinct understanding of the theory, fundamentals, and techniques involved in achieving efficient cooperative wireless communications in cellular wireless networks.

It consolidates the essential information, addressing both theoretical and practical aspects of cooperative communications and networking in the context of cellular design. This one-stop resource covers the basics of cooperative communications techniques for cellular systems, advanced transceiver design, relay-based cellular networks, and game-theoretic and micro-economic models for protocol design in cooperative cellular wireless networks. Details of ongoing standardization activities are also included.

With contributions from experts in the field divided into five distinct sections, this easyto-follow book delivers the background needed to develop and implement cooperative mechanisms for cellular wireless networks.

Ekram Hossain is a Professor in the Department of Electrical and Computer Engineering at the University of Manitoba, Canada, where his current research interests lie in the design, analysis, and optimization of wireless/mobile communications networks. He serves as an Editor for *IEEE Transactions on Mobile Computing*, *IEEE Communications Surveys & Tutorials*, and *IEEE Wireless Communications*, and is an Area Editor for *IEEE Transactions on Wireless Communications*.

Dong In Kim is a Professor and SKKU Fellow in the School of Information and Communication Engineering at Sungkyunkwan University (SKKU), Korea, and Director of the Cooperative Wireless Communications Research Center. He is currently an Editor for *IEEE Transactions on Communications*, an Area Editor for *IEEE Transactions on Wireless Communications* and co-Editor-in-Chief for *Journal of Communications and Networks*.

Vijay K. Bhargava is a Professor in the Department of Electrical and Computer Engineering at the University of British Columbia, Canada. He has served on the Board of Governors of the IEEE Information Theory Society and the IEEE Communications Society and was President of the IEEE Information Theory Society. He is now the President-Elect of the IEEE Communications Society and will serve as its President during 2012 and 2013.

> "Edited by three of the most prominent experts in the field of cooperative communications, this is the defining book on this topic. It is a must have for any practicing researcher/engineer in this field."

> > Vahid Tarokh, Harvard University

"Cooperative communications has been one of the most active areas of research in the communications field over the past decade. This research effort has now produced a significant body of work in the area, and this book is a valuable resource for students or practitioners wanting to enter the field, or simply to understand the scope and implications of the research."

H. Vincent Poor, Princeton University

Cooperative Cellular Wireless Networks

Edited by EKRAM HOSSAIN University of Manitoba, Canada

DONG IN KIM Sungkyunkwan University, Korea

VIJAY K. BHARGAVA University of British Columbia, Canada

© in this web service Cambridge University Press

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521767125

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Cooperative cellular wireless networks / edited by Ekram Hossain, Dong In Kim, Vijay K. Bhargava.
p. cm.
Includes index.
ISBN 978-0-521-76712-5 (hardback)
1. Wireless communication systems.
2. Cell phone systems.
I. Hossain, Ekram, 1971–
II. Kim, Tong-in, 1958–
III. Bhargava, Vijay K., 1948–
IV. Title.
TK5103.2.C6625
2011
621.384 – dc22
2010048066

ISBN 978-0-521-76712-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For our families

Contents

	List	t of contributors	page xvi
	Pre_{j}	face	XX
Part I	Introd	luction	1
1	Net	work architectures and research issues in cooperative cellular	
	wire	eless networks	3
	Aria	Nosratinia and Ahmadreza Hedayat	
	1.1	Introduction	3
	1.2	Base station cooperation	4
		1.2.1 Downlink cooperation	4
		1.2.2 Uplink cooperation	6
	1.3		7
		1.3.1 IEEE 802.16j	7
		1.3.2 High-spectral-efficiency relay channels	8
	1.4	Mobile relays	10
	1.5	Conclusion	11
2	Coc	operative communications in OFDM and MIMO cellular relay	
	netv	works: issues and approaches	13
	Moh	nammad Moghaddari and Ekram Hossain	
	2.1	Introduction	13
	2.2	Cooperative relay networks	15
		2.2.1 Cooperative communication	15
		2.2.2 Relay channel	16
		2.2.3 Overview of relay protocols	17
		2.2.4 Strategies of relay-assisted transmission	18
	2.3	General system model of cellular relay networks	19
	2.4	General system model for virtual antenna arrays (VAAs)	20
	2.5	RRA in OFDMA-based relay systems: general form	21
	2.6	Dynamic RA RRA in OFDMA relay networks	23
		2.6.1 Centralized RA RRA schemes in single-cell OFDMA relay	τ
		networks	24

viii	Con	tents	
		2.6.2 Centralized RA RRA schemes in multicell OFDMA relay	
		networks	26
		2.6.3 Distributed RA RRA schemes in OFDMA relay networks	27
	2.7	2.6.4 RA RRA schemes with fairness in OFDMA relay networks Dynamic centralized margin adaptive RRA schemes in OFDMA	28
		relay networks	30
	2.8	MIMO communications systems	31
		2.8.1 RRA in MIMO relay networks	31
		2.8.2 Optimal design and power allocation in single-user	
		single-relay systems	32
		2.8.3 Optimal design and power allocation in single-relay	25
	2.0	multiuser systems	35 26
	2.9 2.10	RRA in MIMO multihop networks) Conclusion	$\frac{36}{38}$
	2.10	Conclusion	30
Part I	I Соор	erative base station techniques	45
3	Coo	operative base station techniques for cellular wireless networks	47
		owo Hardjawana, Branka Vucetic, and Yonghui Li	
	3.1	Introduction	47
		3.1.1 Related work	47
		3.1.2 Description of the proposed scheme	48
	2.0	3.1.3 Notation	49
	3.2	System model 3.2.1 Transmitter structure	49 40
		3.2.2 THP precoding structure	$49 \\ 51$
	3.3	Cooperative BS transmission optimization	53
	0.0	3.3.1 Iterative weight optimization (first step)	55
		3.3.2 Power allocation (second step)	57
	3.4	Modification of the design of \mathbf{R}	58
	3.5	Geometric mean decomposition	59
	3.6	Adaptive precoding order (APO)	60
	3.7	The complexity comparison of the proposed and other known	
		schemes	61
	3.8	Numerical results and discussions	63
		3.8.1 Convergence study	64
		3.8.2 Performance of the individual links	65
		3.8.3 Overall system performance	66
	3.9	Conclusion	70
		Appendix	72
4		bo base stations	77
		e Aktas, Defne Aktas, Stephen Hanly, and Jamie Evans	
	4.1	Introduction	77

		Contents	ix
	4.2	Review of message passing and belief propagation	81
		4.2.1 Factor graph review	82
		4.2.2 Factor graph examples	85
	4.3	Distributed decoding in the uplink: one-dimensional cellular model	88
		4.3.1 Hidden Markov model and the factor graph	89
		4.3.2 Gaussian symbols	91
	4.4	Distributed decoding in the uplink: two-dimensional cellular	
		array model	96
		4.4.1 The rectangular model	96
		4.4.2 Earlier methods not based on graphs	98
		4.4.3 State-based graph approach	98
		4.4.4 Decomposed graph approach	102
		4.4.5 Convergence issues: a Gaussian modeling approach	102
		4.4.6 Numerical results	107
		4.4.7 Ad-hoc methods utilizing turbo principle	109
		4.4.8 Hexagonal model	110
	4.5	Distributed transmission in the downlink	110
		4.5.1 Main results for the downlink of a single-cell network	110
		4.5.2 Main results for downlink of a multicellular network	114
		4.5.3 BS cooperation schemes with message passing	115
	4.6	Current trends and practical considerations	122
5	Ant	enna architectures for network MIMO	128
	Li-C	nun Wang and Chu-Jung Yeh	
	5.1	Introduction	128
	5.2	System model	130
	5.3	Network MIMO	132
		5.3.1 ZF network MIMO transmission	133
		5.3.2 ZF-DPC network MIMO transmission	133
	5.4	Effects of intergroup interference	134
		5.4.1 SINR analysis	134
		5.4.2 Example of IGI: network MIMO with omni-directional	
		cell planning	134
		5.4.3 Unbalanced signal quality caused by IGI	135
	5.5	Frequency-partition-based three-cell network MIMO	136
		5.5.1 Fractional frequency reuse (FFR)	136
		5.5.2 FFR-based network MIMO with regular frequency partition	138
		5.5.3 FFR-based network MIMO with rearranged frequency	
		partition	140
		5.5.4 Effect of frequency planning among coordinated cells	142
		5.5.5 Effect of cell planning with different sectorization	143
	5.6	Simulation setup numerical results	145
	5.7	Conclusion	147

Part I	II Rela	y-based cooperative cellular wireless networks	151
6	Dist	tributed space-time block codes	153
	Mat	thew C. Valenti and Daryl Reynolds	
	6.1	Introduction	153
	6.2	System model	155
	6.3	Space-time block codes (STBCs)	157
	6.4	DF distributed STBC	162
		6.4.1 Performance analysis	162
		6.4.2 Numerical results	165
	6.5	AF distributed STBC	168
		6.5.1 Performance analysis	169
		6.5.2 Practical distributed STBC for AF systems	170
	6.6	The synchronization problem	170
		6.6.1 Delay diversity	171
		6.6.2 Delay-tolerant space-time codes	171
		6.6.3 Space-time spreading (STS)	172
	6.7	Conclusion	173
7	Col	laborative relaying in downlink cellular systems	176
	Cha	ndrasekharan Raman, Gerard J. Foschini, Reinaldo A. Valenzuela,	
	Roy	D. Yates, and Narayan B. Mandayam	
	7.1		176
		7.1.1 Research challenges	176
		7.1.2 Related work	178
		7.1.3 Overview of contribution	179
	7.2	System model	180
	7.3	Collaborative relaying in cellular networks	184
	7.4	CPA with peak power transmissions (P-CPA)	186
		7.4.1 Principle of operation	186
		7.4.2 User discarding methodology	188
		7.4.3 Network operation and simulation aspects	190
		7.4.4 Simulation results	190
	7.5	Power-control-based collaborative relaying (PC-CPA)	192
		7.5.1 Principle of operation	192
		7.5.2 Optimization framework	194
		7.5.3 User discarding methodology	197
		7.5.4 Network operation and simulation aspects	198
		7.5.5 Simulation results	199
	7.6	Orthogonal relaying	199
		7.6.1 Network operation and simulation aspects	200
		7.6.2 User discarding method	201
		7.6.3 Simulation results	202
	7.7	Conclusion	202

8		o resource optimization in cooperative cellular wireless networks khanaad Mallick, Praveen Kaligineedi, Mohammad M. Rashid,	205	
	and Vijay K. Bhargava			
		Introduction	205	
	8.2	Networks with single source–destination pair	206	
		8.2.1 Three-node relay network	207	
		8.2.2 Dual-hop relay networks	213	
	8.3	Multiuser cooperation	220	
		8.3.1 System model	221	
		8.3.2 Centralized power allocation	222	
		8.3.3 Distributed power allocation	223	
	8.4	Relay selection	228	
	8.5	Conclusion	230	
9	Ada	ptive resource allocation in cooperative cellular networks	233	
	Wei `	Yu, Taesoo Kwon, and Changyong Shin		
	9.1	Introduction	233	
	9.2	System model	235	
		9.2.1 Orthogonal frequency-division multiplexing (OFDM)	235	
		9.2.2 Adaptive power, spectrum, and rate allocation	237	
		9.2.3 Cooperative networks	237	
	9.3	Network optimization	238	
		9.3.1 Single-user water-filling	238	
		9.3.2 Network utility maximization	240	
		9.3.3 Proportional fairness	241	
		9.3.4 Rate region maximization	242	
	9.4	Network with base station cooperation	244	
		9.4.1 Problem formulation	244	
		9.4.2 Joint scheduling and power allocation	245	
		9.4.3 Performance evaluation	248	
	9.5	Cooperative relay network	250	
		9.5.1 Problem formulation	251	
		9.5.2 Joint routing and power allocation	254	
		9.5.3 Performance evaluation	254	
	9.6	Conclusion	256	
10		s-layer scheduling design for cooperative wireless two-way		
	-	/ networks	259	
		ck Wing Kwan Ng and Robert Schober		
		Introduction	259	
	10.2	Cross-layer scheduling design – some basic concepts	263	
		10.2.1 Utility function-based cross-layer optimization	264	
		10.2.2 Quality-of-service (QoS) measure	266	
		10.2.3 Multiuser diversity gain	266	

Contents

xi

xii

Contents

	10.3 Network model for relay-assisted OFDMA system	270
	10.3.1 System model	270
	10.3.2 Channel model	271
	10.3.3 Channel state information (CSI)	273
	10.4 Cross-layer design for two-way relay-assisted OFDMA systems	274
	10.4.1 Instantaneous channel capacity and system goodput	274
	10.4.2 Cross-layer design problem	275
	10.5 Cross-layer optimization solution	276
	10.5.1 Transformation of the optimization problem	276
	10.5.2 Dual problem formulation	279
	10.5.3 Distributed solution – subproblem for each relay station	279
	10.5.4 Solution of the master problem at the BS	280
	10.6 Asymptotic performance analysis and computational complexity reduction scheme	281
	10.6.1 Asymptotic analysis of system goodput	281
	10.6.2 Scheme for reducing computational burden at each relay	283
	10.7 Results and discussions	283
	10.7.1 Convergence of the distributed resource allocation algorithm	284
	10.7.2 Average system goodput vs. transmit power and user mobility	284
	10.7.3 Asymptotic system goodput performance of PF scheduling	284
	10.8 Conclusion	289
	Appendix	290 292
11	Green communications in cellular networks with fixed relay nodes	300
	Peter Rost and Gerhard Fettweis	500
	11.1 Introduction	300
	11.1.1 Two motivating examples	300
	11.1.2 Scope and key problems	302
	11.1.3 Outline and contributions	303
	11.2 System model	303
	11.2.1 Propagation scenarios	303
	11.2.2 Air interface and scheduling	305
	11.3 System and protocol design	306
	11.3.1 Non-relaying protocols	307
	11.3.2 Relay-only protocol	307
	11.3.3 An integrated approach	308
	11.3.4 Simplifications	309
	11.4 Numerical analysis	309
	11.4.1 Simulation methodology	309
	11.4.2 Throughput performance in the wide-area scenario	310
	11.4.3 Throughput performance in the Manhattan-area scenario	312
	11.4.4 Femto-cells vs. relaying	313
	11.4.5 Computation-transmission-power tradeoff	315

	Contents	xiii
	11.4.6 Reduced backhaul requirements	316
	11.4.7 Cost–benefit tradeoff	317
	11.5 Conclusion	320
12	Network coding in relay-based networks	324
	Hong Xu and Baochun Li	
	12.1 Introduction	324
	12.2 Network coded cooperation	326
	12.2.1 Simple network coded cooperation	327
	12.2.2 Joint network and channel coding/decoding	331
	12.3 Physical-layer network coding	334
	12.4 Scheduling and resource allocation: cross-layer issues	337
	12.5 Conclusion	341
Part I	V Game theoretic models for cooperative cellular wireless	
	networks	345
13	Coalitional games for cooperative cellular wireless networks Walid Saad, Zhu Han, and Are Hjørungnes	347
	13.1 Introduction	347
	13.2 A brief introduction to coalitional game theory	348
	13.3 A coalition formation game model for distributed cooperation	350
	13.3.1 Motivation and basic problem	351
	13.3.2 Distributed virtual MIMO coalition formation game	355
	13.4 Coalitional graph game among relay stations	368
	13.4.1 Motivation and basic problem	368
	13.4.2 A network formation game among relay stations	369
	13.5 Conclusion	378
14	Modeling malicious behavior in cooperative cellular wireless	
14	Modeling malicious behavior in cooperative cellular wireless networks	382
14	C .	382
14	networks	382 382
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes	
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction	382
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction 14.2 Cooperating jammers	382 384
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction 14.2 Cooperating jammers 14.2.1 System model	382 384 385
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction 14.2 Cooperating jammers 14.2.1 System model 14.2.2 The game	382 384 385 386
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction 14.2 Cooperating jammers 14.2.1 System model 14.2.2 The game 14.2.3 Simulation results	382 384 385 386 393
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction 14.2 Cooperating jammers 14.2.1 System model 14.2.2 The game 14.2.3 Simulation results 14.3 Cooperating relays	382 384 385 386 393 398
14	networks Ninoslav Marina, Walid Saad, Zhu Han, and Are Hjørungnes 14.1 Introduction 14.2 Cooperating jammers 14.2.1 System model 14.2.2 The game 14.2.3 Simulation results 14.3 Cooperating relays 14.3.1 System model	382 384 385 386 393 398 399

xiv

Contents

	14.4.1 Coalition formation games for distributed eavesdroppers	
	cooperation	411
	14.4.2 Simulation results	416
	14.4.3 Conclusion	418
Part V	Standardization activities	423
15	Cooperative communications in 3GPP LTE-Advanced standard	425
	Hichan Moon, Bruno Clerckx, and Farooq Khan	
	15.1 Introduction	425
	15.2 LTE and LTE-Advanced	426
	15.2.1 Carrier aggregation	428
	15.2.2 Latency improvements	429
	15.2.3 DL multiantenna transmission	430
	15.2.4 UL multiantenna transmission	431
	15.3 Cooperative multipoint transmission	431
	15.3.1 Interference mitigation techniques in previous releases of LTE	432
	15.3.2 Overview of CoMP techniques	433
	15.3.3 Release 10 of LTE-Advanced	450
	15.4 Wireless relay	451
	15.4.1 Key technologies	452
	15.4.2 Standard trends on Release 10 and future works	454
	15.5 Heterogeneous network	454
	15.5.1 Key technologies	454
	15.5.2 Standard trends on Release 10 and future work	457
	15.6 Conclusion	457
16	Partial information relaying and relaying in 3GPP LTE	462
	Dong In Kim, Wan Choi, Hanbyul Seo, and Byoung-Hoon Kim	
	16.1 Introduction	462
	16.2 Partial information relaying with multiple antennas	463
	16.2.1 Per-antenna superposition coding (PASC)	465
	16.2.2 Multilayer superposition coding (MLSC)	466
	16.2.3 Rate matching for superposition coding	468
	16.2.4 Overall rate capacity	469
	16.2.5 Features of partial information relaying	470
	16.3 Analysis of PASC with zero-forcing decorrelation	470
	16.4 Multinode partial information relaying	474
	16.4.1 Two-stage superposition coding	475
	16.4.2 Successive decoding in cooperating phase	477
	16.4.3 Relay selection for maximum capacity	477
	16.5 Concluding remarks on partial information relaying	479
	16.6 Relaying in 3GPP LTE-Advanced	480

	Contents	XV
	16.6.1 Functionality of RNs	481
	16.6.2 Separation of the backhaul and access links	488
17	Coordinated multipoint transmission in LTE-Advanced	495
	Sung-Rae Cho, Wan Choi, Young-Jo Ko, and Jae-Young Ahn	
	17.1 Introduction	495
	17.2 CoMP architecture	496
	17.2.1 Joint processing and transmission (JPT)	497
	17.2.2 Coordinated scheduling and beamforming (CS/CB)	497
	17.2.3 Cell clustering	497
	17.2.4 Inter-eNodeB and intra-eNodeB coordination	499
	17.3 CoMP design parameters	499
	17.3.1 Reference signal (RS)	499
	17.3.2 Precoding	501
	17.3.3 Feedback	502
	17.4 CoMP performance evaluation methodologies	504
	17.4.1 Link level simulation	504
	17.4.2 System level simulation	506
	17.5 Conclusion	509
	Index	514

Contributors

Jae-Young Ahn Electronic Telecommunication and Research Institute (ETRI), Korea

Defne Aktas Bilkent University, Turkey

Emre Aktas Hacettepe University, Turkey

Vijay K. Bhargava The University of British Columbia, Canada

Sung-Rae Cho Korea Advanced Institute of Science and Technology (KAIST), Korea

Wan Choi Korea Advanced Institute of Science and Technology (KAIST), Korea

Bruno Clerckx Samsung Electronics, Korea

Jamie Evans University of Melbourne, Australia

Gerhard Fettweis Technische Universität Dresden, Germany

Gerard J. Foschini Bell Laboratories, USA

Zhu Han University of Houston, USA

CAMBRIDGE

Cambridge University Press 978-0-521-76712-5 - Cooperative Cellular Wireless Networks Edited by Ekram Hossain, Dong In Kim and Vijay K. Bhargava Frontmatter <u>More information</u>

List of contributors xvii

Stephen Hanly National University of Singapore, Singapore

Wibowo Hardjawana University of Sydney, Australia

Ahmadreza Hedayat CISCO Systems, USA

Are Hjørungnes UNIK – University of Oslo, Norway

Ekram Hossain University of Manitoba, Canada

Praveen Kaligineedi The University of British Columbia, Canada

Farooq Khan Samsung Electronics, Korea

Byoung-Hoon Kim LG Electronics, Inc., Korea

Dong In Kim Sungkyunkwan University (SKKU), Korea

Young-Jo Ko Electronic Telecommunication and Research Institute (ETRI), Korea

Taesoo Kwon Samsung Electronics, Korea

Baochun Li University of Toronto, Canada

Yonghui Li University of Sydney, Australia

Shankhanaad Mallick The University of British Columbia, Canada

Narayan B. Mandayam Rutgers University, USA

xviii List of contributors

Ninoslav Marina Princeton University, USA

Mohammad Moghaddari University of Manitoba, Canada

Hichan Moon Samsung Electronics, Korea

Derrick Wing Kwan Ng The University of British Columbia, Canada

Aria Nosratinia University of Texas at Dallas, USA

Chandrasekharan Raman Rutgers University, USA

Mohammad M. Rashid The University of British Columbia, Canada

Daryl Reynolds West Virginia University, USA

Walid Saad UNIK – University of Oslo, Norway

Robert Schober The University of British Columbia, Canada

Hanbyul Seo LG Electronics, Inc., Korea

Changyong Shin Samsung Electronics, Korea

Matthew C. Valenti West Virginia University, USA

Reinaldo A. Valenzuela Bell Laboratories, USA

Peter Rost NEC Euro Labs, Germany

CAMBRIDGE

Cambridge University Press 978-0-521-76712-5 - Cooperative Cellular Wireless Networks Edited by Ekram Hossain, Dong In Kim and Vijay K. Bhargava Frontmatter <u>More information</u>

List of contributors xix

Branka Vucetic University of Sydney, Australia

Li-Chun Wang National Chiao Tung University, Taiwan

Hong Xu University of Toronto, Canada

Roy D. Yates Rutgers University, USA

Chu-Jung Yeh National Chiao Tung University, Taiwan

Wei Yu University of Toronto, Canada

Preface

Cooperative communications and networking represent a new paradigm which uses both transmission and distributed processing to significantly increase the capacity in wireless communication networks. Current wireless networks face challenges in fulfilling users' ever-increasing expectations and needs. This is mainly due to the following reasons: lack of available radio spectrum, the unreliable wireless radio link, and the limited battery capacity of wireless devices. The evolving cooperative wireless networking paradigm can tackle these challenges. The basic idea of cooperative wireless networking is that wireless devices work together to achieve their individual goals or one common goal following a common strategy. Wireless devices share their resources (i.e., radio link, antenna, etc.) during cooperation using short-range communications. The advantages of cooperation are as follows: first, the communications capability, reliability, coverage, and quality-of-service (QoS) of wireless devices can be enhanced by cooperation; second, the cost of information exchange (i.e., transmission power, transmission time, spectrum, etc.) can be reduced. Cooperative communication and networking will be a key component in next generation wireless networks. In this book we particularly focus on cooperative transmission techniques in cellular wireless networks.

Although cellular wireless systems are regarded as a highly successful technology, their potential in throughput and network coverage has not been fully realized. Cooperative communication is a key technique to harness the potential throughput and coverage gains in these networks. Cooperation is possible among mobile stations (MSs) inside a cell as well as among base stations (BSs). In addition, specialized relay stations (RSs) can be installed in the network to facilitate cooperative communications. In addition to improving throughput and coverage, cooperative communication can improve the energy saving performance at the mobile devices, increase reliability in transmission, and decrease the overall interference in the network. However, successful deployment and operation of a cooperative cellular wireless network hinges on the development of advanced radio transmission and resource management techniques and optimization of these techniques considering the different network parameters. This has spurred a vibrant flurry of research on different aspects of cooperative communication during the last few years.

Preface xxi

With BS cooperation, neighboring cells can exchange information aiming at mitigating intercell interference by coordinating the multicell transmission to a mobile or reception from a mobile. In a relay-based cooperative cellular wireless network, an MS may communicate with a BS via potential relays, and similarly, a BS can send data to distant nodes through relays. The potential relays could be either preinstalled fixed RSs or relay-capable MSs. The RSs are much cheaper than conventional BSs because they have far fewer functionalities compared to BSs. If the relay is positioned suitably, it is possible to increase the data rate (especially at the cell boundaries) and the reliability of the system. Similar to multiantenna transceivers, relays provide diversity by creating multiple replicas of the signal of interest. By properly coordinating different spatially distributed nodes in the system, a virtual antenna array can be synthesized that emulates the operation of a multiantenna transceiver. With cooperation at all layers of the protocol stack, the network can achieve higher throughput, higher system reliability, higher energy efficiency, a lower bit-error rate, and a smaller packet loss rate. For cooperation at physical, medium access control (MAC), network, and application layers, various cooperative signaling methods are being widely explored and many new mechanisms are under development with respect to medium access, routing, location management, scheduling, energy management, etc.

This book provides a comprehensive treatment of the state-of-the-art of cooperative communications and networking techniques for cellular systems (e.g., Beyond 3G, Long-Term evolution systems). It consists of chapters covering different aspects of cooperative cellular wireless network design which include the following: architectures and protocols for cooperative cellular wireless networks; cooperative BS techniques (e.g., cooperative beamforming technique); radio resource management protocol design and network planning for relay-based cooperative cellular wireless systems (e.g., relaying strategies and protocols, resource allocation, energy management, network coding, and cross-layer issues); and the latest IEEE standardization activities pertaining to cooperative cellular wireless systems. The chapters are written by the distinguished researchers in these areas. This book is targeted at graduate students, or researchers working in the area of cellular wireless networks. It can also be used for self-study to become familiar with the state-of-the-art in cooperative communications for cellular wireless systems.

This book contains 17 chapters which have been organized into five parts. A brief account of each chapter in each of these parts is given next.

Part I: Introduction

In Chapter 1, Nosratinia and Hedayat outline the trends in research into cooperative cellular wireless networks, as well as some of the outstanding problems in this area. In particular, the issues related to BS cooperation (for both

xxii Preface

downlink and uplink transmission) and cooperation through dedicated wireless relays (fixed and mobile) are discussed from the physical layer perspective.

In Chapter 2, Moghaddari and Hossain focus on the resource allocation problem for cooperative communications in relay-based orthogonal frequency-division multiple access (OFDMA) and multiple-input multiple-output (MIMO) wireless networks. Starting with the basics of cooperative relay networks and strategies for relay-assisted transmission, a survey on the different approaches for radio resource allocation in OFDMA relay networks is provided. To this end, research issues on resource allocation in multihop MIMO relay networks and some related work in the literature are discussed.

Part II: Cooperative base station techniques

In Chapter 3, Hardjawana, Vucetic, and Li focus on BS cooperation for interference cancelation where each BS transmitter uses the transmitted signal information from other BS and channel state information to precode its own signal. A spectrally efficient cooperative downlink transmission scheme is designed by employing precoding and beamforming. The proposed scheme achieves fairness among different users in terms of symbol error rate.

In Chapter 4, Aktas *et al.* focus on an approach for implementing BS cooperation in a distributed manner via message passing in network MIMO systems. This approach is based on a graphical model (in particular, a factor graph) of the network MIMO communication processes. Both uplink and downlink transmissions are considered. As an example, a graph-based approach for distributed beamforming and power allocation is discussed.

In Chapter 5, Wang and Yeh discuss the antenna architectures for the network MIMO schemes based on BS cooperation in a multicellular system. One fundamental question when applying the network MIMO technique in such a high interference environment is: how many BSs should cooperate together to provide satisfactory signal-to-interference-plus-noise ratio (SINR) performance? Considering the interferences from the other cooperating groups, it is found that on top of the tri-sector directional antenna and fractional frequency reuse (FFR), the network MIMO based on the three-cell coordination strategy can outperform seven-cell-based network MIMO with omni-directional antenna. The authors also consider the effect of different cell sectorizations by using 120° and 60° beamwidths directional antennas.

Part III: Relay-based cooperative cellular wireless networks

In Chapter 6, Valenti and Reynolds focus on space-time block coding (STBC) strategies in a cooperative system to forward signals efficiently from multiple relays to the destination by exploiting the spatial diversity present in a multirelay network. Both decode-and-forward distributed STBC and

Preface xxiii

amplify-and-forward distributed STBC are considered for a two-phase transmission protocol in a network with one source node, one destination node, and a set of relay nodes. The end-to-end outage probability, coding gain, and achievable diversity as well as the optimal ratio of the power used in the two phases of transmission are analyzed for different space-time codes. Unlike conventional space-time codes, the distributed space-time codes have to deal with the synchronization problem at the destination receiver. Delay diversity, delay-tolerant distributed space-time codes, and space-time spreading are some effective methods of dealing with this problem.

In Chapter 7, Raman *et al.* present a simulation study of the downlink of a cellular system with relays in order to evaluate peak and average power savings for a given target common rate requirement for users. In particular, three schemes, namely, the collaborative power addition (CPA) scheme, the power control-based collaborative power addition (PC-CPA) scheme, and an orthogonal relaying scheme are simulated. In the CPA scheme, when a relay receives the complete message, it collaborates with the BS to transmit the complete message to the user using its peak power. In the PC-CPA scheme, power control is performed jointly at the BS and RS. In the orthogonal relaying scheme, the BSs and the RSs transmit in orthogonal time slots. The peak power savings (at the BSs) are rate gains (for the users) and are observed to be better with the PC-CPA scheme.

In Chapter 8, Mallick *et al.* study the radio resource (i.e., bandwidth, transmit power) allocation problem in relay-based cooperative cellular wireless networks. For the different relaying schemes (i.e., amplify-and-forward, decode-and-forward) in single- and multiuser network scenarios, different optimization models for resource allocation and their solution approaches are described. Also, the problem of relay selection for individual communication between source and destination nodes is discussed. The problem of joint optimization of resource allocation and relay selection is an open research issue.

In Chapter 9, Yu, Kwon, and Shin study the resource (i.e., power, spectrum, and rate) allocation problem for OFDMA-based cooperative cellular wireless networks. Two types of cooperative networks are considered: the multicell network with BS cooperation where multiple BS cooperatively allocate power to the different frequency subchannels, and networks with RSs. With a view to maximizing the sum of utilities of multiple uses in a multicell network, a network utility maximization (NUM) framework is used to solve the scheduling, and the power, frequency, and rate allocation problem. A key observation here is that, with OFDMA, the network utility maximization problem often decomposes into a tone-by-tone optimization problem, which is easier to solve.

In Chapter 10, Ng and Schober focus on the problem of cross-layer scheduling design for two-way half-duplex amplify-and-forward relay-assisted OFDMA cellular networks. Such a scheduling scheme has to satisfy the different data rate and outage probability requirements of different users. Starting with the basics of cross-layer scheduling design and the related implementation challenges, the

xxiv Preface

problem considered is formulated as a mixed combinatorial and non-convex optimization problem. In the problem formulation, the objective is to obtain the optimal power, rate, and subcarrier allocation policies while taking the imperfect channel state information (CSI) as well as heterogeneous QoS requirements of the users into account. The problem is then solved by dual decomposition. Also, a distributed iterative algorithm is designed to reduce the computational load at the relays.

In Chapter 11, Rost and Fettweis focus on the system-wide energy consumption in cooperative cellular networks. Two deployment scenarios are considered, namely, a macrocellular deployment and a microcellular deployment, both of which use OFDMA air interface for uplink/dowlink transmission in time-division duplex (TDD) mode. The system performance is simulated considering multicell MIMO transmission only (nonrelaying protocol), a relay only protocol, and an integrated approach (which supports both multicell MIMO and relaying). The achievable throughput performance, the energy saving potentials, and the deployment costs are compared. In addition, performance comparison is carried out between femto-cells and relaying.

In Chapter 12, Xu and Li study the potential application of network coding and the related issues in relay-based networks. Also, the idea of physical-layer network coding is discussed; this has the potential to improve the throughput performance of relay-based networks significantly. One key observation is that, since network coding is mostly applied at the lower layers of the protocol stack, the scheduling and resource allocation at the upper layers have to be codingaware. Such a cross-layer approach for network coded cooperation may reap the benefits of network coding, however, at the expense of increased complexity.

Part IV: Game theoretic models for cooperative cellular wireless networks

In Chapter 13, Saad, Han, and Hjørungnes explore the application of coalitional game theory to model the various aspects of cooperative behavior in cellular wireless networks. For example, cooperation among the BSs can be modeled by a class of coalitional games, known as coalition formation games, and thereby, algorithms can be derived which help in analyzing the groups of cooperating BSs that will emerge in a given network scenario. As another example, network formation games, a class of coalitional graph games, can be used to model the interactions among RSs. The key message is that coalitional game theory provides a rich framework to design efficient, fair, and robust models for resource allocation and sharing in cooperative cellular wireless networks.

In Chapter 14, Marina *et al.* use game theory to analyze the *secrecy capacity* in cooperative networks in the presence of malicious users (e.g., eavesdroppers). The secrecy capacity refers to the maximum reliable data rate at which a perfectly secret communication is possible between a sender and a receiver. Three

Preface

xxv

different communications scenarios are considered. In the first scenario, several friendly jammers help the source in transmitting data to a destination by jamming the eavesdropper. The interaction between the source and the friendly jammers is analyzed using a Stockholder type of game. In the second scenario, several relay nodes help the source by relaying the transmitted data in the presence of a malicious node, and this cooperation improves the secrecy capacity. In this cooperative system, the number and locations of the relay nodes determine the secrecy region, i.e., the geometric area in which the secrecy capacity is positive. In the last scenario, the eavesdroppers cooperate to improve their reception performance. A coalitional game-based model is proposed for forming cooperative groups among the eavesdroppers. This modeling will be useful to develop defense mechanisms against the eavesdroppers' cooperation.

Part V: Standardization activities

In Chapter 15, Moon, Clerckx, and Khan discuss the standard trends on cooperative communications in the Third Generation Partnership Project (3GPP) Long-Term Evolution Advanced (LTE-Advanced) system. In particular, an overview of the key technical features of LTE-Advanced Release 10 including carrier aggregation, cooperative multipoint transmission/reception (CoMP), extended multiantenna systems, and wireless relays is provided. Carrier aggregation provides wider transmission bandwidth and makes full use of the existing fractional spectrum bands. The other techniques provide higher cell spectrum efficiency, better coverage, and lower handover interruption time. CoMP transmission refers to a new class of intercell interference mitigation technique, which is also called multicell MIMO, collaborative MIMO (Co-MIMO), or network MIMO. The basic idea is to extend the conventional single-cell-to-multiple-user transmission to a multiple-cell-to-multiple-user transmission through BS cooperation.

In Chapter 16, Kim *et al.* develop methods for partial information relaying in multiantenna decode-and-forward relay networks. These methods use a twophase transmission strategy and exploit the asymmetric link conditions in cellular networks, where the source–relay link and the relay–destination link are relatively better than the source–destination link. With multiple antennas available at source, relay, and destination, multiple parallel data streams are transmitted which consist of basic data streams and superposition coded (SC) data streams. The relay forwards only the SC streams (i.e., partial information in the second hop). Two methods, namely, per-antenna superposition coding (PASC) and multilayer superposition coding (MLSC), are proposed for power allocation among basic and superposed layers, and across the spatial layers. It is observed that partial information relaying results in significant capacity gain over full information relaying. To this end, the authors summarize the issues, discussions, and current conclusions on relaying in the LTE-Advanced standard.

xxvi Preface

In Chapter 17, Cho *et al.* discuss the proposals and current conclusions on the CoMP technique in the 3GPP LTE-Advanced standard. Many companies and research groups are confident that CoMP systems are feasible in real systems and have put forth effort to find and evaluate what type of cooperation scheme should be standardized. The authors outline the issues discussed in the LTE-Advanced study group, for downlink CoMP, and present related simulation methodologies.