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1 Introduction and motivation to
detection and estimation

1.1 Introduction

The second half of the twentieth century experienced an explosive growth in information
technology, including data transmission, processing, and computation. This trend will
continue at an even faster pace in the twenty-first century. Radios and televisions started
in the 1920s and 1940s respectively, and involved transmission from a single transmit-
ter to multiple receivers using AM and FM modulations. Baseband analog telephony,
starting in the 1900s, was originally suited only for local area person-to-person commu-
nication. It became possible to have long-distance communication after using cascades
of regeneration repeaters based on digital PCM modulation. Various digital modulations
with and without coding, across microwave, satellite, and optical fiber links, allowed the
explosive transmissions of data around the world starting in the 1950s—1960s. The emer-
gence of Ethernet, local area net, and, finally, the World Wide Web in the 1980s—1990s
allowed almost unlimited communication from any computer to another computer. In
the first decade of the twenty-first century, by using wireless communication technology,
we have achieved cellular telephony and instant/personal data services for humans, and
ubiquitous data collection and transmission using ad hoc and sensor networks. By using
cable, optical fibers, and direct satellite communications, real-time on-demand wideband
data services in offices and homes are feasible.

Detection and estimation theories presented in this book constitute some of
the most basic statistical and optimization methodologies used in communication/
telecommunication, signal processing, and radar theory and systems. The purpose of
this book is to introduce these basic concepts and their applications to readers with only
basic junior/senior year linear system and probability knowledge. The modest proba-
bility prerequisites are summarized in Section 2.1. Other necessary random processes
needed to understand the material in the rest of this book are also presented succinctly
in Sections 2.2-2.4.

The author (KY) has taught a first-year detection and estimation graduate course at
UCLA for many years. Given the university’s location in southern California, our students
have very diverse backgrounds. There are students who have been working for some
years in various local aerospace, communications, and signal processing industries, and
may have already encountered in their work various concepts in detection and estimation.
They may already have quite good intuitions on many of the issues encountered in this
course and may be highly motivated to learn these concepts in greater depth. On the other
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2 Introduction and motivation to detection and estimation

hand, most students (domestic and foreign) in this course have just finished a BS degree
in engineering or applied science with little or no prior engineering experience and have
not encountered real-life practical information processing systems and technologies.
Many of these students may feel the topics covered in the course to be just some applied
statistical problems and have no understanding about why one would want to tackle such
problems.

The detection problem is one of deciding at the receiver which bit of information,
which for simplicity at this point can be assumed to be binary, having either a “one” or
a “zero,” was sent by the transmitter. In the absence of noise/disturbance, the decision
can be made with no error. However, in the presence of noise, we want to maximize
the probability of making a correct decision and minimize the probability of making
an incorrect decision. It turns out the solution of this statistical problem is based on
statistical hypothesis theory already formulated in statistics in the 1930s by Fisher [1]
and Neyman—Pearson [2]. However, it was only during World War 11, in the analysis and
design of optimum radar and sonar systems, that a statistical approach to these problems
was formulated by Woodward [3]. Of course, we also want to consider decisions for
multiple hypotheses under more general conditions.

The parameter estimation problem is one of determining the value of a parameter in
a communication system. For example, in a modern cellular telephony system, the base
station as well as a hand-held mobile phone need to estimate the power of the received
signal in order to control the power of the transmitted signal. Parameter estimation can be
performed using many methods. The simplest one is based on the mean-square estimation
criterion, which had its origin in the 1940s by Kolmogorov [4] and Wiener [5]. The related
least-square-error criterion estimation method was formulated by Gauss [6] and Laplace
[7] in the nineteenth century. Indeed, Galileo even formulated the least-absolute-error
criterion estimation in the seventeenth century [8]. All of these estimation methods
of Galileo, Gauss, and Laplace were motivated by practical astronomical tracking of
various heavenly bodies.

The purpose of this course is to teach some basic statistical and associated optimization
methods mainly directed toward the analysis, design, and implementation of modern
communication systems. In network jargon, the topics we encounter in this book all
belong to the physical layer problems. These methods are equally useful for the study of
modern control, system identification, signal/image/speech processing, radar systems,
mechanical systems, economic systems, and biological systems. In this course, we will
encounter the issue of the modeling of a system of interest. In simple problems, this
modeling may be sort of obvious. In complicated problems, the proper modeling of the
problem may be its most challenging aspect. Once a model has been formulated, then
we can consider the appropriate mathematical tools for the correct and computationally
efficient solution of the modeled problem. Often, among many possible solutions, we may
seek the theoretically optimized solution based on some analytically tractable criterion.
After obtaining this optimum solution, we may consider some solutions that are only
slightly sub-optimum but are practical from an engineering point of view (e.g., ease
of implementation; low cost of implementation; etc.). If there is not a known optimum
solution, how can we determine how good some ad hoc as well as practical solutions are?
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1.2 A simple binary decision problem 3

In Chapter 1, our purpose is to provide some very simple motivational examples
illustrating the concepts of: statistical decision of two possible hypotheses; correlation
receiver; relationship of the receiver’s detector signal-to-noise ratio (SNR) to the trans-
mitter power, and deterministic and statistical estimations. These examples will relate
various simply posed hypothetical problems and human-made and physical phenomena
to their possible solutions based on statistical methods. In turn, these methods are useful
for characterizing, modeling, analyzing, and designing various engineering problems
discussed in the rest of the book.

We will use the notation of denoting a deterministic scalar variable or parameter by
a lowercase letter such as z. A deterministic column vector of dimension M x 1 will
be denoted by a bold lowercase letter such as z. A scalar random variable (r.v.) will be
denoted by an uppercase letter like Z, while a vector random vector will be denoted by a
bold uppercase letter like Z. The realizations of the r.v. Z and the random vector Z, being
non-random (i.e., deterministic), will be denoted by their corresponding lowercase letters
of z and z respectively. We will use the abbreviation for the “left-hand side” by “Lh.s.”
and the “right-hand side” by “r.h.s” of an equation. We will also use the abbreviation of
“with respect to” by “w.r.t.”

At the end of each chapter, for each section, we provide some casual historical back-
ground information and references to other relevant journals and books. An asterisk
following the section title in a chapter indicates that section may be of interest only to
some serious readers. Materials in those sections will not be needed for following chap-
ters. Similarly, an asterisk following an example indicates these materials are provided
for the serious readers.

1.2 A simple binary decision problem

In the first motivational example, we consider a simple and intuitively obvious example
illustrating the concept of maximum-likelihood (ML) decision. It turns out the ML
criterion is the basis of many modern detection, decoding, and estimation procedures.
Consider two boxes denoted as Box 0 and Box 1. Each box contains ten objects colored
either red (R) or black (B). Suppose we know the “prior distributions” of the objects in
the two boxes as shown in (1.1) and in Fig. 1.1.

2 reds 8 reds
Box 0 { 8 blacks © D% {2 blacks ° (4.1)

Furthermore, we define the random variable (r.v.) X by

(1.2)

Y= —1, for a red object,
o 1, for a black object.

From these prior probabilities, the conditional probabilities py(x) = p(x|Box 0) and
p1(x) = p(x|Box 1) of the two boxes are described in Fig. 1.1. For an observed value
of x (taking either 1 or —1), these conditional probabilities are called “likelihood”
functions. Now, suppose we randomly (with equal probability) pick one object from one
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4 Introduction and motivation to detection and estimation

2 Reds 8 Reds
8 Blacks 2 Blacks
Box 0 Box 1

Figure 1.1 Known prior distributions of red and black objects in two boxes.

Po(x) pi(x)
0.8 0.8

0.2

-1 0 1 X -1 0 1 X

Figure 1.2 Conditional probabilities of po(x) and p;(x).

of the boxes (whose identity is not known to us) and obtain a red object with the r.v. X

taking the value of x = —1. Then by comparing the likelihood functions, we notice
p(x = —1/Box0) =0.2 < 0.8 = p(x = —1|Box 1). (1.3)
After having observed a red object with x = —1, we declare Box 1 as the “most likely”

box that the observed object was selected from. Thus, (1.3) illustrates the use of the ML
decision rule. By looking at Fig. 1.1, it is “intuitively obvious” if a selected object is
red, then statistically that object is more likely to come from Box 1 than from Box 0. A
reasonably alert ten-year-old child might have come to that decision. On the other hand,
if we observed a black object with x = 1, then by comparing their likelihood functions,
we have

p(x = 1|Box0) = 0.8 > 0.2 = p(x = 1|Box 1). (1.4)

Thus, in this case with x = 1, we declare Box 0 as the “most likely”” box that the observed
object was selected from, again using the ML decision rule. In either case, we can form
the likelihood ratio (LR) function

p1(x) [ > 1 = Declare Box 1,
po(x) | < 1 = Declare Box 0.

Then (1.3) and (1.4) are special cases of (1.5), where the LR function pi(x)/po(x) is
compared to the threshold constant of 1. Specifically, forx = —1, p;(x = —1)/po(x =
—1) > 1, we decide for Box 1. For x =1, pi(x = 1)/po(x = 1) < 1, we decide for

(1.5)
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1.2 A simple binary decision problem 5

Box 0. The decision procedure based on (1.5) is called the LR test. It turns out that we
will repeatedly use the concepts of ML and LR tests in detection theory in Chapter 3.
Even though the decision based on the ML criterion (or equivalently the LR test) for
the above binary decision problem is statistically reasonable, that does not mean the
decision can not result in errors. Consider the evaluation of the probability of a decision

error, given we have observed a red object with x = —1, is denoted by P.,—_; in (1.6a):
Pejx=—1 = Prob(Decision error|x = —1) (1.6a)

= Prob(Decide Box O|x = —1) (1.6b)

= Prob(Object came from Box O|x = —1) (1.6¢)

=2/10=1/5=0.2. (1.6d)

For an observed x = —1 the ML criterion makes the decision for Box 1. Thus, the
“Decision error” in (1.6a) is equivalent to “Decide Box 0 in (1.6b). But the “Object
came from Box 0 given x = —1” in (1.6c) means it is a red object from Box 0. The

probability of a red object from Box 0 has the relative frequency of 2 over 10, which
yields (1.6d). Similarly, the probability of a decision error, given we have observed a
black object with x = 1, is denoted by Pj=; in (1.7a):

Pe|x=1 = Prob(Decision error|x = 1) (1.7a)
= Prob(Decide Box 1|x = 1) (1.7b)
= Prob(Object came from Box 1|x = —1) (1.7¢)
=2/10=1/5=0.2. (1.7d)

Due to the symmetry of the number of red versus black objects in Box 0 with the number
of black versus red objects in Box 1, it is not surprising that Pojy——1 = Pejy=1.

Next, suppose we want the average probability of a decision error P.. Since the
total number of red objects equals the total number of black objects, then P(x = —1) =

P(x = 1) = 1/2 = 0.5. Thus,
P.= Pyye_y x 0.5+ Payey x 0.5=1/5=10.2. (1.8)

Equation (1.8) shows on the average the above ML decision rule results in an error 20%
of the time. However, suppose we are told there are a total of ten black objects and ten
red objects in both boxes, but are not given the prior probability information of (1.1) and
Fig. 1.1. Then we can not use the ML decision criterion and the LR test. Given there are
a total of ten black objects and ten red objects in both boxes, then regardless of whether
the observed object is red or black, we should declare either Box 0 or Box 1 half of the
time (by flipping a fair coin and deciding Box 0 if the coin shows a “Head” and Box 1
if the coin shows a “Tail”). In this random equi-probable decision rule, on the average
an error occurs 50% of the time. This shows that by knowing the additional conditional
probability information of (1.1) and using the ML decision criterion (or the LR test), we
can achieve on average a smaller probability of error. This simple example shows the
usefulness of statistical decision theory.
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6 Introduction and motivation to detection and estimation
So 5,
1L2L3 4I>T -1 L2L3 4L5
Figure 1.3 Two digital data vectors sy and s; of length five.

When the two boxes are originally chosen with equal probability in selecting an object,
we saw the simple intuitive solution and the LR test solution are identical. However, if
the two boxes are not chosen with equal probability, then after an observation the proper
decision of the box is less intuitively obvious. As will be shown again in Chapter 3, for
arbitrary probability distribution of the two boxes (i.e., hypotheses), the LR test can still
be used to perform a statistically optimum decision.

1.3 A simple correlation receiver

In the second motivational example, consider two known digital signal data of length
five denoted by the column vectors

so=[1, 2,3, -1, =217, sy =1, 1, =2, 2, =317 (1.9)

as shown in Fig. 1.3. Define the correlation of the s; vector with the s; vector by

5
sis; =Y si(k)s;(k), i, j =0, 1. (1.10)
k=1

Since s; is a 5 x 1 column vector, and siT is a 1 x 5 row vector, thus the correlation
of the s; vector with the s; vector, siT sj,isal x5 x5 x 1= one-dimensional scalar
number. In particular, if i = j, then with each component of s; having the unit of a
volt, siT s; = ||s;||> can be considered as the power of the s; vector summed over four
equally spaced time intervals. Thus, ||s;||?> represents the energy of the vector s;. By
direct evaluation, we show both vectors have the same energy of

lsoll> = 12 4+22 432+ (=1)* +(=2)* =19
=P+ 124+ (=2 + (=2 + (=3 = 1. (1.11)
However, the correlation of s; with sg by direct evaluation is given by
sTso = (1 x D)+ (1 x2)+ (=2 x 3) + (=2 x (=) + (=3 x (=2))
=1. (1.12)
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1.4 Importance of SNR and geometry of the signal vectors in detection theory 7

Furthermore, suppose the observed vector x is either sy or s;. That is, we have the model
relating the observed data vector x to the signal vectors s; given by

‘= { so, under hypothesis H,

1.1
s|, under hypothesis Hj, (1.13)

under the two hypotheses of H, and H;. A simple decision rule to determine which
vector or hypothesis is valid is to consider the correlation of s; with the observed vector
X given by

T { s{so =14 x=sy = Declare hypothesis Ho (1.14)

=8 X = .
v==5 s's; = 19 & x = s; = Declare hypothesis H;.

From (1.14), we note if the correlation value is low (i.e., 1), then we know the observed
x = s¢ (or hypothesis H is true), while if the correlation value is high (i.e., 19), then
the observed x = s; (or hypothesis H, is true). Of course, in practice, the more realistic
additive noise (AN) observation model replacing (1.13) may be generalized to

_ { so + N, under hypothesis Hy (1.15)

s; + N, under hypothesis Hj,

where N denotes the observation noise vector with some statistical properties. The
introduction of an AN model permits the modeling of realistic physical communication
or measurement channels with noises. Fortunately, an AN channel still allows the use of
many statistical methods for analysis and synthesis of the receiver.

As we will show in Chapter 2, if N is a white Gaussian noise vector, then for the
model of (1.15), the decision procedure based on the correlation method of (1.14)
is still optimum, except the threshold values of 1 under hypothesis Hy and 19 under
hypothesis H; need to be modified under different statistical criteria (with details to be
given in Chapter 3). We hope in the statistical analysis of complex systems, as the noise
approaches zero, the operations of the noise-free systems may give us some intuitive hint
on the optimum general solutions. The fact that the optimum binary receiver decision
rule of (1.14) based on the correlation of s; with the received vector x in the noise-free
model of (1.13) is still optimum for the white Gaussian AN model of (1.15) is both
interesting and satisfying.

14 Importance of SNR and geometry of the signal vectors
in detection theory

One of the most important measures of the “goodness” of a waveform, whether in the
analog domain (with continuous-time values and continuous-amplitude values), or in
the digital data domain (after sampling in time and quantization in amplitude) as used
in most communication, radar, and signal processing systems, is its signal-to-noise ratio
(SNR) value. In order to make this concept explicit, consider the correlation receiver of
Section 1.3 with the additive noise channel model of (1.15). In order to show quantitative
results with explicit SNR values, we also need to impose an explicit statistical property
on the noise vector N and also assume the two n x 1 signal column vectors sy and s; have
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8 Introduction and motivation to detection and estimation

equal energy |so||> = ||s1]|> = E. The simplest (and fortunately still quite justifiable)

assumption of the white Gaussian noise (WGN) property of N = [Ny, N, ..., N,]7
being a column vector of dimension # x 1 having zero mean and a covariance matrix of
o2 0 0
A=ENN"}= |9 .. o | =0, (1.16)
0 0 o?

where o is the variance of each noise component Ny along the diagonal of A, and
having zero values in its non-diagonal values. Then the SNR of the signal s or s; to the
noise N is defined as the ratio of the energy £ of sy or s; to the trace of A of (1.16)

defined by
trace(A) = ¥ Ay = no”. (1.17)
k=1
Thus,
E E
—. (1.18)

- trace(A) = no?

Due to its possible large dynamic range, SNR is often expressed in the logarithmic form
in units of dB defined by

SNR(dB) = 101og,,(SNR) = 101og,,(E /(nc>)). (1.19)

Now, consider the binary detection problem of Section 1.3, where the two 5 x 1 signal
column vectors sy and s; defined by (1.9) have equal energies of ||so||> = [|s;||> = E =
19, and the AN channel of (1.15) has a WGN vector N of zero mean and covariance
matrix given by (1.16). Thus, its SNR = 19/(552).

Denote the correlation of s; with X by I' = s X. Under the noise-free channel model
of (1.12), T = sTx = sTsy = 1 for hypothesis Hy and " = s”x = sI's; = 19 for hypoth-
esis Hj. But under the present AN channel of model (1.15), I' = s7X under the two
hypotheses yields two r.v.’s given by

r T { sT(so + N) { wo + sT'N, under hypothesis Hj
=8 X= =

= . , 1.20
slT(sl + N) w1+ slTN, under hypothesis H; ( )

where (o = 1 and pu; = 19. Denote the correlation of s; with N by [= SITN, which is

a Gaussian r.v. consisting of a sum of Gaussian r.v.’s of { Ny, ..., N,}. Since all the r.v.’s
of {Ny, ..., N,} have zero means, then [" has a zero mean. Then the variance of I" is
given by

o = E{(s{ N)(s{ N)"} = E{s{ NN''s;} = os]'s; = 190°. (1.21)

Using (1.20) and (1.21), we note I' = s7 X is a Gaussian r.v. of mean 1 and variance
1902 under hypothesis H,, while it is a Gaussian r.v. of mean 19 and also variance
1902 under hypothesis H;. The Gaussian pdfs of I" under the two hypotheses are plotted
in Fig. 1.4. Thus, for the additive white Gaussian noise (AWGN) channel, instead of
using the decision rule of (1.14) for the noise-free case, under the assumption that both
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1.4 Importance of SNR and geometry of the signal vectors in detection theory 9
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Figure 1.4 Plots of Gaussian pdfs under Hy of ;o = 1 and under H, of u; = 19.

hypotheses occur equi-probably and are of equal importance, then we should set the
decision threshold at 10, which is the average of 1 and 19. Thus, the new decision rule
is given by

(1.22)

rogxd < 10 = Declare hypothesis Hj
- > 10 = Declare hypothesis H;

From (1.20) and Fig. 1.4, under hypothesis Hy, the decision rule in (1.22) states if the
noise is such that s’ X = (1 + sT N) < 10, then there is no decision error. But if the noise
drives sTX = (1 4+ sTN) > 10, then the probability of an error is given by the area of
the solid Gaussian pdf curve under Hj to the right of the threshold value of 10.

Thus, the probability of an error under Hy, P g, is given by

00 1 7@ 00 1 2
P, :/ ——e ¥ d =/ ez dt
elth 10 ~2mor 101 N2

/oo 1 2 J oo 2 J
= e ? = e ? t
9 94/5SNR

7 Ve 2n

—-Q (((9/19)«@) Jﬁ) =Q (1.059@) . (1.23)

The second integral on the r.h.s. of (1.23) follows from the first integral by the change
of variable = (y — 1)/or, the third integral follows from the second integral by using
the variance o2 = 1902, the fourth integral follows from the third integral by using
SNR = 19/(502). Finally, the last expression of (1.23) follows from the definition of
a complementary Gaussian distribution function of the zero mean and unit variance
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Av. probability of error

10’ Il Il Il Il Il
8
SNR (dB)

Figure 1.5 Plot of the average probability of error P, vs. SNR(dB) for detection of sy and s; of
(1.9) in WGN.

Gaussian r.v. defined by

00 1 2
Q(x) =/ me 2 dt. (1.24)

By symmetry, under hypothesis H), the probability of an error is given by the area of
the dashed Gaussian pdf curve under H, to the left of the threshold value of 10. Thus,
the probability of an error under H, P g, , is given by

P /10 1 _<y—19)2d /“371“19 1 izd
— e 201 — e 2 t
el th —oo N 2mor v —o  A2m
=3 —9J/3SKR
/ LR / ’ U oFar
== e 2 = e ?
—00 LY 27T —00 \Y 27[
© 1 2
= eFdt = (1.059«/SNR) . 1.25
/9 s U Q (1.25)

If hypothesis Hy and hypothesis H; are equi-probable, then the average probability of
an error P, is given by

Pe=1/2 Poyy + 1/2 - Py, = Q (1.059«/SNR) . (1.26)

A plot of the average probability of error P, of (1.25) is given in Fig. 1.5. Since the
Q(-) function in (1.25) is a monotonically decreasing function, the average probability
of error decreases as SNR increases as seen in Fig. 1.5.
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