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Second quantization

1.1 Quantum mechanics of one particle

In quantum mechanics the physical state of a particle is described in terms of a ket |Ψ〉.
This ket belongs to a Hilbert space which is nothing but a vector space endowed with
an inner product. The dimension of the Hilbert space is essentially fixed by our physical
intuition; it is we who decide which kets are relevant for the description of the particle. For
instance, if we want to describe how a laser works we can choose those energy eigenkets
that get populated and depopulated and discard the rest. This selection of states leads to
the well-known description of a laser in terms of a three-level system, four-level system, etc.
A fundamental property following from the vector nature of the Hilbert space is that any
linear superposition of kets is another ket in the Hilbert space. In other words we can make
a linear superposition of physical states and the result is another physical state. In quantum
mechanics, however, it is only the “direction” of the ket that matters, so |Ψ〉 and C|Ψ〉
represent the same physical state for all complex numbers C . This redundancy prompts us
to work with normalized kets. What do we mean by that? We said before that there is an
inner product in the Hilbert space. Let us denote by 〈Φ|Ψ〉 = 〈Ψ|Φ〉∗ the inner product
between two kets |Ψ〉 and |Φ〉 of the Hilbert space. Then every ket has a real positive inner
product with itself

0 < 〈Ψ|Ψ〉 <∞.
A ket is said to be normalized if the inner product with itself is 1. Throughout this book we
always assume that a ket is normalized unless otherwise stated. Every ket can be normalized
by choosing the complex constant C = eiα/

√

〈Ψ|Ψ〉 with α an arbitrary real number. Thus,
the normalization fixes the ket of a physical state only modulo a phase factor. As we see
in Section 1.3, this freedom is at the basis of a fundamental property about the nature of
elementary particles. The notion of inner product also allows us to define the dual space
as the vector space of linear operators 〈Φ| which deliver the complex number 〈Φ|Ψ〉 when
acting on the ket |Ψ〉. The elements of the dual space are called bra and we can think of
the inner product as the action of a bra on a ket. The formulation of quantum mechanics
in terms of bras and kets is due to Dirac [1, 2] and turns out to be extremely useful.

According to the basic principles of quantum mechanics [2]:

• With every physical observable is associated a Hermitian operator whose eigenvalues
λ represent the outcome of an experimental measurement of the observable.
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2 1. Second quantization

Figure 1.1 Histogram of the normalized number of clicks of the detector in xn = n∆. The
height of the function corresponds to the probability |Ψn|2.

• If the particle is described by the ket |Ψ〉 then the probability of measuring λ is given
by

P (λ) = |〈λ|Ψ〉|2,
where |λ〉 is the eigenket of the operator with eigenvalue λ.

• The experimental measurement is so invasive that just after measurement the particle
collapses in the ket |λ〉.

Let us discuss the implications of these principles with an example. Suppose that we want to
measure the position of a particle living in a one-dimensional world. Then we can construct
a detector with the property that it clicks whenever the particle is no further away than,
say, ∆/2 from the position of the detector. We distribute these detectors on a uniform grid
xn = n∆, with n integers, so as to cover the entire one-dimensional world. The experiment
consists in preparing the particle in a state |Ψ〉 and in taking note of which detector clicks.
After the click we know for sure that the particle is in the interval xn ±∆/2, where xn is
the position of the detector that clicked. Repeating the experiment N ≫ 1 times, counting
the number of times that a given detector clicks and dividing the result by N we obtain the
probability that the particle is in the interval xn ±∆/2, see histogram of Fig. 1.1. Quantum
mechanics tells us that this probability is

P (n) = |〈n|Ψ〉|2,

where |n〉 is the ket describing the particle in the interval xn ± ∆/2. The experimental
setup does not allow us to say where exactly the particle is within this interval. In fact, it
does not make sense to speak about the exact position of the particle since it cannot be
measured. From the experimental output we could even argue that the one-dimensional
world is discrete! What we want to say is that in our experiment the “exact position” of the
particle is a mere speculative concept, like the gender, color or happiness of the particle.
These degrees of freedom may also exist but if they cannot be measured then we should
not include them in the description of the physical world. As scientists we can only assign
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1.1. Quantum mechanics of one particle 3

a ket |n〉 to the state of the particle just after measurement, and we can interpret this ket
as describing the particle in some discrete position. The probability of finding the particle
in |n′〉 just after the nth detector has clicked is zero for all n′ 6= n and unity for n′ = n,
and hence

〈n′|n〉 = δn′n. (1.1)

The kets |n〉 are orthonormal and it is easy to show that they form a basis of our Hilbert
space. Suppose by reductio ad absurdum that there exists another ket |χ〉 orthogonal
to all the |n〉. If the particle is described by this ket then the probability that the nth
detector clicks is |〈n|χ〉|2 = 0 for all n. This cannot be unless the particle is some-
where else outside the one-dimensional world, i.e., in a state not included in our original
description.

Let us continue to elaborate on the example of the particle in a one-dimensional world.
We said before that the kets |n〉 form a basis. Therefore any ket |Ψ〉 can be expanded in
terms of them

|Ψ〉 =
∑

n

Ψn|n〉. (1.2)

Since the basis is orthonormal the coe�cient Ψn is simply

Ψn = 〈n|Ψ〉, (1.3)

and its square modulus is exactly the probability P (n)

|Ψn|2 =

(
probability of finding the particle in

volume element ∆ around xn

)

.

It is important to appreciate the advantage of working with normalized kets. Since
〈Ψ|Ψ〉 = 1 then

∑

n

|Ψn|2 = 1, (1.4)

according to which the probability of finding the particle anywhere is unity. The interpreta-
tion of the |Ψn|2 as probabilities would not be possible if |Ψ〉 and |n〉 were not normalized.

Given an orthonormal basis the inner product of a normalized ket |Ψ〉 with a basis
ket gives the probability amplitude of having the particle in that ket.

Inserting (1.3) back into (1.2) we find the interesting relation

|Ψ〉 =
∑

n

〈n|Ψ〉 |n〉 =
∑

n

|n〉〈n|Ψ〉.

This relation is interesting because it is true for all |Ψ〉 and hence

∑

n

|n〉〈n| = 1̂, (1.5)
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4 1. Second quantization

with 1̂ the identity operator. Equation (1.5) is known as the completeness relation and
expresses the fact that the set {|n〉} is an orthonormal basis. Vice versa, any orthonormal
basis satisfies the completeness relation.

We now assume that we can construct more and more precise detectors and hence
reduce the range ∆. Then we can also refine the description of our particle by putting the
detectors closer and closer. In the limit ∆ → 0 the probability |Ψn|2 approaches zero and
it makes more sense to reason in terms of the probability density |Ψn|2/∆ of finding the
particle in xn. Let us rewrite (1.2) as

|Ψ〉 = ∆
∑

n

Ψn√
∆

|n〉√
∆
. (1.6)

We now define the continuous function Ψ(xn) and the continuous ket |xn〉 as

Ψ(xn) ≡ lim
∆→0

Ψn√
∆
, |xn〉 = lim

∆→0

|n〉√
∆
.

In this definition the limiting function Ψ(xn) is well defined while the limiting ket |xn〉 makes
mathematical sense only under an integral sign since the norm 〈xn|xn〉 = ∞. However,
we can still give to |xn〉 a precise physical meaning since in quantum mechanics only the
“direction” of a ket matters.1 With these definitions (1.6) can be seen as the Riemann sum of
Ψ(xn)|xn〉. In the limit ∆→ 0 the sum becomes an integral over x and we can write

|Ψ〉 =
∫

dx Ψ(x)|x〉.

The function Ψ(x) is usually called the wavefunction or the probability amplitude and its
square modulus |Ψ(x)|2 is the probability density of finding the particle in x, or equivalently

|Ψ(x)|2 dx =

(
probability of finding the particle

in volume element dx around x

)

.

In the continuum formulation the orthonormality relation (1.1) becomes

〈xn′ |xn〉 = lim
∆→0

δn′n

∆
= δ(xn′ − xn),

where δ(x) is the Dirac δ-function, see Appendix A. Similarly the completeness relation
becomes ∫

dx |x〉〈x| = 1̂.

The entire discussion can now easily be generalized to particles with spin in three (or
any other) dimensions. Let us denote by x = (rσ) the collective index for the position r and

1The formulation of quantum mechanics using non-normalizable states requires the extension of Hilbert spaces
to rigged Hilbert spaces. Readers interested in the mathematical foundations of this extension can consult, e.g.,
Ref. [3]. Here we simply note that in a rigged Hilbert space everything works just as in the more familiar Hilbert
space. We simply have to keep in mind that every divergent quantity comes from some continuous limit and that
in all physical quantities the divergency is cancelled by an infinitesimally small quantity.
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1.1. Quantum mechanics of one particle 5

the spin projection (say along the z axis) σ of the particle. If in every point of space we put
a spin-polarized detector which clicks only if the particle has spin σ then |x〉 is the state
of the particle just after the spin-polarized detector in r has clicked. The position-spin kets
|x〉 are orthonormal

〈x′|x〉 = δσ′σδ(r
′ − r) ≡ δ(x′ − x), (1.7)

and form a basis. Hence they satisfy the completeness relation which in this case reads

∫

dx |x〉〈x| = 1̂ (1.8)

Here and in the remainder of the book we use the symbol
∫

dx ≡
∑

σ

∫

dr

to signify a sum over spin and an integral over space. The expansion of a ket in this
continuous Hilbert space follows directly from the completeness relation

|Ψ〉 = 1̂|Ψ〉 =
∫

dx |x〉〈x|Ψ〉,

and the square modulus of the wavefunction Ψ(x) ≡ 〈x|Ψ〉 is the probability density of
finding the particle in x = (rσ),

|Ψ(x)|2 dr =

(
probability of finding the particle with spin σ

in volume element dr around r

)

.

So far we have only discussed the possible states of the particle and the physical
interpretation of the expansion coe�cients. To say something about the dynamics of the
particle we must know the Hamiltonian operator ĥ. A knowledge of the Hamiltonian in
quantum mechanics is analogous to a knowledge of the forces in Newtonian mechanics. In
Newtonian mechanics the dynamics of the particle is completely determined by the position
and velocity at a certain time and by the forces. In quantum mechanics the dynamics of
the wavefunction is completely determined by the wavefunction at a certain time and by ĥ.
The Hamiltonian operator ĥ ≡ h(r̂, p̂, Ŝ) will, in general, depend on the position operator

r̂, the momentum operator p̂ and the spin operator Ŝ . An example is the Hamiltonian for a
particle of mass m, charge q, and gyromagnetic ratio g moving in an external scalar potential
V , vector potential A and whose spin is coupled to the magnetic field B = ∇×A,

ĥ =
1

2m

(

p̂− q

c
A(r̂)

)2

+ qV (r̂)− gµBB(r̂) · Ŝ, (1.9)

with c the speed of light and µB the Bohr magneton. Unless otherwise stated, in this book
we use atomic units so that ~ = 1, c ∼ 1/137, the electron charge e = −1 and the
electron mass me = 1. Thus in (1.9) the Bohr magneton µB = e~

2mec
∼ 3.649 × 10−3, and

the charge and mass of the particles are measured in units of e and me respectively. To
distinguish operators from scalar or matrix quantities we always put the symbol “ ˆ ” (read
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6 1. Second quantization

“hat”) on them. The position–spin kets are eigenstates of the position operator and of the
z-component of the spin operator

r̂|x〉 = r|x〉, Ŝz|x〉 = σ|x〉,
with σ = −S,−S +1, . . . , S − 1, S for spin S particles. The eigenstates of the momentum
operator are instead the momentum–spin kets |pσ〉

p̂|pσ〉 = p|pσ〉.
These kets are also eigenstates of Ŝz with eigenvalue σ. The momentum–spin kets form
an orthonormal basis like the position–spin kets. The inner product between |x〉 = |rσ〉
and |pσ′〉 is proportional to δσσ′ times the plane wave eip·r. In this book we choose the
constant of proportionality to be unity so that

〈x|pσ′〉 = δσσ′〈r|p〉 with 〈r|p〉 = eip·r (1.10)

This inner product fixes uniquely the form of the completeness relation for the kets |pσ〉.
We have

〈p′σ′|pσ〉 = δσ′σ〈p′|p〉 = δσ′σ

∫

dr 〈p′|r〉〈r|p〉 = δσ′σ

∫

dr ei(p−p
′)·r

= (2π)3δσ′σδ(p
′ − p),

and therefore
∑

σ

∫
dp

(2π)3
|pσ〉〈pσ| = 1̂ (1.11)

as can easily be verified by acting with (1.11) on the ket |p′σ′〉 or on the bra 〈p′σ′|.
Before moving to the quantum mechanical description of many particles let us briefly

recall how to calculate the matrix elements of the Hamiltonian ĥ in the position–spin basis.
If |Ψ〉 is the ket of the particle then

〈x|p̂|Ψ〉 = −i∇〈x|Ψ〉 ⇒ 〈Ψ|p̂|x〉 = i〈Ψ|x〉←−∇,

where the arrow over the gradient specifies that ∇ acts on the quantity to its left. It follows
from these identities that

〈x|p̂|x′〉 = −iδσσ′∇δ(r− r′) = iδσσ′δ(r− r′)
←−
∇
′, (1.12)

where ∇
′ means that the gradient acts on the primed variable. Therefore, the matrix

element 〈x|ĥ|x′〉 with ĥ = h(r̂, p̂, Ŝ) can be written as

〈x|ĥ|x′〉 = hσσ′(r,−i∇,S)δ(r− r′) = δ(r− r′)hσσ′(r′, i
←−
∇
′,S) (1.13)

where S is the matrix of the spin operator with elements 〈σ|Ŝ|σ′〉 = Sσσ′ . For example,
for the one-particle Hamiltonian in (1.9) we have

hσσ′(r,−i∇,S) =
δσσ′

2m

(

−i∇− q

c
A(r)

)2

+ δσσ′qV (r)− gµBB(r) · Sσσ′ .

We use (1.13) over and over in the following chapters to recognize the matrix structure of
several equations.
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1.2. Quantum mechanics of many particles 7

Figure 1.2 Histogram of the normalized number of simultaneous clicks of the electron and
positron detectors in xn = n∆ and xm = m∆ respectively. The height of the function
corresponds to the probability |Ψnm|2.

1.2 Quantum mechanics of many particles

We want to generalize the concepts of the previous section to many particles. Let us first
discuss the case of distinguishable particles. Particles are called distinguishable if they di�er
in one or more of their properties, like mass, charge, spin, etc. Let us consider, for instance,
an electron and a positron in one dimension. These particles are distinguishable since the
charge of the positron is opposite to the charge of the electron. To measure the position of
the electron and the position of the positron at a certain time we put an electron-detector
and a positron-detector in every point xn = n∆ of the real axis and perform a coincidence
experiment. This means that we take note of the position of the electron-detector and of the
positron-detector only if they click at the same time. The result of the experiment is the pair
of points (xn, xm) where the first entry xn refers to the electron whereas the second entry
xm refers to the positron. Performing the experiment N ≫ 1 times, counting the number
of times that the pair (xn, xm) is measured and dividing the result by N we obtain the
probability that the electron is in xn and the positron in xm, see the histogram of Fig. 1.2.
According to quantum mechanics the electron–positron pair collapses in the ket |n〉|m〉 just
after measurement. This ket describes an electron in the interval xn ±∆/2 and a positron
in the interval xm ±∆/2. Therefore the probability of finding the electron–positron pair in
|n′〉|m′〉 is zero unless n′ = n and m′ = m, i.e.

( 〈n′|〈m′| ) ( |n〉|m〉 ) = δn′nδm′m.

The kets |n〉|m〉 are orthonormal and form a basis since if there was a ket |χ〉 orthogonal
to all of them then the electron–positron pair described by |χ〉 would not be on the real
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8 1. Second quantization

axis. The orthonormality of the basis is expressed by the completeness relation

∑

nm

( |n〉|m〉 ) ( 〈n|〈m| ) = 1̂.

This relation can be used to expand any ket as

|Ψ〉 = 1̂|Ψ〉 =
∑

nm

( |n〉|m〉 ) ( 〈n|〈m| ) |Ψ〉,

and if |Ψ〉 is normalized then the square modulus of the coe�cients Ψnm ≡ ( 〈n|〈m| ) |Ψ〉
is the probability represented in the histogram.

As in the previous section, we could refine the experiment by putting the detectors closer
and closer. We could also rethink the entire experiment in three (or any other) dimensions
and use spin-polarized detectors. We then arrive at the position–spin kets |x1〉|x2〉 for the
electron–positron pair with inner product

( 〈x′1|〈x′2| ) ( |x1〉|x2〉 ) = δ(x′1 − x1)δ(x
′
2 − x2),

from which we deduce the completeness relation
∫

dx1dx2 ( |x1〉|x2〉 ) ( 〈x1|〈x2| ) = 1̂.

The expansion of a generic ket is

|Ψ〉 =
∫

dx1dx2 ( |x1〉|x2〉 ) ( 〈x1|〈x2| ) |Ψ〉,

and if |Ψ〉 is normalized then the square modulus of the wavefunction Ψ(x1,x2) ≡
( 〈x1|〈x2| ) |Ψ〉 yields the probability density of finding the electron in x1 = (r1σ1)
and the positron in x2 = (r2σ2):

|Ψ(x1,x2)|2 dr1dr2 =





probability of finding the electron with spin σ1
in volume element dr1 around r1 and the positron

with spin σ2 in volume element dr2 around r2



.

The generalization to N distinguishable particles is now straightforward. The position–
spin ket |x1〉 . . . |xN 〉 describes the physical state in which the first particle is in x1, the
second particle is in |x2〉 etc. These kets form an orthonormal basis with inner product

( 〈x′1| . . . 〈x′N | ) ( |x1〉 . . . |xN 〉 ) = δ(x′1 − x1) . . . δ(x
′
N − xN ), (1.14)

and therefore the completeness relation reads
∫

dx1 . . . dxN ( |x1〉 . . . |xN 〉 ) ( 〈x1| . . . 〈xN | ) = 1̂.

Having discussed the Hilbert space for N distinguishable particles we now consider the
operators acting on the N -particle kets. We start with an example and consider again the
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1.2. Quantum mechanics of many particles 9

electron–positron pair. Suppose that we are interested in measuring the center-of-mass
position of the pair. The center-of-mass position is an observable quantity and hence,
associated with it, there exists an operator R̂CM. By definition the eigenstates of this
operator are the position–spin kets |x1〉|x2〉 and the corresponding eigenvalues are (r1 +

r2)/2, independent of the spin of the particles. The operator R̂CM is then the sum of the
position operator acting on the first particle and doing nothing to the second particle and
the position operator acting on the second particle and doing nothing to the first particle,
i.e.,

R̂CM =
1

2

(
r̂ ⊗ 1̂ + 1̂ ⊗ r̂

)
. (1.15)

The symbol “⊗” denotes the tensor product of operators acting on di�erent particles. For
instance

R̂CM|x1〉|x2〉 =
1

2

(
r̂|x1〉1̂|x2〉+ 1̂|x1〉r̂|x2〉

)
=

1

2
(r1 + r2)|x1〉|x2〉.

The generalization of the center-of-mass operator to N particles is rather voluminous,

R̂CM =
1

N



r̂ ⊗ 1̂ ⊗ . . .⊗ 1̂
︸ ︷︷ ︸

N−1 times

+ 1̂ ⊗ r̂ ⊗ . . .⊗ 1̂
︸ ︷︷ ︸

N−2 times

+ . . .+ 1̂ ⊗ 1̂ ⊗ . . .
︸ ︷︷ ︸

N−1 times

⊗ r̂



, (1.16)

and it is typically shortened as

R̂CM =
1

N

N∑

j=1

r̂j ,

where r̂j is the position operator acting on the jth particle and doing nothing to the other
particles. Similarly the noninteracting part of the Hamiltonian of N particles is typically
written as

Ĥ0 =

N∑

j=1

ĥj =

N∑

j=1

h(r̂j , p̂j , Ŝj), (1.17)

while the interaction part is written as

Ĥint =
1

2

N∑

i6=j

v(r̂i, r̂j), (1.18)

with v(r1, r2) the interparticle interaction. We observe that these operators depend explicitly
on the number of particles and are therefore di�cult to manipulate in problems where the
number of particles can fluctuate, as in systems at finite temperature. As we see later in
this chapter, another disadvantage is that the evaluation of their action on kets describing
identical particles is very lengthy. Fortunately, an incredible simplification occurs for identical
particles and the expressions for operators and kets become much lighter and easier to
manipulate. To appreciate this simplification, however, we first have to understand how the
quantum-mechanical formulation changes when the particles are identical.
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10 1. Second quantization

1.3 Quantum mechanics of many identical

particles

Two particles are called identical particles or indistinguishable particles if they have the
same internal properties, i.e., the same mass, charge, spin etc. For example two electrons
are two identical particles. To understand the qualitative di�erence between distinguishable
and identical particles let us perform the coincidence experiment of the previous section
for two electrons both with spin projection 1/2 and again in one dimension. At every point
xn = n∆ we put a spin-polarized electron-detector, and since the particles are identical we
need only one kind of detector. If the detectors in xn and xm click at the same time then
we can be sure that just after this time there is one electron around xn and another electron
around xm. Let us denote by |nm〉 the ket describing the physical state in which the two
electrons collapse after measurement.2 As the electrons are identical the natural question to
ask is: do the kets |nm〉 and |mn〉 correspond to two di�erent physical states? If the answer
were positive then we should be able to hear a di�erence in the clicks corresponding to
|nm〉 and |mn〉. For example in the case of the electron–positron pair we could make the
positron-click louder than the electron-click and hence distinguish the state |n〉|m〉 from
the state |m〉|n〉. However, in this case we only have electron-detectors and it is impossible
to distinguish which electron has made a given detector click. We therefore must assign to
|mn〉 the same physical state as to |nm〉. We would like to emphasize that the kets |nm〉
are not given by nature. It is we who decide to represent nature in terms of them. For our
representation of nature to make sense we must impose that |nm〉 and |mn〉 correspond
to the same physical state. In Section 1.1 we observed that the normalized ket of a physical
state is uniquely defined up to a phase factor and hence

|nm〉 = eiα|mn〉 for all n, m.

Using the above relation twice we find that e2iα = 1, or equivalently eiα = ±1. Consequently
the ket

|nm〉 = ±|mn〉 (1.19)

is either symmetric or antisymmetric under the interchange of the electron positions. This is
a fundamental property of nature: all particles can be grouped in two main classes. Particles
described by a symmetric ket are called bosons while those described by an antisymmetric
ket are called fermions. The electrons of our example are fermions. Here and in the rest of
the book the upper sign always refers to bosons whereas the lower sign refers to fermions.
In the case of fermions (1.19) implies |nn〉 = −|nn〉 and hence |nn〉 must be the null ket
|∅〉, i.e., it is not possible to create two fermions in the same position and with the same
spin. This peculiarity of fermions is known as the Pauli exclusion principle.

If we now repeat the coincidence experiment N ≫ 1 times, count the number of times
that the detectors click simultaneously in xn and xm and divide the result by N we can
draw the histograms of Fig. 1.3 for bosons and fermions. The probability is symmetric under
the interchange n ↔ m due to property (1.19). The fermions are easily recognizable since
the probability of finding them in the same place is zero.

2Note the di�erent notation with respect to the previous section where we used the ket |n〉|m〉 to describe the
first particle around xn and the second particle around xm.
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