# Contents

Acknowledgments  

1 Introduction  
1.1 Prologue  
1.2 If we had only a single lecture in statistical thermodynamics  

2 Elements of probability and combinatorial theory  
2.1 Probability theory  
2.1.1 Useful definitions  
2.1.2 Probability distributions  
2.1.3 Mathematical expectation  
2.1.4 Moments of probability distributions  
2.1.5 Gaussian probability distribution  
2.2 Elements of combinatorial analysis  
2.2.1 Arrangements  
2.2.2 Permutations  
2.2.3 Combinations  
2.3 Distinguishable and indistinguishable particles  
2.4 Stirling’s approximation  
2.5 Binomial distribution  
2.6 Multinominal distribution  
2.7 Exponential and Poisson distributions  
2.8 One-dimensional random walk  
2.9 Law of large numbers  
2.10 Central limit theorem  
2.11 Further reading  
2.12 Exercises  

3 Phase spaces, from classical to quantum mechanics, and back  
3.1 Classical mechanics  
3.1.1 Newtonian mechanics  
3.1.2 Generalized coordinates
## Contents

3.1.3 Lagrangian mechanics 37  
3.1.4 Hamiltonian mechanics 40  
3.2 Phase space 43  
3.2.1 Conservative systems 46  
3.3 Quantum mechanics 47  
3.3.1 Particle–wave duality 49  
3.3.2 Heisenberg’s uncertainty principle 58  
3.4 From quantum mechanical to classical mechanical phase spaces 60  
3.4.1 Born–Oppenheimer approximation 62  
3.5 Further reading 62  
3.6 Exercises 63  

4 Ensemble theory 66  
4.1 Distribution function and probability density in phase space 66  
4.2 Ensemble average of thermodynamic properties 69  
4.3 Ergodic hypothesis 70  
4.4 Partition function 71  
4.5 Microcanonical ensemble 71  
4.6 Thermodynamics from ensembles 73  
4.7 $S = k_B \ln \Omega$, or entropy understood 75  
4.8 $\Omega$ for ideal gases 79  
4.9 $\Omega$ with quantum uncertainty 83  
4.10 Liouville’s equation 86  
4.11 Further reading 89  
4.12 Exercises 89  

5 Canonical ensemble 91  
5.1 Probability density in phase space 91  
5.2 $NVT$ ensemble thermodynamics 95  
5.3 Entropy of an $NVT$ system 97  
5.4 Thermodynamics of $NVT$ ideal gases 99  
5.5 Calculation of absolute partition functions is impossible and unnecessary 103  
5.6 Maxwell–Boltzmann velocity distribution 104  
5.7 Further reading 107  
5.8 Exercises 107  

6 Fluctuations and other ensembles 110  
6.1 Fluctuations and equivalence of different ensembles 110  
6.2 Statistical derivation of the $NVT$ partition function 113  
6.3 Grand-canonical and isothermal-isobaric ensembles 115  
6.4 Maxima and minima at equilibrium 117
## Contents

6.5 Reversibility and the second law of thermodynamics 120
6.6 Further reading 122
6.7 Exercises 122

7 Molecules 124
7.1 Molecular degrees of freedom 124
7.2 Diatomic molecules 125
7.2.1 Rigid rotation 130
7.2.2 Vibrations included 132
7.2.3 Subatomic degrees of freedom 135
7.3 Equipartition theorem 135
7.4 Further reading 137
7.5 Exercises 137

8 Non-ideal gases 139
8.1 The virial theorem 140
8.1.1 Application of the virial theorem: equation of state for non-ideal systems 142
8.2 Pairwise interaction potentials 144
8.2.1 Lennard-Jones potential 146
8.2.2 Electrostatic interactions 148
8.2.3 Total intermolecular potential energy 149
8.3 Virial equation of state 149
8.4 van der Waals equation of state 150
8.5 Further reading 153
8.6 Exercises 153

9 Liquids and crystals 155
9.1 Liquids 155
9.2 Molecular distributions 155
9.3 Physical interpretation of pair distribution functions 158
9.4 Thermodynamic properties from pair distribution functions 162
9.5 Solids 164
9.5.1 Heat capacity of monoatomic crystals 164
9.5.2 The Einstein model of the specific heat of crystals 167
9.5.3 The Debye model of the specific heat of crystals 169
9.6 Further reading 170
9.7 Exercises 171

10 Beyond pure, single-component systems 173
10.1 Ideal mixtures 173
10.1.1 Properties of mixing for ideal mixtures 176
10.2 Phase behavior 177
## Contents

10.2.1 The law of corresponding states 181
10.3 Regular solution theory 182
   10.3.1 Binary vapor–liquid equilibria 185
10.4 Chemical reaction equilibria 186
10.5 Further reading 188
10.6 Exercises 188

11 Polymers – Brownian dynamics 190
   11.1 Polymers 190
      11.1.1 Macromolecular dimensions 190
      11.1.2 Rubber elasticity 194
      11.1.3 Dynamic models of macromolecules 196
   11.2 Brownian dynamics 198
   11.3 Further reading 201
   11.4 Exercises 201

12 Non-equilibrium thermodynamics 202
   12.1 Linear response theory 202
   12.2 Time correlation functions 204
   12.3 Fluctuation–dissipation theorem 208
   12.4 Dielectric relaxation of polymer chains 210
   12.5 Further reading 213
   12.6 Exercises 214

13 Stochastic processes 215
   13.1 Continuous-deterministic reaction kinetics 216
   13.2 Away from the thermodynamic limit – chemical master equation 218
      13.2.1 Analytic solution of the chemical master equation 221
   13.3 Derivation of the master equation for any stochastic process 225
      13.3.1 Chapman–Kolmogorov equation 226
      13.3.2 Master equation 227
      13.3.3 Fokker–Planck equation 228
      13.3.4 Langevin equation 229
      13.3.5 Chemical Langevin equations 230
   13.4 Further reading 231
   13.5 Exercises 231

14 Molecular simulations 232
   14.1 Tractable exploration of phase space 232
   14.2 Computer simulations are tractable mathematics 234
   14.3 Introduction to molecular simulation techniques 235
      14.3.1 Construction of the molecular model 235
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.2 Semi-empirical force field potential</td>
<td>239</td>
</tr>
<tr>
<td>14.3.3 System size and geometry</td>
<td>242</td>
</tr>
<tr>
<td>14.3.4 Periodic boundary conditions</td>
<td>243</td>
</tr>
<tr>
<td>14.3.5 FORTRAN code for periodic boundary conditions</td>
<td>244</td>
</tr>
<tr>
<td>14.3.6 Minimum image convection</td>
<td>245</td>
</tr>
<tr>
<td>14.4 How to start a simulation</td>
<td>250</td>
</tr>
<tr>
<td>14.5 Non-dimensional simulation parameters</td>
<td>252</td>
</tr>
<tr>
<td>14.6 Neighbor lists: a time-saving trick</td>
<td>252</td>
</tr>
<tr>
<td>14.7 Further reading</td>
<td>253</td>
</tr>
<tr>
<td>14.8 Exercises</td>
<td>254</td>
</tr>
<tr>
<td>15 Monte Carlo simulations</td>
<td>255</td>
</tr>
<tr>
<td>15.1 Sampling of probability distribution functions</td>
<td>256</td>
</tr>
<tr>
<td>15.2 Uniformly random sampling of phase space</td>
<td>257</td>
</tr>
<tr>
<td>15.3 Markov chains in Monte Carlo</td>
<td>259</td>
</tr>
<tr>
<td>15.4 Importance sampling</td>
<td>262</td>
</tr>
<tr>
<td>15.4.1 How to generate states</td>
<td>263</td>
</tr>
<tr>
<td>15.4.2 How to accept states</td>
<td>264</td>
</tr>
<tr>
<td>15.4.3 Metropolis Monte Carlo pseudo-code</td>
<td>266</td>
</tr>
<tr>
<td>15.4.4 Importance sampling with a coin and a die</td>
<td>267</td>
</tr>
<tr>
<td>15.4.5 Biased Monte Carlo</td>
<td>268</td>
</tr>
<tr>
<td>15.5 Grand canonical Monte Carlo</td>
<td>268</td>
</tr>
<tr>
<td>15.6 Gibbs ensemble Monte Carlo for phase equilibria</td>
<td>269</td>
</tr>
<tr>
<td>15.7 Further reading</td>
<td>271</td>
</tr>
<tr>
<td>15.8 Exercises</td>
<td>272</td>
</tr>
<tr>
<td>16 Molecular dynamics simulations</td>
<td>273</td>
</tr>
<tr>
<td>16.1 Molecular dynamics simulation of simple fluids</td>
<td>274</td>
</tr>
<tr>
<td>16.2 Numerical integration algorithms</td>
<td>274</td>
</tr>
<tr>
<td>16.2.1 Predictor–corrector algorithms</td>
<td>276</td>
</tr>
<tr>
<td>16.2.2 Verlet algorithms</td>
<td>277</td>
</tr>
<tr>
<td>16.3 Selecting the size of the time step</td>
<td>279</td>
</tr>
<tr>
<td>16.4 How long to run the simulation?</td>
<td>280</td>
</tr>
<tr>
<td>16.5 Molecular dynamics in other ensembles</td>
<td>280</td>
</tr>
<tr>
<td>16.5.1 Canonical ensemble molecular dynamics simulations</td>
<td>282</td>
</tr>
<tr>
<td>16.6 Constrained and multiple time step dynamics</td>
<td>284</td>
</tr>
<tr>
<td>16.7 Further reading</td>
<td>285</td>
</tr>
<tr>
<td>16.8 Exercises</td>
<td>286</td>
</tr>
<tr>
<td>17 Properties of matter from simulation results</td>
<td>287</td>
</tr>
<tr>
<td>17.1 Structural properties</td>
<td>287</td>
</tr>
<tr>
<td>17.2 Dynamical information</td>
<td>289</td>
</tr>
<tr>
<td>17.2.1 Diffusion coefficient</td>
<td>289</td>
</tr>
</tbody>
</table>
## Contents

17.2.2 Correlation functions 290
17.2.3 Time correlation functions 291
17.3 Free energy calculations 292
  17.3.1 Free energy perturbation methods 292
  17.3.2 Histogram methods 293
  17.3.3 Thermodynamic integration methods 293
17.4 Further reading 294
17.5 Exercises 294

18 Stochastic simulations of chemical reaction kinetics 295
  18.1 Stochastic simulation algorithm 296
  18.2 Multiscale algorithms for chemical kinetics 297
    18.2.1 Slow-discrete region (I) 299
    18.2.2 Slow-continuous region (II) 299
    18.2.3 Fast-discrete region (III) 299
    18.2.4 Fast-continuous stochastic region (IV) 300
    18.2.5 Fast-continuous deterministic region (V) 300
  18.3 Hybrid algorithms 300
  18.4 Hybrid stochastic algorithm 302
    18.4.1 System partitioning 302
    18.4.2 Propagation of the fast subsystem – chemical Langevin equations 303
    18.4.3 Propagation of the slow subsystem – jump equations 303
  18.5 Hyst – Hybrid stochastic simulations for supercomputers 304
  18.6 Multikin – Multiscale kinetics 305
  18.7 Further reading 305
  18.8 Exercises 306

Appendices

A Physical constants and conversion factors 308
  A.1 Physical constants 308
  A.2 Conversion factors 308

B Elements of classical thermodynamics 309
  B.1 Systems, properties, and states in thermodynamics 309
  B.2 Fundamental thermodynamic relations 310

Index 312