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Introduction

1.1 Motivation

Material behaviour at length scales greatly in excess of molecular dimensions (i.e.,
macroscopic behaviour) is usually modelled in terms of the continuum viewpoint.
From such a perspective the matter associated with any physical system (or body)
of interest is, at any instant, considered to be distributed continuously through-
out some spatial region (deemed to be the region ‘occupied’ by the system at this
instant). Reproducible macroscopic phenomena are modelled in terms of determin-
istic continuum theories. Such theories have been highly successful, particularly in
engineering contexts, and include those of elasticity, fluid dynamics, and plastic-
ity. The totality of such theories constitutes (deterministic) continuum mechanics.
The link between actual material behaviour and relevant theory is provided by
experimentation/observation. Specifically, it is necessary to relate local experimental
measurements to continuum field values. However, the value of any local measure-
ment made upon a physical system is the consequence of a local (both in space and
time) interaction with this system. Further, local measurement values exhibit erratic
features if the scale (in space-time) is sufficiently fine, and such features become
increasingly evident with diminishing scale. Said differently, sufficiently sensitive
instruments always yield measurement values which fluctuate chaotically in both
space and time (i.e., these values change perceptibly, in random fashion, with both
location and time), and the ‘strength’ of these fluctuations increases with instrument
sensitivity (i.e., with increasingly fine-scale interaction between instrument and sys-
tem). This intrinsic property of material behaviour can only be understood in terms
of the essentially discrete nature of matter; that is, it proves necessary to adopt
a microscopic viewpoint. Accordingly, such fundamental understanding requires
that measurement values be related to local interactions with (or ‘samplings’ of)
fundamental discrete entities (that is, molecules, atoms, or ions) of the system.
While the understanding of small-scale material behaviour requires a micro-
scopic basis, the success of deterministic continuum mechanics might suggest that
such considerations are of little relevance to engineering practice. There are two
main reasons why this is not the case. Firstly, erratic material behaviour can be man-
ifest at the macroscopic level, as evidenced by turbulent fluid motions. Recourse to
stochastic continuum modelling is necessary in such cases. The natures of the fields
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2 Introduction

and balance relations of stochastic continuum mechanics can be fully understood
only from the standpoint of microscopic considerations. Secondly, the macroscopic
behaviour of any material system ultimately derives from its microscopic constitution,
and in certain circumstances microstructural features may persist on a macroscopic
scale and must be incorporated into continuum descriptions. (For example, in nema-
tic phases of liquid crystals the co-operative effect of elongated molecules which tend
to align with their neighbours is modelled in terms of a director field.) Further reasons
for exploring the relationship between microscopic and macroscopic aspects of mate-
rial behaviour are that it enhances the physical interpretation of continuum fields,
clarifies basic continuum concepts, elucidates fundamental assumptions implicit in
continuum modelling, and thereby improves awareness of the range of applicability
of continuum mechanics. Such insight is essential in studies of nanoscale behaviour
and in interpreting the results of molecular dynamical simulations.

The preceding remarks serve to motivate attempts to identify continuum field
values with local space-time averages of microscopic quantities and to establish the
balance relations satisfied by such fields. While these objectives constitute the main
part of what follows, their consideration leads to natural implications for the mod-
elling of fluid flow through porous media and for the manner in which observer
consensus places restrictions upon constitutive relations. Elements of the proba-
bilistic approach of classical statistical mechanics are outlined for comparison of
viewpoints.

1.2 Contents

Basic elements of continuum mechanics are summarised in Chapter 2 for later refer-
ence. Included are discussions of the different physical interpretations to be placed
on the notion of ‘material point’ in solids and fluids, and the special case of rigid
bodies.

Attention is drawn in Chapter 3 to conceptual problems associated with the
continuum viewpoint. In particular, the manifest dependence of solid boundaries
on scale is shown to imply similar sensitivity in mass density. Also discussed are the
scale dependence of velocity, the inability to interpret the stress within a rarefied gas
(i.e., its pressure) as a force per unit area, and the inappropriateness of deterministic
continuum modelling at small length scales.

Local spatial averaging of the masses and momenta of fundamental discrete
entities, modelled as point masses, is effected in Chapter 4 in terms of a weight-
ing function w. The continuity equation is established for quite general, suitably
normalised choices of w. A simple, physically distinguished choice w,, with asso-
ciated length scale ¢, is defined, and the corresponding boundary of any system of
point masses at scale € is thereby delineated. The physical interpretations of vol-
ume integrals of the mass and momentum densities appropriate to w, are obtained.
Alternative choices of w are motivated and derived.

In Chapter 5 the velocity field (the ratio of the w-based density of momen-
tum to that of mass) is employed to generate the corresponding motion map. (This
is in contrast to the more standard derivation of velocity from a postulated motion
map.) After discussing the subatomic origin of molecular interactions, a general local
form of linear momentum balance is established directly (rather than being obtained
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1.2 Contents 3

in conventional fashion as the localisation of an integral relation) on the basis of
assumed pairwise interactions between point masses of quite general nature. (In par-
ticular, the interaction between a pair of point masses may depend upon other point
masses adjacent to each of this pair.) The balance relation contains an interaction
force density f,,. The usual form of balance follows from determination of an interac-
tion stress tensor T, for which divT,, =f,,. The corresponding Cauchy stress tensor
is T, :=T,, — Dy, where D,, is a symmetric tensor of thermal character. (Here ther-
mal refers to any quantity which depends upon velocities of individual point masses
relative to the local w-scale continuum velocity field values: such relative velocities
have random character and are also termed thermal.) The non-uniqueness of T;, is
explored, and three distinct classes of solutions for pairwise-balanced interactions
are examined and compared.

Local forms of energy balance are obtained directly in Chapter 6. If (eq); denotes
the equation which governs the motion of point mass P; in an inertial frame, and v;
denotes the velocity of v;, then such forms of balance follow by summing relations
(eq)i.viw over all point masses. [Linear momentum balance followed from a similar
sum of relations (eq); w.] The distinction between fields of thermal and mechanical
character depends upon the presence or otherwise of thermal velocities in their
definitions. If interactions are governed by separation-dependent pair potentials,
the standard form of balance is obtained in which the internal energy density is the
sum of densities of energy of assembly and of heat content (a local density of kinetic
energy associated with thermal velocities).

Fine-scale relations are obtained in Chapter 7 by taking suitable moments. Sum-
mation of weighted products of masses with displacements of point masses from a
given location x yields a measure d,, of local inhomogeneity. The time evolution
of d,, gives rise to a relation which expresses moment of mass conservation. Sum-
mation of tensorial products of the preceding displacements with (eq); w yields a
generalised local moment of momentum balance. The skew part of this balance
constitutes the usual moment of momentum balance: skew tensors can simply be
replaced by their equivalent axial vector counterparts. Couple stresses and body
couples emerge naturally, together with an internal moment of momentum density.
A corresponding fine-scale energy balance is derived, and relative magnitudes of
relevant fields are discussed. In contrast with axiomatic approaches, in which (axial
vector-valued) moment of momentum balance is considered to determine the sym-
metry or otherwise of the Cauchy stress tensor, the explicit forms T,, obtained in
Chapter 5 yield this information directly. Moment of momentum balance constitutes
an evolution equation for internal moment of momentum, with contributions from
T,,, body couple density, and the divergence of the couple stress (a third-order tensor
field).

Time averaging is introduced in Chapter 8 with the aim of obtaining field values
which reflect local space-time averages: it is such averages that are to be related
to local measurements. Time-averaged versions of the continuity equation and bal-
ances of momentum and energy are derived. Systems with changing material content
are studied in terms of a ‘membership’ function for the system in question. Global
considerations are addressed (with examination of details specific to rocketry and jet
propulsion) before the corresponding local forms of balance for mass, momentum
and energy are established.
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The methodology developed in preceding chapters is applied to mixtures in
Chapter 9 which includes the resolution of a paradox associated with incorrect
interpretation of the notion of partial stress and an introduction to the modelling
of reacting constituents.

Fluid flow through porous media is analysed in Chapter 10 at two different scales,
one at which pore structure is evident (here the scale-dependent notion of bound-
ary, established in Chapter 3, proves indispensable) and the other at which pores are
no longer distinguishable. The small-scale balance of momentum is averaged over
so-called representative elementary volumes using an appropriate weighting func-
tion. For the case in which incompressible linearly viscous fluid saturates pores, a
sequence of relations is obtained, each of which follows from a specific and trans-
parent modelling assumption, culminating in the Brinkman equation and Darcy
‘law’.

An alternative averaging procedure is outlined in Chapter 11. This addresses
behaviour which is scale-insensitive over a range of length scales (a typical assump-
tion in continuum modelling) and is implemented in terms of so-called e-cells.

Although specific constitutive equations are not discussed (other than for fluid
flows in porous media), the definitions of field values in terms of microscopic quan-
tities have implications which are analysed in Chapter 12. These implications are
imposed by the fundamental requirement that observers must be able to agree upon
the physical interpretations of the fields employed in continuum modelling. Matters
are subtle: time averaging must be effected, instant by instant, over the same sets
of molecules for all observers if a consensus is to be established. In accomplishing
such averaging a crucial role is played by inertial observers. Once field values are
established for this class of observers, it is possible to envisage how these values
appear to a general observer. The objective natures of time-averaged fields (of mass,
momentum, interaction force and external body force densities, together with those
of stress and heat flux) then follow. The nature of objectivity in a general scientific
context is discussed, and its specific form in deterministic continuum mechanics is
characterised in terms of five distinct aspects of consensus. Such consensus man-
dates restrictions upon response functions. For elastica, these restrictions are those
universally accepted. The standard definition of a viscous fluid (as a material for
which the stress depends upon the current local values of mass density and velocity
gradient computed in terms of the frame of a general observer) is shown to simplify
to its standard (spin-independent) form if the local measure d,, of inhomogene-
ity introduced in Chapter 7 vanishes. However, if the stress depends upon density
and velocity gradient with respect to an (any) inertial observer, then objectivity
does not exclude spin-dependence. Since the physical admissibility (or otherwise) of
spin-dependent fluids has been the subject of controversy for forty years, remarks
are made which concern the fundamental assumption in classical physics that in
principle material behaviour is independent of its observation. Statements which
are intended to formalise the consequences of this assumption are not equivalent,
and are variously termed material frame-indifference, invariance under superposed
rigid body motions, and objectivity. These are listed and compared. Only objectiv-
ity emerges as imposing no restriction upon Nature. Further, from the perspective
offered by objectivity, there is no requirement that observers should choose the same
response function(s) for a given material, restrictions upon response functions which
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1.2 Contents 5

follow from objectivity involve only proper orthogonal tensors, and materials sensi-
tive to spin relative to inertial frames are physically admissible. A personal history
of involvement in the controversy is appended.

Chapter 13 examines two approaches to so-called non-local behaviour in the light
of previous chapters: namely, the general viewpoint of Edelen, and the peridynamics
introduced by Silling. Shortcomings in the physical basis of the long-range ‘particle—
particle’ interactions of the latter theory are highlighted, and attention is drawn to
the similarity of what is being attempted with the porous medium considerations of
Chapter 10.

Elements of classical statistical mechanics are presented in Chapter 14. After
introducing the concepts of dynamics in phase space, ensembles, and ensemble aver-
aging in terms of probability density functions, strictly local forms of the continuity
equation and linear momentum balance are obtained in the manner of Noll’s revi-
sion of the pioneering work of Irving and Kirkwood. Two generalisations of this
approach, due to Pitteri and to Admal and Tadmor, are discussed. A completely
different perspective, due to Zwanzig, is outlined and applied to so-called continu-
ously reproducible behaviour at prescribed scales of length and time. Key features
are the selection of an appropriate projection operator coupled with postulates of
local equilibrium and dynamic ergodicity. Semigroup formalism leads to a master
equation and corresponding Fokker-Planck and fluctuation-dissipation equations.
Attention is drawn to the need for a rigorous proof of a semigroup result central to
projection operator methodology.

Remarks and suggestions are made in Chapter 15 which concern issues and top-
ics not covered in this volume but which might benefit from the same approach and
methodology. These relate to boundaries and interfacial regions, generalised con-
tinua, reacting mixtures, configurational forces, electromagnetic phenomena, and
irreversibility. The question is raised of whether it might prove possible to derive,
motivate, or otherwise gain insight into, the second law of thermodynamics on the
basis of scale-dependent, corpuscular, and weighting function considerations.

Two extensive appendices introduce basic mathematical tools, results, and
notation. While these will be familiar to many, the intention is to provide a com-
prehensive, readily accessible source of background material that might be required
when studying the main text.

Appendix A is concerned with vectors and linear algebra. Starting from absolute
basic, relevant concepts, definitions and results are developed both in direct (basis-
free) and Cartesian tensor notation.

The geometry of Euclidean space is discussed in Appendix B, and isometries and
homogeneous deformations are defined and characterised. Differentiation of scalar,
vector, and linear transformation fields is treated in co-ordinate-free manner and
related to equivalent Cartesian tensor formulations. Elements of integration over
spatial regions are included, together with statements of divergence theorems and
proofs of identities. Generalisations of differential and integral calculus to R" are
discussed in order to appreciate the phase-space analyses of Chapter 14.

Serious study of any work of this kind requires pencil and paper to hand for
checking calculations and results. This is encouraged by the inclusion of many (usu-
ally simple and straightforward) exercises. The reader is also prompted on occasion
by queries which are intended to help ensure that attention is paid to detail.
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Some Elements of Continuum Mechanics

2.1 Preamble

In this chapter we address fundamental aspects of continuum modelling in respect
of kinematics, mass conservation, balances of linear and rotational momentum, and
balance of energy.

After considering the role of mass density in modelling the presence of ‘matter’,
we discuss the manner in which the detailed macroscopic distortion of any mate-
rial body can be monitored. This is markedly different for solids and fluids, but in
both cases it is possible to motivate the notion of material point and thereby estab-
lish basic kinematic concepts such as deformation, motion, and velocity. The formal
(axiomatic) approach to kinematics is outlined for comparison. Mass conservation
is motivated for solids and postulated to hold in general. Dynamical considerations
are first addressed for a body as a whole. In addition to tractions on boundaries, the
possibility of surface and body couples is considered. Global balances of linear and
rotational momentum are postulated and applied to rigid bodies both to emphasise
their often-neglected status as a special case of material continua and to develop
familiarity with notation, concepts and basic manipulations. Local forms of balance
are derived in standard fashion by postulating balances for matter in arbitrary sub-
regions of the region instantaneously occupied by the body, invoking a transport
theorem, and then establishing the existence of stress and couple stress tensors and
a heat flux vector. It is these local forms of balance that can be derived directly from
molecular considerations using the weighting function methodology to be introduced
in Chapter 4.

2.2 Matter and Its Distribution

Any specific material system of interest (e.g., a rubber tyre, brick, steel girder, liquid
in a container, ocean current, atmospheric air, or water in an aquifer) is termed a
body, B say. The presence of the matter which constitutes B is described in terms of
its mass. Specifically, the measure of matter associated with a body is provided by a
mass density function p of position and time which takes non-negative values. The
function p for a given body has two physical mass density interpretations:
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2.3 Motion of Matter: Kinematics and Material Points 7

M.D.1. The spatial region considered to be occupied by the body at time ¢, B,
say, is that region in which p takes positive values at time ¢. That is,!

B, :={xe& :p(x,t) >0} 22.1)

M.D.2. The mass, or amount of matter, of B material within any region R at
time ¢ is

m(R,t) :=/p(x,t)de. 2.2.2)
R

Remark 2.2.1. In order for (2.2.2) to make sense, p must be spatially integrable at all
times of interest. It is assumed that p has continuous partial derivatives with respect
to both location x and time ¢. Accordingly, at any time of interest, p is a continuous
function of position and is hence everywhere integrable.

2.3 Motion of Matter: Kinematics and Material Points

As time goes by, a given body B may change position and/or shape. Such time-
dependent change is termed a motion of the body. To model physical behaviour
associated with a motion, it is useful to define the trajectory of this body as

Tp:={(x,t): xe B, tel}. 2.3.1)

Here I denotes the time interval over which the behaviour of B is being modelled.
Functions of space and time defined on 7p are termed fields. In particular, p is the
mass density field.

The detailed prescription of change of position and/or shape of B is modelled
in terms of material points. Specifically, with each pair (x,¢) € 7p is associated a
material point together with its velocity v(x,t). While the concept of material point
is a primitive notion in formal continuum mechanics,? in order to link this with
observation and experimentation it is necessary to be somewhat specific. (The next
subsection contains an outline of the formal, axiomatic approach.)

For a solid body (in which any given molecule has near-neighbours which remain
so as the body moves and/or changes shape), any group of neighbouring molecules
can be ‘doped’ or, at least in principle, identified in some way. The motion of any
such group can be monitored. If the group is localised at point X € B;, at time fy, then
at any subsequent time ¢ it will be localised at some point x € B;. Formalising this,
we write

X = X4, (X, 1) (2.3.2)

and term x, the motion map corresponding to the situation at time fy. Of
course, the velocity at time ¢ of that group localised at X at time #y will be

IHere and henceforth £ will denote Euclidean space; that is, ‘space’ as we perceive it. Any element x
of £ is a geometrical point. See Appendix B.1.

2 Cf., e.g., Gurtin [1]. In the general continuum mechanics literature material points are also termed
particles (cf., e.g., Truesdell & Noll [2] and Chadwick [3]) or, in fluid dynamics, fluid particles (cf., e.g.,
Landau & Lifschitz [4] and Paterson [5]). The term material point was introduced by Noll to avoid the
common identification of particle with point mass. The latter has a definite mass, while, as will be seen, a
material point has no associated mass but only, at any given time, a motion-dependent mass density.
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8 Some Elements of Continuum Mechanics

X1y (X,0) := (3/31) {x,,(X,0)}. Thus the velocity of the doped group located at x at
time ¢, written as v(x,1), is precisely x,,(X,?), via (2.3.2). That is, the velocity field v
on 7p is given by

V(X,1) i= Xy (X, 1) where  x = x, (X,0). (2.3.3)
Similarly, the acceleration field a on 7p is given by
a(x,1) := X, (X, 0) where  x= x, (X,1). 2.3.4)

In the case of liquids and gases, molecules close together at a given time do not
remain so but diffuse rapidly.> An indication of gross molecular motion can be gained
by the insertion and observation of small bubbles or suspended particles in liquids
and smoke particles or balloons in gases. At any instant, such observations furnish
velocity values of bubbles, particles or balloons which would seem, intuitively, to
be representative of the instantaneous fluid velocity values at the locations of these
‘foreign’ objects. The modelling assumption made in fluid dynamics is that for a fluid
body B there is a velocity field v defined on its trajectory 7g. We can visualise an
intuitive sense of fluid motion by looking at the situation at some time fy and then,
on choosing any point X € By, ‘follow’ the fluid by moving in such a way as always to
have the same velocity as the local value of the fluid velocity. If, in such a motion, we
arrive at point x at time ¢, then we can again write (2.3.2), where, by the foregoing,
relation (2.3.3) [and, similarly, relation (2.3.4)] will also be satisfied. Further, with
each X € By, we can identify a hypothetical ‘material point” which is to be regarded
as located at x at time ¢.

Accordingly, for both solid and fluid bodies we have the concept of a motion
(corresponding to the situation at some given time) which prescribes the distortion
and movement of the relevant body in fine detail. This motion, given by (2.3.2), is
related to the associated velocity and acceleration fields by (2.3.3) and (2.3.4).

For any ¢ € I [see (2.3.1)], the motion map

X[O('>t) : Bt() - B[ (235)

is assumed to be bijective. That is, if X and § are any pair of distinct points in By,,
then, for any r € I, x,, (x,t) and X1 (¥,t) will not coincide, and for each x € B; there
exists an X € B, for which (2.3.2) holds.

Point to ponder 1. Consider how one might be led to the bijectivity hypothesis
by recalling how a motion can be physically monitored (via doped molecular clusters
for solids and immersed entities for fluids).

Point to ponder 2. Note the intrinsic difficulty of monitoring the internal defor-
mation of solids and the necessity of remote sensing via a scanning procedure, and
how in engineering practice one may only make measurements on the surface of a
body (e.g., via attached strain gauges, transducers, or optical monitoring devices).

Point to ponder 3. Note that for fluids the flows of interest can involve very
different length scales. For example, the velocity profile of flow down a pipe can only

3 Typical molecular speeds for fluids (which may be macroscopically motionless) at standard
temperature and pressure (STP) are, on average, of order 103 ms~!. Further, individual molecular tra-
jectories are highly erratic, much more so than the Brownian motion of small suspended particles (cf.,
e.g., Brush [6]).
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2.4 The Formal (Axiomatic) Approach to Matter and Material Points 9

be monitored at scales smaller than cross-sectional dimensions, while atmospheric
wind velocity may be of interest at small scale (motion over an aerofoil), medium
scale (motion around a skyscraper), or large scale (weather reporting). Accordingly,
the notion of material point would appear to be context/scale-dependent.

Point to ponder 4. The question of scale dependence also arises with solids:
consider deformations of small crystalline samples and motions of the Earth (namely
terrestrial —solid — tides and seismic waves).

Summary. The notion of material point has been motivated quite differently
for solid and fluid phases of matter. In a solid one can, roughly speaking, identify
the position of a material point at a given time with the location of a small cluster
of neighbouring molecules. The motion of this material point then can be tracked
(at least in principle) by monitoring the motion of this cluster since any cluster of
near-neighbouring molecules maintains its integrity. On the other hand, for fluids a
material point can, loosely speaking, be thought of as a hypothetical immersed object
whose motion is governed by the action thereon of fluid molecules with which it inter-
acts/collides. Of course, the particular interacting/colliding molecules in question
change rapidly with time. What should be clear is that

the key role played by the notion of material point, whether the body concerned is in
solid, liquid, or gaseous state, is that of tracking the macroscopic distortion/flow of the
body as time passes.

*2.4* The Formal (Axiomatic) Approach to Matter and Material Points

In formal continuum mechanics® the notion of material point is primitive (i.e., a
formal concept which serves as a building block for subsequent development of the
subject but is otherwise undefined). A body B is considered to be a set of material
points. Any possible physical manifestation of the body is termed a configuration.
More precisely, a configuration k is a map

k:B—¢. (24.1)

It is assumed that in no configuration can two distinct material points coincide. That
is, if X, Y € B are distinct material points, then x(X) # k(Y) for any configuration
k. Accordingly any configuration ¥ must be a bijection (i.e., one-to-one correspon-
dence) as a map from B onto its range «(B). For any pair of configurations ¥ and
1, it is assumed that the ranges «(B) and u(B) are open subsets of £ and that the
bijection®

d:=porx': k(B)— u(B) (2.4.2)

is of class C!. Any such map is termed a deformation of B.
A motion of Bis a one-parameter family of configurations, parametrised by time,
for some time interval /. If x(.,f) denotes the member of this family at time’ ¢ € 1

4Any starred section, subsection, or item may be skipped without affecting subsequent unstarred
discussions.

5 Cf., e.g., Gurtin [1], Truesdell & Noll [2], and Chadwick [3].

6 Property (2.4.2) endows B with the structure of a C! differentiable manifold whose charts are
configurations.

7 Time ¢ is usually regarded as present time, and x (.,¢) is described as the current configuration.
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10 Some Elements of Continuum Mechanics

and X € B, then x(X,?) is the location (a point in £) of X at time ¢ in this motion
and x (X, ) (where y := dx/dt) is its velocity at this time. Given configurations « and
x (.,0), from (2.4.2) with u = x (.,), the deformation

Xt = x (D) ok™! (2.4.3)

which maps « (B) onto x (B,t) C £ is (spatially) of class C! (here ¢ is considered fixed)
and is termed the deformation of B at time t with respect to configuration k. Function

X k(B)yxI— €& (2.4.4)
is termed the motion relative to configuration k. Region
Bri=xB,n)cé& (2.4.5)

is that region occupied by the body at time t in motion y, and the trajectory associated
with this motion is

I :={(x,t) :x € yB; with te}. (2.4.6)
[Cf. (2.2.1) and (2.3.1).] Since from (2.4.3)
X('at)lec(‘7t)OK’ (247)

the velocity of X at time ¢ is

. 0 .

xX,n = Y {X e (e (X), 0} =t X, (1 (X), ). (2.4.8)
The velocity field v on ,7Tp is defined by

v(x,t) = x(X,1), where x = x(X,?). (2.4.9)

That is, the velocity at the geometrical point x € ,B; at time ¢ is the velocity of that
material point which is located at x at time ¢. Similarly, the acceleration field a on ,7p
is defined by

ax,t) = ¥ (X,1), where x = x(X,1). (2.4.10)
In view of the bijective nature of k, to each point x in region «(B) corresponds
a unique material point and vice versa. Accordingly, points in «(B) are identifiable

with material points, and definitions (2.4.9) and (2.4.10) can be expressed in terms
of physically accessible entities [namely, points X in «(B)] via (2.4.8) as

v(x,t) = x,(X,0) and ax,t) =}, (X,0), (2.4.11)

where X = x,(X,1). (2.4.12)

In this context k is termed a reference configuration. Choosing k = x (.,tp) and writing,
forx € By,

Xo &0 = x(X,0), where x = x (X, 1), (2.4.13)
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