Diving Physiology of Marine Mammals and Seabirds

Analyzing the physiological adaptations of marine mammals and seabirds, this book provides a comprehensive overview of what allows these species to overcome the challenges of diving to depth on a single breath of air. Through comparative reviews of texts on diving physiology and behavior from the last 75 years, Ponganis combines this research into one succinct volume.

Investigating the diving performance of marine mammals and seabirds, this book illustrates how physiological processes to extreme hypoxia and pressure are relevant to the advancement of our understanding of basic cellular processes and human pathologies. This book underscores the biomedical and ecological relevance of the anatomical, physiological, and molecular/biophysical adaptations of these animals to enable further research in this area.

An important resource for students and researchers, this text not only provides an essential overview of recent research in the field, but will also stimulate further research into the behavior and physiology of diving.

Paul J. Ponganis is a Research Marine Biologist and Marine Physiologist at the Scripps Institution of Oceanography, University of California, San Diego. A leading expert in the field and also an anesthesiologist, his primary clinical interests are in cardiac anesthesia, which he has practiced for the last 30 years in conjunction with his research at the Scripps Institution of Oceanography. His research has focused on the diving physiology of marine mammals and penguins at field sites around the world. In recognition of their Antarctic research, the Ponganis Icefall on Coulman Island was named after him and his wife.

Diving Physiology of Marine Mammals and Seabirds

PAUL J. PONGANIS

Scripps Institution of Oceanography, University of California, San Diego

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521765558

© Paul J. Ponganis 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Ponganis, Paul J., 1950–
Diving physiology of marine mammals and seabirds / Paul J. Ponganis, Scripps Institution of Oceanography, University of California, San Diego.
pages cm
Includes bibliographical references and index.
ISBN 978-0-521-76555-8 (Hardback : alk. paper)
Marine mammals–Physiology.
Water birds–Physiology.
Deep diving–Physiological aspects.
Underwater physiology.
Title.
QL713.2.P66 2015
599.5–dc23 2015020038

ISBN 978-0-521-76555-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Katherine, my love and inspiration.

Contents

Preface

1

2

Divir	ing behavior		1
1.1	Marine mammals		
	1.1.1	Pinnipeds: phocids	2
	1.1.2	Pinnipeds: otariids	6
	1.1.3	Pinnipeds: odobenids	8
	1.1.4	Cetaceans	8
	1.1.5	Sirenians	11
	1.1.6	Marine carnivores	12
	1.1.7	Aquatic mammals	12
1.2	Seabirds		12
	1.2.1	Procellariiform seabirds	14
	1.2.2	Charadriiform seabirds	15
	1.2.3	Pelecaniform seabirds	16
		Penguins	17
	1.2.5	Other aquatic birds	20
Chal	lenges (of the breath hold and the environment	22
2.1	Challenges in human breath-hold diving		
	2.1.1	Breath-hold duration "break point"	22
	2.1.2	-	23
	2.1.3	Oxygen storage	23
	2.1.4		24
	2.1.5	Metabolic rate and the dive response	24
	2.1.6	Pressure: gas laws	25
	2.1.7	Pressure: barotrauma	25
	2.1.8	Pressure: ambient pressure and heart rate	26
	2.1.9	Pressure: nitrogen, decompression sickness and nitrogen narcosis	26
	2.1.10	Pressure: high pressure nervous syndrome	27
2.2	Challe	nges of the environment	27
	2.2.1	Challenges of the environment: pressure	27
	2.2.2	Challenges of the environment: temperature and heat loss	28

vii

viii	Contents				
		2.2.3 Challenges of the environment: light	28		
	2.3	Sensory adaptations	29		
		2.3.1 Sensory adaptations: olfaction	29		
		2.3.2 Sensory adaptations: vision	29		
		2.3.3 Sensory adaptations: touch	30		
		2.3.4 Sensory adaptations: sound production	30		
		2.3.5 Sensory adaptations: hearing	31		
3	Respiratory gas exchange				
	3.1	Marine mammal respiratory anatomy and function	32		
		3.1.1 Airway and lung anatomy in marine mammals	32		
		3.1.2 Respiratory mechanics in marine mammals	36		
		3.1.3 Lung volumes of marine mammals	37		
	3.2	Seabird respiratory anatomy and function	40		
		3.2.1 Airway, air sac, and lung anatomy in diving birds	40		
		3.2.2 Lung/air-sac volumes of diving birds	41		
4	Oxy	kygen storage and transport			
	4.1	Hemoglobin structure and function	45		
	4.2	O ₂ -hemoglobin dissociation curves	45		
		4.2.1 O_2 -hemoglobin dissociation curves: marine mammals	47		
		4.2.2 O_2 -hemoglobin dissociation curves: seabirds	47		
	4.3	Myoglobin structure and function	48		
	4.4		50		
		4.4.1 Respiratory O_2 stores	50		
		4.4.2 Blood O_2 stores	51		
		4.4.3 Muscle O_2 stores	58		
	4.5	Magnitude and distribution of total body O_2 stores	63		
	4.6	Advantage of size in the rate of O_2 store utilization	69		
5	Cardiovascular dive response				
	5.1	Cardiovascular physiology in marine mammals	73		
	5.1	5.1.1 Blood flow distribution in terrestrial mammals at rest and during	10		
		exercise	73		
		5.1.2 Forced submersions of seals: bradycardia and vasoconstriction	74		
		5.1.2 Forced submersions of scale or degeneration and vasceonstruction 5.1.3 Forced submersions: angiography and Doppler flow probe	, ,		
		measurements	75		
		5.1.4 Forced submersions: microsphere studies	76		
		5.1.5 Forced submersions: arterio-venous shunts	76		
		5.1.6 Forced submersion: the physiology and anatomy of peripheral	70		
		vasoconstriction	77		
		5.1.7 Forced submersion: the physiology and anatomy	, ,		
		of pulsatile myocardial blood flow	78		
		or pursarile myocardiar blood now	70		

		Contents	ix
	5.1.8	Forced submersion of other mammals	79
	5.1.9	Simulated dives of pinnipeds	79
	5.1.10	Trained submersions of pinnipeds: moderate bradycardia	79
	5.1.11	Trained submersion: muscle blood flow during moderate bradycardias	80
	5.1.12	•	81
	5.1.13		83
	5.1.14		85
	5.1.15	•	85
	5.1.16	*	
	5.1.17		87 88
		11	00 89
	5.1.18	1	
	5.1.19		89 02
	5.1.20		92
	5.1.21	during free dives	92
	5.1.22	e	92
	3.1.22	California sea lions: venous oxygen profiles and blood flow implications	94
	5.1.23	•	94 95
	5.1.23		95 96
	5.1.24		90
	5.1.25	summary	96
5.2	Cardio	vascular physiology in seabirds	97
5.2	5.2.1	Forced submersions of birds: bradycardia and peripheral	71
	5.2.1	vasoconstriction	97
	5.2.2	Simulated dives: birds	100
	5.2.3	Surface swimming: birds	100
	5.2.4	Free dives: birds	101
	5.2.5	Free dives: ducks	101
	5.2.6		102
	5.2.7	Free dives: penguins	103
	5.2.8	Free dives: recent studies of emperor penguins at an	
		isolated dive hole	106
	5.2.9	Heart rate and blood O ₂ profiles of emperor penguins:	
		implications for blood flow	106
	5.2.10	Muscle O_2 profiles in emperor penguins: implications for muscle	
		blood flow	107
	5.2.11	Heart rate profiles of emperor penguins at sea	109
	5.2.12		110
5.3		regulation of the dive response in mammals and birds	111
	5.3.1	Neuroanatomical pathways	111
	5.3.2		112
	5.3.3		112
		-	

Х	Contents				
	5.3.4 Reflex pathways in seals and diving ducks	112			
	5.3.5 Autonomic nervous system	113			
	5.3.6 Neuroregulation of the exercise response	114			
	5.3.7 Cardiovascular neuroregulation during dives	115			
6	Adaptations in cardiovascular anatomy and hemodynamics	118			
	6.1 Marine mammals: the heart	118			
	6.2 Marine mammals: general vascular features and the spleen	119			
	6.3 Marine mammals: the extradural venous system of phocid seals	120			
	6.4 Marine mammals: thermoregulatory structures	121			
	6.5 Marine mammals: the aorta	122			
	6.6 Marine mammals: retia mirabilia	124			
	6.7 Marine mammals: vena caval and portal vein sphincters and the				
	pericardial plexus	125			
	6.8 Diving birds: the heart	127			
	6.9 Diving birds: vascular anatomy	127			
	6.10 Hemodynamics	128			
	6.10.1 Bradycardia and myocardial oxygen supply/demand	128			
	6.10.2 Contractility and myocardial oxygen supply/demand	129			
	6.10.3 The caval sphincter, cardiac preload, and myocardial				
	oxygen supply/demand	129			
	6.10.4 The aortic bulb, afterload, and myocardial oxygen supp	-			
	6.10.5 Pulmonary vascular resistance and the right ventricle	130			
	6.10.6 Summary: hemodynamics and myocardial oxygen supp	•			
	6.11 Avian hemodynamics	131			
7	Muscle and locomotory work 1				
	7.1 Muscle fiber types	133			
	7.2 Muscle enzyme activities, energy substrates, and mitochondria	137			
	7.3 Locomotory work	139			
	7.3.1 Hydrodynamics and drag	140			
	7.3.2 Locomotory patterns and costs	142			
8	Thermoregulation	145			
	8.1 Metabolism and heat production	146			
	8.2 Marine mammals: thermoregulatory anatomy and physiology	148			
	8.3 Marine mammals: body temperatures during dives	151			
	8.4 Marine birds: thermoregulatory anatomy and physiology	155			
	8.5 Marine birds: body temperatures during dives	158			
9	Diving metabolism	162			
	9.1 Forced submersions and metabolic rate	162			
	9.2 Biochemical mechanisms of metabolic suppression	162			
	2.2 Dischement meenumsnis of metuoone suppression	105			

		Contents	Xi	
	9.3	Basal and resting metabolic rates	165	
	9.4	Metabolic rate measurements	166	
	9.5	Diving metabolic rates: marine mammals	168	
	9.6	Diving metabolic rates: birds	170	
	9.7	Diving metabolic rates: summary	170	
10	The aerobic dive limit			
	10.1	Aerobic dive limits determined by blood lactate measurements	172	
	10.2	Behavioral and calculated aerobic dive limits: indirect techniques	175	
	10.3	Physiological basis of the aerobic dive limit	176	
11	Oxyge	en store depletion and hypoxemic tolerance	180	
	11.1	Oxygen store depletion in marine mammals	180	
		11.1.1 O_2 depletion during forced submersions: seals	180	
		11.1.2 O_2 depletion during sleep apnea: elephant seals	181	
		11.1.3 O_2 depletion during free dives: elephant seals	184	
		11.1.4 O_2 depletion during free dives: Weddell seals	187	
		11.1.5 O_2 depletion during free dives: sea lions	188	
		11.1.6 O_2 depletion in cetaceans: trained dives and stationary		
		breath holds	190	
	11.2	Oxygen store depletion in seabirds	190	
		11.2.1 O_2 depletion during forced submersions: penguins and ducks	190	
		11.2.2 Blood oxygen depletion during simulated dives: penguins	191	
		11.2.3 O_2 depletion during free dives: emperor penguins	191	
	11.3	Blood gases, blood pH, and lactate	195	
		11.3.1 P_{O2} , P_{CO2} , and pH: forced submersion	196	
		11.3.2 P_{O2} , P_{CO2} , and pH: sleep apnea and stationary breath holds	197	
		11.3.3 P_{O2} , P_{CO2} , and pH: diving	197	
		11.3.4 Hypoxic and hypercapneic respiratory drives during diving	198	
		11.3.5 Blood lactate concentrations during and after dives	199	
	11.4	Mechanisms of hypoxemic tolerance	200	
		11.4.1 Hypoxemic tolerance: shorter O_2 diffusion distances	200	
		11.4.2 Hypoxemic tolerance: neuroglobin	201	
		11.4.3 Hypoxemic tolerance: glycolytic and buffering capacities	202	
		11.4.4 Hypoxemic tolerance: hypothermia	203	
		11.4.5 Hypoxemic tolerance: hypoxia-linked mechanisms	203	
		11.4.6 Hypoxemic tolerance: avoidance of reperfusion injury	204	
12	Pressure tolerance			
	12.1	Decompression sickness, nitrogen narcosis, and high-pressure nervous		
		syndrome	205	
		12.1.1 Decompression sickness	206	
		12.1.2 Nitrogen narcosis and high-pressure nervous syndrome	206	

xii	Contents				
	12.2	Avoidance of barotrauma in marine mammals	207		
	12.3	Lung collapse and minimization of N_2 absorption in marine mammals	209		
	12.4	Pulmonary shunts in marine mammals	211		
	12.5	Avoidance of decompression sickness in marine mammals	212		
		12.5.1 Avoidance of decompression sickness in marine mammals:	212		
		thoracic rete hypothesis 12.5.2 Avoidance of decompression sickness in marine mammals: N ₂	213		
		12.5.2 Avoidance of decompression sickness in marine mammals: N ₂ supersaturation	214		
		12.5.3 Avoidance of decompression sickness in marine mammals: N_2	214		
		solubility	214		
		12.5.4 Avoidance of decompression sickness in marine mammals:	214		
		blood N_2 levels	215		
		12.5.5 Avoidance of decompression sickness in marine mammals:	215		
		summary	215		
	12.6	Cellular and biochemical effects of pressure in marine mammals	215		
	12.0	Sonar-associated whale strandings	216		
	12.7	12.7.1 Dive behavior	217		
		12.7.2 Anatomy, pathology, and physiology	218		
		12.7.3 Models of N_2 uptake and distribution	219		
	12.8	Avoidance of barotrauma in diving birds	221		
	12.9	Avian lung structure and effects of pressure	221		
	12.10	•	223		
	12.11		224		
13	Bio-medical relevance				
	13.1	Avoidance of reperfusion injury and hypoxemic/ischemic tolerance	226		
	13.2	Lung surfactant function	229		
	13.3	Hypoxic pulmonary vasoconstriction			
	13.4	Regulation of myoglobin production	233		
	13.5	Myoglobin "biophysics"	236		
	Refere	rences	240		
	Index		321		

Preface

The goal of this book is to provide students and researchers with a reference resource for the diving physiology of marine mammals and seabirds. To make progress in the future, it is essential to know what has been achieved in the past. It is my hope that this book will serve that purpose, and stimulate further research into both how these animals function in their environment and how their extreme adaptations may provide insight into basic physiology and pathophysiological processes.

It has been 25 years since the publication of Kooyman's *Diverse Divers*. Since that time, advances in biomedical technology and the advent of electronic backpack recorders have greatly expanded the field. Prior to that period, the pioneering work of Irving and Scholander in the 1930s and 1940s began the "modern" era of diving investigations. Consequently, more than 75 years of research, ranging from anatomical/physiological studies to biochemical/molecular investigations, are reviewed in this book. In my view, these topics are all parts of the animal's "physiology," and are relevant to the questions of both field biologists and laboratory investigations. In addition to future advances in electronic behavioral recorders, genomics, proteomics, and computer modeling, I want to encourage the development of physiological investigations to see how an animal functions and to determine what is actually happening within the body. To develop the tools and not interfere with natural behaviors is the challenge of the future.

As regards the book's layout, after initial chapters on diving behavior and the physiological challenges of diving, the chapters are primarily arranged along physiological themes, with a concluding chapter on biomedical applications. Cardiorespiratory physiology, oxygen store management, and hypoxemic/pressure tolerance receive the most emphasis, reflecting my primary interests.

I have tried to be as comprehensive as possible, but as with any book there will undoubtedly be newer papers published even as the book goes to press. In addition, if there are any significant publications omitted, especially in areas outside my expertise, I am responsible and attribute that to a lack of time and a demanding clinical schedule. Lastly, the inclusion of both marine mammals and seabirds into one book has necessitated division of many chapters into separate marine mammal and bird sections. As an aid to students, I have included the scientific name of a given species the first time it is used in every chapter as well as in each figure legend and table.

My perspectives on diving physiology stem from those of both a biologist and physician. I have been fortunate to be able to work as a biologist at Scripps Institution

of Oceanography as well as to have an active clinical practice in anesthesiology at Sharp Memorial Hospital in San Diego. It has been a unique experience: to collaborate with Jerry Kooyman, the foremost diving physiologist of my era, and to conduct an exciting clinical practice at what I consider has been San Diego's premier heart transplant and ventricular assist device center over the past 30 years. I still remember driving into the hospital the night we performed San Diego's first heart transplant in 1985.

To be able to pursue careers as both a biologist and anesthesiologist, I want to acknowledge K. S. Norris, my graduate student sponsor, and R. W. Pierce. Dick Pierce advised and supported my graduate work, taught the basics of diving physiology to two young Norris graduate students (D. Costa and myself), and was the force behind the scenes in the building of the UCSC Long Marine Lab. Similarly, my medical education and training at Stanford University were outstanding. And, of course, there is Jerry Kooyman, my long-time colleague and good friend at Scripps.

Much of my work has also benefited from the advice and assistance of SeaWorld's outstanding veterinary and animal care staff, and from consultations with Sam Ridg-way, Red Howard, and the National Marine Mammal Foundation. What a luxury to have such expertise closely available. Anesthesia Service Medical Group has provided an outstanding clinical anesthesia practice opportunity with the flexibility to devote time to research and remote expeditions. My anesthesia partners and other physician colleagues at Sharp have been entirely supportive of this work. Again, I do not know of other medical practices in which such opportunities are available. To all, I am indebted.

I have also benefited from long-time associations and friendships with Roger Gentry, Phil Thorson, Mike Castellini, Randy Davis, Terrie Williams, Dan Costa, Markus Horning, Fritz Trillmich, Yvon Le Maho, Katsu Sato, Scott Eckert, Greg Marshall, Judy St. Leger, Tom Jue, and E. (Zhenya) Baranov. And in the era of microprocessor recorders, I cannot forget both my brother, Ed Ponganis, who developed our early electronic recorders in the 1980s, and the late Harve Hanish and his staff at UFI, who developed multiple custom physiological recorders for my more recent research. Many other collaborators have made significant contributions to my work including L. Winter, L. Welch, O. Matthieu-Costello, M. Costello, M. Scadeng, R. Spragg, D. Houser, T. Zenteno-Savin, S. Barber-Meyer, J. Heil, C. Champagne, H. Goforth, Y. Habara, and K. Shiomi. Lastly, there have also been my graduate students and fellows, all of whom have been outstanding, including P. Jobsis, D. Levenson, J. Meir, C. Williams, M. Tift, A. Wright, R. van Dam, T. Stockard, B. McDonald, J. Goldbogen, T. Welch, my US Navy anesthesia residents from Balboa Hospital, San Diego, and the many students Dan Costa allows me to "borrow" for field research.

I appreciate the patience and support of Ilaria Tassistro, Victoria Parrin, and Cambridge University Press in the preparation of this book, and thank M. Piscitelli and A.W. Vogl for use of photographs, P. Miller, J. Goldbogen, K. Goetz, D. Costa, and K. Sato for graphics data from their research and publications, P. Jobsis for the use of figures, and J. St. Leger and E. Nielsen for necropsy observations.

Lastly, I want to thank and acknowledge my collaborator and wife, Dr. Katherine V. Ponganis. It is she who has brought Jerry Kooyman and me kicking and screaming into the computer age. At the same time, she pursued research in cosmochemistry. It is

Preface

XV

also her programming skills that have allowed us to decipher the reams of data collected by our physiological recorders. Many a graduate student has benefited from these programs. And she has had the patience and understanding to allow me to be both a biologist and physician, as well as to write this book.

> Paul Ponganis MD, PhD Scholander Hall Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography