
Cosmic Noise A History of Early Radio Astronomy

Providing a definitive history of the formative years of radio astronomy, this book is invaluable for historians of science, scientists and engineers. The whole of worldwide radio and radar astronomy is covered, beginning with the discoveries by Jansky and Reber of cosmic noise before World War II, through the wartime detections of solar noise, the discovery of radio stars, lunar and meteor radar experiments, the detection of the hydrogen spectral line, to the discoveries of Hey, Ryle, Lovell, Pawsey and others in the decade following the war, revealing an entirely different sky from that of visual astronomy.

Using contemporary literature, correspondence and photographs, the book tells the story of the people who shaped the intellectual, technical, and social aspects of the field now known as radio astronomy. The book features quotes from over 100 interviews with pioneering radio astronomers, giving fascinating insights into the development of radio astronomy.

WOODRUFF T. SULLIVAN III is Professor of Astronomy and Adjunct Professor of History at the University of Washington, Seattle. Trained as a radio astronomer, his research has included studies of the interstellar medium in our own and other galaxies, the search for extraterrestrial intelligence, and astrobiology.

Cambridge University Press 978-0-521-76524-4 - Cosmic Noise: A History of Early Radio Astronomy Woodruff T. Sullivan Frontmatter More information

Cosmic Noise A History of Early Radio Astronomy

Woodruff T. Sullivan, III University of Washington

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521765244

© W. T. Sullivan 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Sullivan, Woodruff Turner.
Cosmic noise : a history of early radio astronomy / Woodruff T. Sullivan.
p. cm.
Includes bibliographical references and index.
1. Radio astronomy–History. I. Title.
QB475.A25S85 2009
522'.68209–dc22 2009027558

ISBN 978-0-521-76524-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-76524-4 - Cosmic Noise: A History of Early Radio Astronomy Woodruff T. Sullivan Frontmatter More information

For Barbara,

who has been married to this book project almost as long as to me Cambridge University Press 978-0-521-76524-4 - Cosmic Noise: A History of Early Radio Astronomy Woodruff T. Sullivan Frontmatter More information

> I had the opportunity only yesterday of watching Sagittarius rise in broad daylight on the needle of a millivoltmeter ... It is certainly gratifying to see gunlaying radar apparatus put to such uses!

> > Alan Hunter¹

¹ A. Hunter (Royal Greenwich Observatory): J. L. Greenstein, 8 October 1946, box 39, GRE.

Contents

Ai	page xi				
Fa	xxvii				
P_{l}	reface	xxix			
A_{i}	Acknowledgments for figures				
1	Prologue	1			
	1.1 A new sky	1			
	1.2 Organizing the story	3			
	1.3 Analysis	10			
2	Searching for solar Hertzian waves	18			
	2.1 Hertz	18			
	2.2 Edison and Kennelly	19			
	2.3 Lodge	20			
	2.4 Wilsing and Scheiner	21			
	2.5 Nordmann	23			
	2.6 Why did no one discover solar radio waves until four decades after Nordmann?	24			
3	Jansky and his star static	29			
	3.1 Jansky's early years	29			
	3.2 The setting for Jansky's work	30			
	3.3 Jansky's investigations	31			
	3.4 Jansky's later years	43			
	3.5 Reaction of the scientific community to Jansky's work	44			
	3.6 Was Jansky "stopped" by Friis?	49			
	3.7 Why did Jansky succeed?	51			
4	Grote Reber: science in your backyard	54			
	4.1 The man and his dish	54			
	4.2 Searching for Milky Way signals	57			
	4.3 First publications	60			
	4.4 The ups and downs of 1941	63			
	4.5 All-sky surveys	65			
	4.6 Reber beyond Wheaton	69			
	4.7 The Reber phenomenon	74			
5	Wartime discovery of the radio sun	79			
	5.1 Development of radar	79			
	5.2 Hey's discovery	80			
	5.3 Other wartime incidents with the sun	83			
	5.4 Prewar observations	85			

viii

Contents

	5.5 Controversy with Appleton	90
	5.6 Southworth and the quiet sun	91
6	5 55 1	100
	6.1 Wartime problems lead to postwar success	100
	6.2 Galactic noise and Cygnus intensity variations	101
	6.3 Meteor radar	105
	6.4 Solar observations	111
	6.5 End of an era at AORG	112
7	1 5 5 5 5	118
	7.1 Radio research in Australia before 1945	118
	7.2 Radiophysics Laboratory, 1945–1952	121
	7.3 Early solar studies	126
	7.4 Radio stars	138
	7.5 RP's early years	143
8		155
	8.1 The setting at Cambridge and TRE	155
	8.2 Transition to peacetime	156
	8.3 Solar observations	159
	8.4 Radio stars	163
	8.5 Overview	169
9		178
	9.1 Cosmic ray showers	178
	9.2 Meteor radar	181
	9.3 The 218 foot dish and the Andromeda nebula	186
	9.4 Other projects	191
	9.5 Plans for a huge steerable dish	192
	9.6 Jodrell Bank after five years	193
10		200
	10.1 United States	200
	10.2 Canada	211
	10.3 Soviet Union	214
	10.4 France	221
	10.5 Japan	225
	10.6 Other small early groups	226
11	Meteor radar	231
	11.1 Pre-1945 intimations of radio and meteors	232
	11.2 The 1946 Giacobinids	236
	11.3 Stanford and Ottawa	239
	11.4 Scientific results before 1952	242
	11.5 The meteoric rise and rapid decline of a field	253
12	5	260
	12.1 Prewar thinking	260
	12.2 Wartime calculations and observations	261
	12.3 Project Diana	264

		Contents	ix
	12.4 D 1 H		271
	12.4 Bay in Hungary		271
	12.5 Australia 12.6 The 1950s		274
	12.0 The 1950s		280
13	The radio sun		284
	13.1 The quiet sun		285
	13.2 The active sun		297
	13.3 Overview		311
14	Radio stars		315
	14.1 First steps by Bolton and Ryle: 1948–49		317
	14.2 Scintillations		324
	14.3 New discrete sources		327
	14.4 Optical identifications		335
	14.5 Angular sizes		351
	14.6 Radio stars or radio nebulae?		360
	14.7 Status of radio sources in 1953		363
15	Theories of galactic noise		366
	15.1 Early surveys		366
	15.2 First theories		367
	15.3 What <i>are</i> radio stars and how do they emit?		374
	15.4 Synchrotron radiation and cosmic rays		378
	15.5 The beginnings of radio cosmology		389
	15.6 The radio sky and cosmic rays		389
16	The 21 cm hydrogen line		394
	16.1 Prediction		394
	16.2 Postwar developments		396
	16.3 Search and discovery at Harvard		398
	16.4 The Dutch quest		404
	16.5 Confirmation from Australia		409
	16.6 Initial astronomical results		410
	16.7 No race, no serendipity, but international cooperation		414
17	New astronomers		418
	17.1 Development of early radio astronomy		418
	17.2 Radio astronomy and (optical) astronomy		423
	17.3 National influences in the US, Britain, and Australia		438
	17.4 Radio astronomy as technoscience		449
	17.5 The new astronomers		453
18	A new astronomy		457
10	18.1 New science		457
	18.2 First of many new spectral windows		462
	18.3 A New Astronomy		467
	18.4 Four major historical themes in early radio astronomy		470
	18.5 Closing		471
Α.			
Ap	pendix A A primer on the techniques and astrophysics of early radio astronomy A.1 Electromagnetic radiation		472 472
			-T/2

Cambridge University Press 978-0-521-76524-4 - Cosmic Noise: A History of Early Radio Astronomy Woodruff T. Sullivan Frontmatter More information

x Contents

A.2 The earth's atmosphere	472
A.3 Thermal radiation	475
A.4 Radiation transfer	475
A.5 Radiation mechanisms	476
A.6 Astronomical coordinates	477
A.7 Basic astronomy of the early 1950s	478
A.8 Radiometry	480
A.9 Receivers of early radio astronomy	482
A.10 Antennas (filled apertures) of early radio	astronomy 485
A.11 Interferometers of early radio astronomy	488
Index of terms	490
Appendix B The Interviews	492
B.1 Doing oral history	492
B.2 The collection	493
B.3 How the interviews have been used	495
Appendix C Bibliographic notes and archival	sources 503
C.1 Bibliographies of early radio and radar a	astronomy 503
C.2 Archival collections used in this study	503
C.3 Collections of biographies	505
C.4 Literature on radar development throug	gh 1945 505
References (also an index)	506
Index	527

Annotated table of contents

(an asterisk indicates key sections of the book)

Fa	Foreword (Francis Graham Smith)				
Pı	eface		xxix		
A	Acknowledgements for figures				
1	Due	1	1		
1		logue*	1		
	1.1	A new sky*	1		
	1.2	The radio sky is very different from the familiar sky seen with our eyes	2		
	1.2	Organizing the story	33		
		1.2.1 Defining radio astronomy	3		
		Considering what to include before the term <i>radio astronomy</i> existed in the late 1940s 1.2.2 Structure of the book*	4		
			45		
		1.2.3 Narrative summary*	5		
	1 2	Summary of the field's development through ~1953; why 1953 for an endpoint	10		
	1.3	Analysis 1.3.1 Earlier studies	10 10		
			10		
		Relationship to earlier studies of the history of radio astronomy, in particular			
		Edge & Mulkay's <i>Astronomy Transformed</i> (1976) 1.3.2 My historiographic style*	11		
			11		
		How the author thinks about history of science 1.3.3 Historical issues*	13		
			15		
		Summary of the book's main historical issues and themes: World War II and			
		Cold War effects; material culture and technoscience; "visual culture";			
	T	the twentieth century's "New Astronomy"	16		
	Tan	gent 1.1 Conventions used in this book*	10		
2	Sea	rching for solar Hertzian waves	18		
	2.1 Hertz		18		
		Radio waves are discovered in the laboratory in Germany in 1886–88			
	2.2	Edison and Kennelly	19		
		A proposed US experiment in 1890 to search for solar electric disturbances			
	2.3	Lodge	20		
		The first attempt to detect solar Hertzian waves, in 1894 in Liverpool			
	2.4	Wilsing and Scheiner	21		
		An elaborate 1896 experiment at an astrophysical observatory in Potsdam			
	2.5	Nordmann	23		
		Another astronomer searches, from a glacier on Mt. Chamonix in 1901			

xii		Ann	otated table of contents	
	2.6	A lon	did no one discover solar radio waves until four decades after Nordmann?* g delay because of a lack of sensitive, directional radio equipment, discipline lization, and a reliance on Planck's blackbody theory	24
	Tang	gent 2.	l Nordmann's sensitivity to solar bursts	27
	Tang	gent 2.2	2 Signal levels for the quiet and disturbed sun	27
3	Ione	lw on	d his star static	29
5		•	y's early years	29
	5.1		y graduates in 1927 and goes to work for Bell Labs as a research physicist	2)
	32		etting for Jansky's work	30
	0.2		Radio communications research in 1928	30
			Shortwaves ($\lambda < 200$ m) and radio telephony are the latest technology	
		3.2.2	Bell Telephone Laboratories in 1928	30
			Shortwave telecommunications at the nation's premier industrial research lab	
	3.3	Jansk	y's investigations*	31
		-	Phase One (1928–30): orientation and building	31
			Large rotating 20 MHz antenna and sensitive, stable receiver are built to study sources of static	
		3.3.2	Phase Two (1930–31): diversions and first shortwave observations	32
			A weak, steady static is first picked up in August 1931	
		3.3.3	Phase Three (1932–33): the astronomical discovery	34
			Continued observations show the static not to be the sun, but coinciding with	
			sidereal time (Dec. 1932); first ascribed to galactic center alone, later realized to	
			be extended along the entire galactic plane; major public announcement	
		3.3.4	Phase Four (1934–37): practical work, with occasional star static	42
			Other projects occupy Jansky's time and he does little follow-up on the "star static"	
	3.4	3.4 Jansky's later years		43
		Warti	me work, failing health, and death at age 44	
	3.5	React	ion of the scientific community to Jansky's work	44
		3.5.1	Other contemporary investigations	44
			Potapenko & Folland make a few (unpublished) follow-up observations at Caltech;	
			Whipple & Greenstein at Harvard attempt to explain Jansky's static as hot dust	
		3.5.2	Reactions from astronomers	47
			The astronomy world learns of this radio static, but doesn't know what to do about it	
	3.6	-	ansky "stopped" by Friis?*	49
			should not be faulted for not encouraging further work on the new effect;	
			y was always the loyal team player at Bell Labs	
	3.7	-	did Jansky succeed?*	51
			abination of the world's most sensitive receiver, a large directional antenna,	
	T		d detective work, and a minimum in the 11-year solar activity cycle	
	Tang	gent 3.	An all-sky contour map based on Jansky's data	53
4	Gro	te Reb	er: science in your backyard	54
	4.1	The r	nan and his dish*	54
			engineer Reber reads Jansky's papers and in 1937 with his own funds builds	
			t dish in his backyard in Wheaton, Illinois	
	4.2		hing for Milky Way signals*	57
			ccessful attempts at 3300 and 910 MHz, but at last Reber picks up cosmic static	
		from	the Milky Way at 160 MHz in late 1938 and extensively observes in 1939	

	Annotated table of contents	xiii
4.3	First publications*	60
1.5	Reber explains cosmic static as free–free radiation in 1940 papers in <i>Proc. IRE</i> and, after	00
	consultation with Struve and others at Yerkes Observatory, in <i>Ap. J.;</i> Henyey & Keenan also	
	work on free-free theory	
4.4	-	63
	Many more observations, another paper in <i>Proc. IRE;</i> Struve balks at second <i>Ap. J.</i> paper,	
	yet assists Reber in attempts for funding	
4.5		65
	4.5.1 160 MHz survey (1943–44)	65
	Two hundred all-night traces assembled into a contour plot of the entire northern	
	Milky Way and published in Ap. \mathcal{I} ; also, first published detection of the radio sun	
	4.5.2 480 MHz Survey (1946–47)	68
	A new receiver and contour map; first review of the field written with Greenstein	
4.6	Reber beyond Wheaton	69
	4.6.1 Postwar attempts to find funding	69
	Frustrations with failure to obtain support from Yerkes, industry, or the Navy to move	
	his dish or to build a new 200 ft dish	
	4.6.2 Reber at the National Bureau of Standards	71
	Reber moves his dish to Virginia in 1947 for solar monitoring, but never fits in to the	
	government agency	
	4.6.3 Hawaii	73
	Reber spends 1951–54 running a sea-cliff interferometer from the summit of Mt. Haleakala	
	4.6.4 Tasmania	73
	Moves to the location of an ionospheric "hole" in order to observe at 0.5 to 2.1 MHz	
4.7	The Reber phenomenon*	74
	Reber's contrarian philosophy, engineering skill, scientific intuition, and initiative	
	before 1947 created pioneering science which was ironically of little influence,	
	especially outside the US, in the postwar decade	
	ngent 4.1 Reber's quoted antenna properties and derived intensities	77
	ngent 4.2 The Würzburg antenna	78
Tan	ngent 4.3 The fate of Reber's dish after 1952	78
Wa	artime discovery of the radio sun*	79
Wa 5.1		79 79
5.1	First operational radar system is deployed in England in late 1930s; during the war all	13
	major combatants stage massive development efforts vital to postwar radio astronomy	
5.2		80
5.2	British coastal radars accidentally detect 55–85 MHz radio waves in Feb. 1942;	80
	Hey convincingly demonstrates them to be of solar origin and writes secret report	
53	Other wartime incidents with the sun	83
5.5	5.3.1 Schott in Germany	83
	Likely solar detection in 1943 by a German coastal radar in Denmark	05
	5.3.2 Alexander in New Zealand	84
	New Zealand radars pick up the sun in March 1945; Alexander studies the	04
	effect for six months	
5.4		85
J. f	5.4.1 (Brief) purposeful tries	86
	Adel and Kraus at Michigan in 1933; Piddington and Martyn in Sydney in 1939	00
	reaction in the second and the second and the second	

xiv		Ann	otated table of contents	
		542	Heightman and the radio amateurs	86
		5.1.2	In 1936–39 ham radio operators (mainly in England) study a shortwave hiss	00
			phenomenon associated with activity at solar maximum, but remain puzzled	
			as to its origin	
		5.4.3	Professional radio physicists and ionospheric activity	89
			Noise associated with sudden shortwave communications fade-outs is studied	
			in the late 1930s, but again no conclusions as to its origin	
	5.5	Contr	oversy with Appleton	90
		Apple	ton (characteristically) tries to gain priority over Hey and the amateurs for	
		discov	rery of solar radio waves	
	5.6	South	worth and the quiet sun	91
	Radio physicist at Bell Labs studies microwave (1 to 10 cm) solar emission with		physicist at Bell Labs studies microwave (1 to 10 cm) solar emission with	
		small	dish during 1942–43 and publishes results on the sun's temperature in 1945	
	Tan	gent 5.1	Southworth's miscalculation of solar brightness temperature	98
6	Hev	v's Arm	ny group after the war	100
-			me problems lead to postwar success*	100
			nd V-2 rocket attacks on London in 1944 lead to detection and later study by Hey,	
			ns & Phillips of meteor echoes and galactic noise	
	6.2		tic noise and Cygnus intensity variations*	101
		The N	Ailky Way is mapped and a small region in Cygnus is found in 1946 to vary in	
		intens	ity – the first discrete radio source (later called Cyg A)	
	6.3	Meteo	or radar*	105
		6.3.1	Observations	105
			After the war Hey shows that anomalous ionospheric echoes encountered	
			in 1944 are caused by meteors; Hey and Stewart detect daytime meteor showers	
			in 1945 with 3-station observations	
		6.3.2	Publications	109
			Appleton again tries to claim credit for Hey's group's work, this time on meteor echoes	
	6.4		observations	111
		-	radio bursts in 1946 are shown to be polarized and correlated with solar	
	<u> </u>		and sunspots	110
	6.5		f an era at AORG*	112
	T		8 the Cold War brings an end to radio and radar astronomy in Hey's Army group	112
			 DeWitt (1940) and Fränz (1942) measure galactic noise British work on galactic noise (1944–46) 	113 114
		gent 6.2 gent 6.3		114
		gent 6.4		110
		gent 6.5		110
		gent 6.6		116
7			sics Laboratory, Sydney	118
	7.1		research in Australia before 1945	118
		7.1.1	Prewar: the Radio Research Board	118
			Australia develops a strong community of ionospheric and radio communications researchers	
		712		120
		7.1.2	Wartime: the Radiophysics Laboratory One of the world's premier radar labs develops during World War II	120
	7.2	Radio	physics Laboratory, 1945–1952	121
	1.4	raulo	physics Earonatory, 1715–1752	141

			Annotated table of contents	XV
		7.2.1	Transition to peacetime	121
			Radiophysics Lab stays intact after the war; Bowen and Pawsey chart out	
			nonmilitary radio research directions	
		7.2.2	-	123
			Radio astronomy and cloud physics grow to dominate two-thirds of	
			the lab's efforts; other fields die out	
		7.2.3	Growth of research on extraterrestrial radio noise	124
			Pawsey and Bowen foster extraterrestrial research by a dozen young physicists and engineers	
	7.3	Early	solar studies	126
		7.3.1	Wartime efforts*	126
			Payne-Scott and Pawsey observe the microwave sky in 1944, but do not try the sun;	
			1945 reports by Alexander of "Norfolk Island effect" (solar bursts detected on	
			New Zealand military radars) and reports of other solar observations reach RP	
		7.3.2	Solar bursts and the sea-cliff interferometer*	129
			McCready, Pawsey and Payne-Scott develop the sea-cliff interferometer	
			and in 1945–46 establish that solar bursts come from $<10'$ sunspot regions	
			with $T_{\rm b} (200 \text{ MHz}) > 3 \times 10^9 \text{ K}$	
		7.3.3	The million-degree corona*	135
			In 1946 Pawsey measures a base value of $T_{\rm b} = 1 \times 10^6$ K and Martyn shows	
			this is due to opacity of a hot solar corona at radio wavelengths; priority dispute ensues	
		7.3.4	Mt. Stromlo	137
			Allen, Martyn and Woolley at Mt. Stromlo Observatory support radio noise studies	
	- 4	D 1'	and even make their own observations, but relationship with RP is sometimes strained	120
	7.4		stars*	138
			n and Stanley in 1947 use a sea-cliff interferometer to measure the size of Hey's source	
			is A as <8'; survey reveals several more sources; New Zealand data in 1948 allow three	
	7.5		ele optical identifications, including the Crab nebula	143
	1.5		early years The isolation factor*	143
		7.3.1	Australian radiophysicists suffer from isolation Down Under; long trips abroad	175
			critical; 1952 URSI meeting in Sydney	
		7.5.2	The field stations	146
		1.5.2	RP style is for groups of 2–3 researchers at each of seven field stations near Sydney;	110
			Pawsey holds it all together	
		7.5.3		148
			Bowen and Pawsey's styles and abilities make an ideal team to nurture RP research	110
		7.5.4		151
			Radio noise studies become radio astronomy; solar work declines relative to non-solar;	
			antennas become fewer and far larger; researchers mature	
	Tan	gent 7.1	Vacuum and high-energy physics in the Radiophysics Division, 1945–48	154
		0	0 0315 15 ,	
8	Ryl	e's gro	up at the Cavendish	155
	8.1	The s	etting at Cambridge and TRE	155
			Cavendish Lab is the world's best in nuclear physics; TRE is the premier	
		Britis	h wartime radar lab	
	8.2	Trans	ition to peacetime	156
		Ratcli	ffe recruits Ryle, who, after initial uncertainties, establishes a lab and settles on	
		extrat	errestrial noise research	

xvi		Annotated table of contents			
	8.3	Solar observations*			
		Ryle and Vonberg develop the Michelson variable-spacing interferometer and	159		
		a new type of receiver; radio emission comes from solar active regions of			
		size <10' with $T_{\rm b}$ (175 MHz) > 2 × 10 ⁹ K			
	8.4		163		
		Ryle invents the phase-switched interferometer; Cas A discovered and Cyg A's position			
		seems variable; Ryle, Smith & Elsmore's preliminary survey of the northern			
		sky yields 23 new sources by mid-1949			
	8.5		169		
		8.5.1 Ryle, Ratcliffe, Bragg	169		
		Leadership, research, and personality qualities of Ryle and his superiors			
		Ratcliffe and Bragg			
		8.5.2 Group style and development	172		
		A close-knit, informal group under a charismatic leader; strained relationships			
		with other groups, theorists, and optical astronomers			
		8.5.3 A turning point	175		
		1950–54: Ryle's attention shifts from the sun to radio stars, from small			
		antennas to major structures, from the Galaxy to cosmology, and toward testing			
		the concept of aperture synthesis			
	Tang	ent 8.1 An example of camaraderie in Ryle's group	177		
0	т	II of Laboration and	170		
9		ell at Jodrell Bank	178		
	9.1	Cosmic ray showers Plackett brings Loyall to Manchestery at ladroll Paul: fold station no success	178		
		Blackett brings Lovell to Manchester; at Jodrell Bank field station no success			
	0.2	in 1946–47 in detecting radar echoes from cosmic ray showers Meteor radar*	181		
	9.2	Radar echoes from 1946 Perseid and Giacobinid meteor showers observed by Lovell,	101		
		Clegg, Banwell & Prentice; summer daylight showers discovered in 1947; Ellyett and			
		Davies develop method to measure meteor velocities			
	03	The 218 foot dish and the Andromeda nebula*	186		
	7.5	Fixed dish is built in 1947, by far the largest in world; Hanbury Brown (arrives 1949) &	100		
		Hazard map emission from Andromeda nebula (M31) in 1950			
	04	Other projects	191		
).т	Briefly: auroral echoes, lunar radar, intensity scintillations of radio stars, Hanbury	171		
		Brown's intensity interferometer			
	9.5	Plans for a huge steerable dish*	192		
	7.5	From 1949 on, Lovell and Blackett seek support for a 250 ft steerable dish	172		
	9.6	Jodrell Bank after five years*	193		
	2.0	A large group with excellent leadership becomes oriented to astronomy and	175		
		moves from radar to radio astronomy			
	Tang	ent 9.1 Attempts to detect audio-frequency solar radio waves	198		
10		er radio astronomy groups before 1952	200		
	10.1	United States	200		
		10.1.1 Dicke and the Radiation Laboratory	200		
		At the premier US wartime radar lab, Dicke develops microwave radiometry			
		and in 1945–46 observes the moon and a solar eclipse			

		Annotated table of contents	xvii
	10.1.2	US Naval Research Laboratory	206
		Hagen's group at well-financed military lab pioneers solar observations	
		at microwavelengths (1946 on), travels to three total eclipses, and builds	
		a 50 ft dish that first detects sources in 1953	
	10.1.3	Cornell University	210
		Seeger leads Navy-financed university group in solar and galactic	
		observations over 1947–50	
10.2	Canada	a	211
	Covington begins long-term microwave solar observations at government lab (NRC) in 1946		
10.3	Soviet	Union	214
	10.3.1	Ginzburg and Shklovsky	214
		Ginzburg (Lebedev Physics Institute) and Shklovsky (Moscow State	
		University) start longtime leadership of Soviet theory in 1946 with studies	
		of radio sun and interstellar medium	
	10.3.2	Lebedev Institute observations	217
		Khaykin leads 1947 eclipse expedition to Brazil where 200 MHz radio sun	
		shown to be much larger than optical sun; Crimean field stations established	
		in 1948–49 for both applied and basic radio research	
	10.3.3	Gorky	220
		Troitsky develops microwave techniques from 1948 onwards	
	10.3.4	Overview	220
		Soviet radio astronomy strong in theory, but lacking in observational results	
		during postwar decade; strong isolation from the West	
10.4	France		221
	Rocard	of Ecole Normale Supérieure (Paris) starts group in 1946 using German and	
	Americ	can radar equipment with Denisse (solar theory), Steinberg and Blum; solar	
	-	s observed from France (1949) and Africa (1950–51). Laffineur in 1947 starts solar	
	observa	ations at Meudon Observatory with Würzburg dish	
10.5	Japan		225
		adio groups begin in 1949 at Tokyo Observatory (Hatanaka), Osaka University	
		and Nagoya University (Tanaka); all isolated from West	
10.6		small early groups	226
	10.6.1	Germany	226
		Radio experiments forbidden until 1950, but Unsöld (Kiel) and	
		Kiepenheuer (Freiburg) do early radio theory and later encourage observations	
	10.6.2	Sweden	228
		Rydbeck and Hvatum adapt Würzburg dishes at Onsala Observatory in early 1950s	
	10.6.3	Norway	228
		Eriksen (Solar Observatory, Oslo University) leads effort on sun in early 1950s	
	10.6.4	Soviet Union	229
		Sanamyan (Byurakan Observatory) uses meter-wavelength interferometers in	
		early 1950s; Molchanov (Leningrad University) does microwave solar observations	
	10.6.5		229
		Tuve (Dept. of Terrestrial Magnetism) initiates 21 cm hydrogen line work in 1952;	
		Kraus (Ohio State University) invents a helix-array radio telescope in 1951.	
	Tanger	nt 10.1 Shklovsky's free-free radiation calculations	229

xviii		Annotated table of contents			
11	Mete	or rada	r	231	
	11.1	Pre-194	15 intimations of radio and meteors	232	
		11.1.1	Nagaoka*	232	
			Japanese radio physicist suggests in 1929 that meteors could affect the		
			ionosphere and radio propagation		
		11.1.2	Skellett*	232	
			Over 1931–33 Bell Labs researcher finds a tentative connection between		
			visual meteors and inceases in ionization of the ionosphere		
		11.1.3	The situation before 1945	234	
			Various studies give evidence of possible meteor effects, but role of		
			meteors is still uncertain before Hey & Stewart make seminal		
	11.0	T 1 10	discoveries in 1944–45 (Chapter 6)	226	
	11.2		46 Giacobinids*	236	
		-	ular meteor shower observed around the world with radar; launches many groups		
	11.3		ng Lovell's at Jodrell Bank, largest by far d and Ottawa	239	
	11.5		in Stanford Electrical Engineering Dept. develops techniques and theory and by	239	
		-	0s develops meteors for radio communications. In Canada Millman and McKinley		
			e optical and radar meteor studies.		
	11.4		fic results before 1952	242	
		11.4.1	Daytime showers*	242	
			Previously unknown strong daytime meteor showers are discovered and		
			mapped at Jodrell Bank by Lovell, Clegg, Davies, Hawkins, Almond et al.		
		11.4.2	Meteors from interstellar space?*	245	
			Radio data enter the astronomers' debate over the origin of sporadic		
			meteors; 1948-52 velocity measurements at Jodrell Bank and in Canada find no		
			hyperbolic orbits, indicating solar system origin		
		11.4.3	Ionosphere physics	251	
			Ionospheric winds and trail formation mechanisms studied		
	11.5		eteoric rise and rapid decline of a field*	253	
			radar astronomy distinct from most radio astronomy, closely tied to (optical)		
	-		my, dominated by Jodrell Bank, short-lived (not fruitful beyond mid-1950s)		
	U	ent 11.1	Pre-1945 ionosphere/meteor studies in Japan, India, and the United States	255	
		ent 11.2	Pre-1945 ionosphere/meteor studies in Britain	257	
		ent 11.3	The Doppler method and Fresnel theory of meteor echoes The velocity cutoff for interstellar meteors	258 259	
	Tange	nt 11.4	The velocity cutoff for interstellar meteors	259	
12	Reac	hing for	the moon	260	
		-	thinking	260	
		Claims	and calculations of radio contact with Mars and Martians from earliest		
		days of	radio; lunar radar also considered		
	12.2	Wartim	e calculations and observations	261	
		-	adar operators and scientists do feasibility studies or try to make lunar		
			; best case for success is that of Stepp in Germany in 1943–44		
	12.3	Project		264	
			ny Signal Corps team led by DeWitt detects lunar echoes in January 1946		
	12.4		Hungary*	271	
		In war-	torn Hungary Bay mounts experiment to do lunar radar; success in 1946		

			Annotated table of contents	xix
	12.5	Austra	lia	274
		12.5.1	Lunar radar	274
			Kerr & Shain (RP) use 20 MHz Radio Australia as transmitter in 1947–48;	
			aim is to study ionosphere's effects on echoes	
		12.5.2	Passive lunar observations*	277
			In 1948 Piddington & Minnett (RP) find monthly phase-lag in 1.25 cm lunar	
			emission and explain it as due to dust layer	
	12.6	The 19	950s	280
			r (NRL) does secret moon-link communications experiments	
		from 1	951 onwards with huge fixed dish; Jodrell Bank starts major lunar radar program	
	Tang	ent 12.1	Lunar ranges implied by Bay's published data	282
12	771			20.4
13		radio su		284
	13.1	1		285
		13.1.1	Observed spectrum	285
			Pawsey & Yabsley (1949) establish the quiet solar spectrum	201
		13.1.2		286
			Martyn (1948), Smerd (1950) and Denisse (1949) work out expected	
			radio intensities based on various solar atmosphere models; limb-brightening	
			predicted at shorter wavelengths	
		13.1.3	1	290
			Observations of eight eclipses 1945–52 allow detailed checks of	
			emission theories; Ryle and his Cambridge students (Stanier, Machin, O'Brien)	
			develop Fourier techniques to map the sun using Michelson interferometry,	
			culminating in 2-D solar map in 1953; in Australia Christiansen simultaneously	
			develops grating arrays for 2-D maps	
	13.2		tive sun	297
		13.2.1	Meter wavelength bursts	297
			13.2.1.1 Payne-Scott's work	298
			Timing of bursts at different frequencies and a swept-lobe	
			interferometer reveal fast motions in the corona (1946–50)	
			13.2.1.2 Wild's work*	302
			Wild's group at Penrith (1949) and Dapto (1952) develops	
			antennas and receivers for wideband dynamic spectra that reveal basic	
			types of radio bursts: Types I, II and III	
		13.2.2	Burst radiation theory	307
			Inconclusive arguments for and against synchrotron radiation,	
			bremsstrahlung, and plasma oscillations, as well as debate over the source of	
			high-energy radiating particles	
		13.2.3	Slowly varying component	310
			Covington's 10.7 cm monitoring data over years, starting in 1947, shows excellent	
			correlation with total area of sunspots; Denisse, Waldmeier, and Piddington &	
			Minnett interpret this new component to originate in dense regions above sunspots	
	13.3	Overvi	ew	311
		13.3.1	Acceptance of a hot corona	311
			Following the prewar identification of coronal lines as coming from	
			high-energy ions, radio evidence for a million-degree corona is critical for	
			some solar researchers, not so for others, in clinching the acceptance of a hot corona	

xx

Annotated table of contents

		13.3.2	Imaging*	312
			Radio mapping techniques at Cambridge and Sydney eventually lead to	
			two Nobel Prizes and applications in medicine	
		13.3.3	The radio and optical suns*	313
			Radio sun is more dynamic and indicative of the corona than is the optical sun,	
			but overall solar radio astronomy does not revolutionize its sector of astronomy	
	-		as do meteor radar, radio sources, and radio galactic structure	
	-	ent 13.1	Proposals to observe lunar occultations of radio sources	314
	Tange	ent 13.2	Solar radio bursts and plant growth	314
14	Radi	o stars		315
	14.1		eps by Bolton and Ryle: 1948–49*	313
			s and Ryle's groups work on first radio stars, mainly Cyg A.	017
			ations are bothersome. First suggested optical identifications for	
			Crab nebula), Vir A (M87) and Cen A (NGC 5128); contact with astronomers.	
	14.2	Scintill		324
		Groups	studying radio star intensity scintillations argue, but reach	
			sus by 1950–51 that scintillations are caused by the ionosphere, not intrinsic	
			adio stars.	
	14.3	New di	screte sources	327
		14.3.1	The 1C Survey at Cambridge	328
			50 radio stars measured by Ryle, Smith & Elsmore in 1949–50 with	
			the 81 MHz "Long Michelson" interferometer; positions do not correlate	
			with bright stars or galaxies; no detectable proper motions or parallax;	
			first log N -log S plots; radio stars are very nearby, dark stars	
		14.3.2	The Mills Survey	330
			Two-baseline 101 MHz interferometer in 1950–52 finds 77 "discrete	
			sources"; establishes Class I sources of high intensity and near the galactic	
			plane (and within the Galaxy) and Class II sources uniformly distributed,	
		1422	either very close or very far (extragalactic)	221
		14.3.3	The Jodrell Bank survey	331
			Hanbury Brown & Hazard (1953) list 23 158 MHz sources visible to	
			their large, fixed dish and agree with Mills's two classes, but find no agreement in overlap areas of the three surveys	
		14.3.4	Bolton's group's surveys	332
		11.5.1	Stanley & Slee (1950) publish 18 100 MHz discrete sources based on	552
			sea-cliff interferometry (1947–49); Bolton <i>et al.</i> (1954) publish 86 more	
			gathered in 1951–53; statistical interpretation mostly agrees with Mills,	
			except Class II sources' log N -log S plot slope is much steeper	
		14.3.5	A galactic center source	334
			Building on work by Piddington & Minnett (1951), McGee & Bolton (1954) use	
			"hole-in-ground" dish at 400 MHz to establish existence of source at galactic center	
	14.4	Optical	identifications*	335
		14.4.1	Cygnus A	335
			Precision interferometry (1' accuracy) by Smith (1951), with similar work by Mills,	
			allows Baade & Minkowski to identify Cyg A with a distant, peculiar extragalactic	
			object visible on a Palomar 200 inch photo; object taken to be two galaxies in collision;	
			implied radio luminosity is enormous	

				Annotated table of contents	xxi		
		14.4.2	Cassiope	sia A	341		
		Again, Smith's precise position allows identification with a network of					
				filaments – a supernova remnant?			
		14.4.3		nd Minkowski	344		
				inent California astronomers work closely with all the radio by 1953 100 and 200 inch telescope photos and spectra make			
				ental contributions to the optical identifications and astrophysics			
				dozen radio sources			
		14.4.4	The natu	are of optical identifications	348		
			14.4.4.1		348		
				The basic problem is that there exist too many stars and			
				galaxies within the positional error box of a typical radio source;			
				how does one choose?			
			14.4.4.2	Identity and reality	348		
				The visual wins out over radio chart recordings; finding an optical			
				correlate gives a radio source a stamp of approval and a reality that it			
				otherwise does not have			
	14.5	Angula	r sizes		351		
				nsity interferometer *	351		
			14.5.1.1		351		
				Hanbury Brown and Twiss invent the intensity interferometer in 1950,			
				a radical departure from the Michelson interferometer			
			14.5.1.2	Equipment	353		
				Students Jennison & Das Gupta at Jodrell Bank build the electronics and			
				antennas needed in 1951 and test the concept on the sun			
			14.5.1.3	-	355		
				Jennison & Das Gupta spend a year measuring the visibility curve			
				of Cyg A and find it to have two components with separation of 1.5'			
		14.5.2	Results f	from Cambridge and Sydney	359		
			The major groups all measure angular sizes of the strong sources over 1951–53,				
			finding t	hat most are resolvable and not at all starlike			
	14.6	Radio s		dio nebulae?*	360		
	Arguments over the nature of radio stars/discrete sources brought on by differing						
		observi	ng and ana	alysis techniques, group styles, and samples of the sky			
	14.7	Status	of radio so	purces in 1953*	363		
		Over 20	00 sources	catalogued, but only $\sim 10-15$ with good optical identifications;			
		differen	nt surveys	profoundly disagree, but nevertheless an exciting field because of			
		the unp	orecedente	ed nature of many of the identified sources			
	Tang	ent 14.1	The sea-	-cliff interferometer	364		
	Tang	Tangent 14.2 Interstellar dispersion and bursts in 1950			364		
	Tangent 14.3 Early log N-log S analysis			g <i>N</i> –log <i>S</i> analysis	365		
	Tang	Tangent 14.4 The intensity interferometer			365		
15	Theo	ories of g	galactic n	noise	366		
		Early s			366		
	Galactic noise distribution in Bolton & Westfold's (1950) 100 MHz map						
		become	es the stan	dard for theorists to explain			
	15.2	First tł	neories*		367		

xxii		Annota	Annotated table of contents			
		15.2.1	Hot interstellar gas	367		
			Free-free radiation is popular, but fails badly to explain intensities at the			
			lowest frequencies			
		15.2.2	Combined effect of radio stars	369		
			Galactic noise explained as a huge population of dark radio stars by Unsöld (1949),			
			Ryle (1949), Bolton & Westfold (1951), Westerhout & Oort (1951), and			
			Hanbury Brown & Hazard (1953); isotropic component (extragalactic?) also needed			
	15.3		ure radio stars and how do they emit?*	374		
			stars must have strong magnetic fields and be part of Baade's Population II, but no details			
			eed; Ryle argues for common, nearby stars, while Gold and Hoyle argue that			
		-	uld all be extragalactic			
			rotron radiation and cosmic rays	378		
			rays had been long studied by geophysicists and nuclear physicists			
		15.4.1	In the West*	378		
			Alfvén & Herlofson (1950) and Kiepenheuer (1950) suggest synchrotron			
			radiation from cosmic ray electrons to explain radio emission from radio			
		15 4 2	stars and from the general Galaxy	200		
		15.4.2	In the Soviet Union*	380		
			Ginzburg develops synchrotron theory from 1951 on and exploits it for explaining the origin of cosmic rays as much as for galactic noise;			
			in 1952 Shklovsky switches from Ryle-like model (sum effect of dark			
			radio stars) to synchrotron emission from cosmic rays in a galactic halo;			
			argues supernovae important both as radio sources and as originators of			
			cosmic rays; in 1953 suggests that <i>optical</i> radiation from Crab nebula is also			
			synchrotron, soon detected			
		15.4.3	Why was the synchrotron mechanism unpopular in the West?	385		
			Russian literature mostly unknown in the West; theoretical arguments (Fermi)			
			that electrons must be totally absent from cosmic rays; not accepted in the			
			West until optical polarization of the Crab confirmed in 1956			
	15.5	The be	ginnings of radio cosmology	389		
		Residu	al galactic noise, evidence for radio galaxies, and log N–log S plots allow radio			
		data to	test cosmological models			
	15.6		dio sky and cosmic rays*	389		
		Radio s	stars and galactic noise, though still poorly understood, provide new avenues			
			origin of cosmic rays; high-energy processes gain importance in astronomy			
	-		The integrated brightness of a distribution of radio stars	391		
	-	ent 15.2	The multi-frequency Galaxy model of Piddington (1951)	391		
	-	ent 15.3	The galactic plane mapping of Scheuer & Ryle (1953)	391		
	Tango	ent 15.4	Minor synchrotron studies in the West (1951–54)	392		
16	The 21 cm 16.1 Predict		ydrogen line	394		
	10.1		ime occupied Holland van de Hulst studies the possibilities of spectral	394		
			the radio and in 1944 finds a candidate for atomic hydrogen at 21 cm			
	16.2		r developments	396		
			sky (1949) independently does a more thorough study of radio lines;			
			t of many persons piqued, but no one searches for the 21 cm line			
	16.3		and discovery at Harvard*	398		

			Annotated table of contents	xxiii
		16.3.1	Background	398
			Purcell & Ewen at Harvard team up for an all-out attempt	
		16.3.2		399
			Ewen, backed by excellent radio electronics and many experts, designs a	
			fixed 21 cm horn and complex sensitive receiver using frequency-switch technique	
		16.3.3		401
			Finally successful in March 1951 with broad line in the Ophiucus part of the Milky Way	
	16.4 The Dutch quest*			404
			Background	404
			Oort struggles to get radio astronomy going at Leiden from 1945 on	
		16.4.2		405
			Engineer Hoo (1948–50) makes little progress; a fire burns all equipment	
		16.4.3		406
		101110	Engineer Muller hired and detects the line in 1951 shortly after Ewen,	
			using Würzburg dish at Kootwijk	
	16.5	Confir	mation from Australia	409
	10.0		hysics Lab notified; Christiansen & Hindman quickly build a receiver and	107
			the line at Potts Hill field station	
	16.6		astronomical results	410
	1010		First interpretations*	410
		10.0.1	In <i>Nature</i> Purcell & Ewen discuss physics of the line, while Oort & Muller describe	110
			signs of galactic structure and rotation visible in their first month of data; Christiansen &	
			Hindman quickly survey entire southern sky, find double lines in some places	
		16.6.2		412
		10.0.2	Discussions about the transition probability and excitation mechanisms of the line	112
		16.6.3		412
		10.0.0	None at Harvard until Bok gets 24 ft dish in 1953; Muller rebuilds Dutch receiver	112
			and Oort and van de Hulst begin systematic survey of northern galactic plane;	
			Kerr starts large effort in Sydney with 36 ft dish	
	167	No rac	e, no serendipity, but international cooperation*	414
	10.7		national Dutch School" of galactic structure, headed by Oort, creates very different	
			than in rest of radio astronomy – more cooperation among radio groups and integration with	
			astronomy; one of few non-serendipitous discoveries in radio astronomy	
	Tano	-	Other pre-discovery considerations of the 21 cm line	417
	14115	ciit 10.1	other pre discovery considerations of the 21 cm me	117
17	New	astrono	nmerc [≉]	418
1,			opment of early radio astronomy	418
	17.1		Origin in war	418
		171111	The crucible of World War II shaped the technology, the skills, styles of work,	110
			and personalities of those who became radio astronomers	
		1712	Early growth and the 1952–53 watershed	420
		17.1.2	Statistics for growth of the field; 1952–53 was watershed in terms of size of projects,	120
			type of research questions, and amalgamation with optical astronomers; by 1953 radio	
			astronomy size still only 3–6% of astronomy overall	
	17.2	Radio	astronomy and (optical) astronomy	423
	17.2	17.2.1	Terminology	423
		17.2.1	Insight gained from studying the introduction and usage of terms such as <i>radio</i>	120
			astronomy, radio telescope, radio observatory, astronomical, and optical astronomy	

	Annotated table of contents				
		17.2.1.1 Is a radio telescope a telescope?	426		
		Attitudes towards radio interferometers – do they see?			
	17.2.2	Styles of radio and optical astronomers	427		
		Radio astronomers' styles of doing research were very different from traditional			
		astronomy: much more engineering and electronics, faster pace, in teams			
	17.2.3	Interactions between radio and optical astronomers	429		
		Some traditional astronomers supportive, others patronizing or dismissive,			
		most neutral; radio astronomers' knowledge of basic astronomy often lacking			
	17.2.4	IAU versus URSI	432		
		Both international organizations set up Commissions on Radio Astronomy			
		early (1946-8); radio astronomers debated which was the best forum for them and			
		gradually shifted to IAU			
	17.2.5	1 5	435		
		Radio astronomy never became its own discipline – instead, a subfield or			
		specialty of traditional astronomy; radio researchers looked to astronomy for			
		their intellectual framework, valued optical images and identifications, and			
		developed their own "visual culture"			
17.3		al influences in the US, Britain, and Australia	438		
	17.3.1	Influence of Jansky and Reber	439		
		Despite first observations of extraterrestrial radio waves being made by			
		two Americans, after the war their influence on the field was minimal			
	17.3.2	Astronomers vis-à-vis radio researchers	439		
		The strength of American (optical) astronomy acted as a deterrent to			
		development of US radio astronomy; in England much more favorable reception			
		by astronomers to radio work; Australian (optical) astronomy very weak and			
	1722	therefore a minimal factor	4.4.1		
	17.3.3	Discipline structures	441		
		Ionosphere radio research in England and Australia associated with physics, but			
	1724	in US with electrical engineering; jump to a radio cosmos was easier for physicists	4.42		
	17.3.4	Group styles	442		
		Intensity of wartime research in England led after the war to tight-knit, can-do teams;			
		Radiophysics Lab in Sydney remained intact with its wartime camaraderie; US postwar groups not as affected by wartime styles of work			
	17.3.5	Military patronage	442		
	17.5.5	Postwar situation in US was of large military funding for any research related to	++2		
		national needs in Cold War; radio groups at Stanford, NRL and Cornell well funded,			
		but nevertheless lagged overseas groups in radio astronomy efforts; military needs			
		distorted their research towards microwave technology and communications systems;			
		despite far smaller budgets, British and Australian groups, working primarily at longer			
		wavelengths, accomplished far more			
17.4	Radio	astronomy as technoscience	449		
17.1		mpossible to answer whether (a) instrumentation and techniques, or	112		
	(b) scientific goals were more important; early radio astronomy best described				
	as <i>technoscience</i> ; gradual shift in emphasis from "blind" empiricism with available				
		astronomically-defined research programs			
17.5		wastronomeany defined research programs	453		
		Prewar uses of the term <i>radio telescope</i>	453		
141151	ware #1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15		

			Annotated table of contents	XXV
		ent 17.2	Comparison with the introduction of the electron microscope into biology	454
		ent 17.3	Testing Forman's "distortionist" ideas	454
	Tang	ent 17.4	Photons and apertures in the radio and optical regimes	455
18		w astron New sc	-	457 457
	10.1		ary of the main scientific results and the new type of universe revealed by radio	437
			in y of the main scientific results and the new type of universe revealed by radio my as of ~1953	
	18.2		f many new spectral windows	462
	10.2		istronomy was the first of many other spectral windows to be opened.	102
			required access to space via rockets, balloons and satellites	
			Beginnings of infrared, ultraviolet, γ -ray and X-ray astronomies	463
			Brief accounts of how these astronomies began (all in the US) over 1945–75,	
			often with many surprises	
		18.2.2		465
			Hirsh (1983) study of early X-ray astronomy reveals many scientific and	
			historical similarities with early radio astronomy	
	18.3	A New	Astronomy*	467
		18.3.1	Was radio astronomy a revolution?	467
			Early radio astronomy was not a revolution as defined by Kuhn or by Hacking	
		18.3.2	The twentieth century's "New Astronomy"	467
			Radio astronomy was comparable to other major introductions of technology	
			into astronomy, including those by Galileo (telescope), William Herschel	
			(large reflectors), and nineteenth century astrophysicists (spectroscope and	
			photography). Radio astronomy, or better the entire opening of the electromagnetic	
			spectrum (of which radio was the harbinger), was the twentieth century's	
			"New Astronomy," a major event in the long history of astronomy	
	18.4		najor historical themes in early radio astronomy*	470
			e twentieth century's "New Astronomy"; (2) World War II and Cold War effects; (3) Material	
			and technoscience; (4) "Visual culture"	
	18.5	Closing	y*	471
App	oendi	xA Ap	primer on the techniques and astrophysics of early radio astronomy	472
	A.1	Electron	magnetic radiation	472
	A.2	The ear	th's atmosphere	472
	A.3	Therma	al radiation	475
	A.4	Radiatio	on transfer	475
	A.5	Radiatio	on mechanisms	476
			Free-free radiation	476
			Gyromagnetic and synchrotron radiation	476
			Spectral line radiation	477
			Plasma oscillations	477
	A.6		omical coordinates	477
	A.7		stronomy of the early 1950s	478
	A.8	Radiom	-	480
	A.9		rs of early radio astronomy	482
	A.10		as (filled apertures) of early radio astronomy	485
	A.11		ometers of early radio astronomy	488
	Index	of terms		490

xxvi

Annotated table of contents

Appendix B The interviews	492
B.1 Doing oral history	492
B.2 The collection	493
B.3 How the interviews have been used	495
Appendix C Bibliographic notes and archival sources	503
C.1 Bibliographies of early radio and radar astronomy	503
C.2 Archival collections used in this study	503
C.3 Collections of biographies	505
C.4 Literature on radar development through 1945	505
References (also an index)	506
Index	527

Foreword

Not long ago, before the birth of radio astronomy, the starry sky was observed by astronomers looking through telescopes, using their eyes and photography. Now we call them optical astronomers, using optical telescopes, admitting their new colleagues who detect radio, X-rays, and gamma-rays. The radio astronomers were the first of these, and their radio telescopes have developed over half a century into complex and sophisticated instruments that reveal a new universe. This has been no less than a revolution in both astronomy and its instruments: as in all revolutions, it has a history whose early beginnings are at least as interesting as the explosive growth in which we are now immersed.

Woody Sullivan's history takes the subject up to 1953. This is perhaps the latest date for which a comprehensive history can be contained in a single volume, but it is a good date to mark the emergence of radio astronomy as an integral part of modern astronomy. There was by this time a basic understanding of the origin of cosmic radio waves, and the techniques of radio telescopes, spectrometers, and interferometers. Funding for large projects was becoming available, and research groups were consolidating. The following half century saw the extension of the visible spectrum into the ultraviolet and infrared, and the exploitation of the new windows of radio, X-rays, and gamma-rays, with many discoveries which changed our view of every aspect of the universe. In more recent years we have seen the scale of radio telescopes expand to international proportions, both physically and in cooperation between many observing groups. Nevertheless, the elements were all there in 1953; furthermore there was extensive documentation of the early steps (notably in Australia), and even where the written record was patchy most of the original players were available for interview when this history was undertaken.

As an experienced radio astronomer Sullivan is well placed to relate the history of the technical advances of the early years. He is also gifted with an understanding and interest in people that enables him to give a balanced account of some difficult relationships between the ambitious, enthusiastic, and sometimes competitive research groups of the time. His study and his interpretations will be of interest not only to the participants, many of whom are still alive, but to historians of science and sociologists, who will doubtless argue whether or not this was, in their terms, a revolution. In my terms it certainly was, and Sullivan has done us a service in writing this excellent historical account of it.

F. Graham Smith FRS

Sir Francis Graham Smith is Emeritus Professor at Jodrell Bank Observatory, where he was Director (1981–88). He also served as Director of the Royal Greenwich Observatory (1976–81), and as the 13th Astronomer Royal (1982–91).

Preface

Freshly minted as a Ph.D. in astronomy, I began this project in 1971 with the observation that almost all of the pioneers of radio astronomy, including my advisor (Frank Kerr^{†1}), were still available as sources for a book on the worldwide history of radio astronomy. World War II, during which radio astronomy and I were both born, had ended only a quarter-century before and memories were relatively fresh. Armed with a cassette taperecorder, I naively began interviewing "old-timers." But when I learned more about doing history and about interviewing, I eventually repeated those early interviews, added many more (see Appendix B), and became serious about archival research (Appendix C). Guided by Urania and Clio, I gathered data from around the world as I could, mostly during 1972-88. The bulk of the initial writing followed in 1984-89, but then the mostly-finished book stalled as other projects intervened. Scattered efforts were sometimes possible, but in the end it took a sabbatical year in 2006 to resurrect the book and finally bring it to completion. The 24 year span of writing triples the 1945–53 period that the book mainly covers, and also far surpasses the stewing period of nine years for writing that the Roman poet Horace famously advised. As another measure of the time that has passed, 60% of the interviewees whose materials have been used for the present volume have now passed away.

Along the way I did produce two other books (still in print) that I consider handmaidens to the present volume: *Classics in Radio Astronomy* (Sullivan 1982) and *The Early Years of Radio Astronomy* (Sullivan 1984). The former is a collection of reprints, with extensive commentary, of 37 seminal papers in radio astronomy and the latter a collection of 21 articles discussing the pre-1960 period by early radio astronomers and historians. Furthermore, over the years portions of the present book appeared in the form of articles, abstracts, and talks; the principal contributions among these can be found in the list of references.

In 1984 I signed a contract with Cambridge University Press to produce this book in two years. Although that contract expired in the last millennium, I am delighted that the Press nevertheless has been willing to publish this opus. Simon Mitton has been encouraging all along and I also thank Richard Ziemacki, Helen Wheeler, and Vince Higgs for their support and advice.

The book is a monograph designed to appeal to astronomers and historians of science, as well as to others with some background in the physical sciences who have a serious interest in the development of twentieth-century science. I cover the entirety of worldwide radio and radar astronomy through the year 1953. By the word "cover" I mean the best story I can assemble about the intellectual, technical, and social aspects that shaped early radio astronomy. This story has been based on (1) the published literature of the time (including lab reports), (2) correspondence and other items found during archival research, (3) over 115 interviews with the early radio astronomers themselves, and (4) photographs of the time (about one-half of the book's 180 figures). Quotations from the interviews are an important feature of the book - they create liveliness and provide insights, although I am well aware of the pitfalls of memory. I thank interviewees, publishers, and photographers for permissions to use their materials.

The first chapter sets out the structure and organization of the book and the conventions that I have used. Unusually for a history book, I have strived to make indexes and cross-references such that the volume acts as an efficient reference book. The first chapter also sets this volume in the context of other studies and discusses my approach to doing history. Section 1.2.3

¹ The superscript [†] after a name in the Preface indicates that the person is known to have died.

xxx Preface

gives a précis of the book's narrative and Section 1.3.3 summarizes the main historical themes.

This enterprise has had a large supporting cast. I thank sincerely my history of science colleagues at the University of Washington (UW) and the University of Puget Sound whose friendship, mentoring, and criticisms over the decades have been fundamental to my education in history of science. Chief among these have been Keith Benson, Jim Evans, Mott Greene, Tom Hankins, Bruce Hevly, Karl Hufbauer, and Jody Yoder. Further afield in the history of science community, I have profited tremendously in general or in terms of specific reviews of chapters by David DeVorkin, Steve Dick, David Edge[†], Paul Forman, Peter Galison, Stewart Gillmor, Owen Gingerich, Rod Home, Michael Hoskin, Wayne Orchiston, Simon Shaffer, Robert Smith, and Spencer Weart. I am truly sorry that David Edge, who died in 2003, will not see this work. David, a radio astronomer turned sociologist of science, was a good friend and fellow lover of cricket and baseball. From the start, he was supportive of my efforts and generous with advice even though I was horning in on his own research that eventually resulted in Astronomy Transformed (Edge and Mulkay 1976) (see Section 1.3.1). Through the years we had a marvellous correspondence that greatly enriched the present study.

The cooperation and advice of the community of radio astronomers (and related researchers) has been indispensable to this project. I am thankful for the willingness of many to be interviewed (see Appendix B for the full list), to review draft chapters, to answer myriad follow-up questions, and to supply copies of archival materials, photographs, and reprints. It is perhaps odious to pick out those who have been the most generous with their time, but the following indeed went the extra mile: John Baldwin, John Bolton[†], Taffy Bowen[†], Ron Bracewell[†], Arthur Covington[†], Chris Christiansen[†], John DeWitt[†], Bruce Elsmore, Harold "Doc" Ewen, Vitaly Ginzburg, Jesse Greenstein[†], Robert Hanbury Brown[†], Gerald Hawkins[†], Denis Heightman[†], Stanley Hey[†], Roger Jennison[†], Ken Kellermann, Frank Kerr[†], Bernard Lovell, Ken Machin[†], Bernie Mills, Harry Minnett[†], Lex Muller[†], Jan Oort[†], James Phillips, Grote Reber[†], Alexander Salomonovich[†], Peter Scheuer[†], John Shakeshaft, Bruce Slee, Graham Smith, Gordon Stanley[†], Henk Van de Hulst[†], Gart Westerhout, and Paul Wild[†].

In addition I similarly thank the following people most heartily for their cooperation and information: Mary Almond, Zoltán Bay[†], Emile-Jacques Blum, Henry Booker, M. K. Das Gupta[†], John Dickey, John Findlay[†], Kurt Fränz[†], Frank Gardner[†], Tommy Gold[†], Cyril Hazard, Tony Hewish, Jim Hindman[†], Vic Hughes[†], George Hutchinson, Nik Kardashev, John Kraus[†], Laurence Manning, Connie Mayer[†], Ed McClain[†], Kenichi Miya, Fumio Moriyama, George Mueller, Vivian Phillips, Jack Piddington[†], John Pierce, Wolfgang Priester, Ed Purcell[†], J. J. Riihimaa, Jim Roberts, Peter Robertson, Olof Rydbeck[†], Boris Schedvin, Jean-Louis Steinberg, Gordon Stewart, King Stodola, Tatsuo Takakura, Charlie Townes, James Trexler[†], Derek Vonberg, Kevin Westfold[†], Fred Whipple[†], and Don Yabsley[†].

One contemporary of mine who has played a huge role in improving this book and bringing it to fruition is Miller Goss, who carefully reviewed the entire manuscript and raised many issues both of detail and broader impact. I thank him for his labors and wish him well on his own forays into the history of radio astronomy.

I have enjoyed significant institutional support over the years, starting with the Kapteyn Laboratory of the University of Groningen for a postdoc, then the UW Department of Astronomy since 1973, supplemented by sabbatical stays at the Institute of Astronomy, Cambridge University and the Observatoire de Meudon near Paris. I am grateful to the directors of these institutions for backing my historical pursuits. I also especially thank Arthur Whiteley and his eponymous Center for establishing a marvellous scholarly retreat in the San Juan Islands where for the past five years major portions of this book have been written and rewritten.

Financial support, primarily in the form of partial summer salary, has come from the Dudley Observatory (thrice), the UW Graduate Student Research Fund (once), and the National Science Foundation (eight times). NSF's Program in History and Philosophy of Science, headed by Ron Overmann, also awarded a major grant in 1976–79, which allowed, for instance, a three-week visit to the Radiophysics Laboratory in Sydney for archival and oral history research. In 1980 I also was privileged to visit the main Soviet radio astronomy sites and groups on an exchange sponsored by the US National Academy of Sciences. And I would

Preface xxxi

be remiss if I did not mention my first-ever "grant" to do history: a 100-guilder gift in 1973 from my colleagues at the Kapteyn Lab – I have never forgotten this endorsement of my fledgeling efforts.

Processing the interviews has been a laborious task. I thank NSF and the Center for History of Physics (American Instutute of Physics.) for funding transcriptions. In particular, the skill and attention to detail of transcribers Bonnie Jacobs and Pamela Jernigan is acknowledged. Furthermore, during the early 1990s Karen Fisher provided excellent secretarial services.

Librarians have often worked wonders for me, whether via Interlibrary Loan, locating obscure reports and journals, or allowing special access after hours. I also thank those who have made the NASA Astrophysics Data System a powerful and vital bibliographic tool for the historian of astronomy.

This history would be impoverished and stale without access to well-organized archives, or sometimes to a person's papers before placement in an official archive. For the latter privilege I thank in particular Lady Rowena Ryle (widow of Martin Ryle), as well as Alice Jansky[†] and David B. Jansky (widow and son of Karl Jansky). A special, huge thanks goes to Sally Atkinson, longtime chief administrative assistant of the Radiophysics Division in Sydney, and unofficial archivist after her retirement. Sally was tireless in fulfilling my requests and providing access to everything from scrapbooks to photographs to official correspondence in the rich Division records. Other archivists too, from around the world (Appendix C), have rendered superior service.

I have been aided in translations over the decades by Helga Byhre, Karl-Heinz Böhm, Tom Hankins, Larry Sandler[†], Jim Naiden[†], Vlad Chaloupka, Bob Schommer[†], Julian Barbour, Dave Jenner, and Joke Huizinga[†].

My family has sustained this project in many ways, for instance helping with bibliographic and archival tasks, tolerating warped holiday trips, and encouraging me to stick with it. Daughters Rachel and Sarah grew up with "The Book" ever present and my wife Barbara's support has been continuous for decades. To her I dedicate this volume.

Acknowledgments for figures

The author thanks the following persons, publications and institutions for the use in this book of the indicated figures from their publications or collections. I apologize if I have unwittingly, despite my efforts, omitted any required permissions.

- American Astronomical Society (*Astrophysical J.*): 4.5, 4.6, 4.7, 10.3, 10.6, 11.3, 11.10, 14.4, 14.13, 14.14
- American Institute of Physics (*Reviews of Scientific* Instruments): 10.1
- Astronomical Society of the Pacific (*Publications of the* Astronomical Society of the Pacific): 7.8
- *Bulletin of the Astronomical Institutes of the Netherlands*: 14.3, 15.4
- CSIRO Publishing (Australian Journal of Scientific Research; Australian Journal of Physics): 7.12, 12.12, 13.4, 13.5, 13.13, 13.14, 14.8, 14.11, 14.16, 15.1, 16.8
- Elsevier (J. Franklin Inst.): 5.8
- IEEE (Proc. IRE): 3.2, 3.4, 3.5, 3.6, 3.7, 3.8, 4.7, 11.1
- Institute of Physics Publishing (Proc. Physical Soc.; Reports on Progress in Physics): 6.5, 6.6, 6.7, 6.8, 6.9, 14.8
- Nature Publishing Group (*Nature*): 6.3, 7.11, 8.4, 13.8, 13.12, 14.9

Wiley–Blackwell (Monthly Notices of the Royal Astronomical Society): 9.6, 11.6, 11.8, 11.9, 13.9, 14.6

- Royal Society (Proc. Royal Soc.): 6.1, 6.4, 7.9, 7.10
- ScienceCartoonsPlus.com (Sidney Harris): 14.17
- Taylor & Francis (Philosophical Magazine): 11.4
- University of Chicago Press (from *The Sun*, ed. G. Kuiper [1953]): 13.16
- Cavendish Laboratory, Cambridge University (Radio Astronomy Group): 8.2, 8.5, 8.6, 8.7, 8.8, 8.9, 10.9, 13.7, 14.12

- Combined Arms Research Library, Ft. Leavenworth, Kansas – from p. 323 of *Army Radar* by A. P. Sayer (1950), a volume in the series *The Second World War*, *1939–1945, Army* (London: The War Office): 5.2
- Historic Photographic Archive, Australia Telescope National Facility: 7.1, 7.3, 7.4, 7.6, 7.7, 7.13, 12.9, 12.10, 12.11, 13.10, 13.15, 13.17, 13.18, 14.7, 14.9, 16.9
- Public Record Office, Kew, UK (Crown copyright): 5.3, 5.4
- Reber papers, Archives, National Radio Astronomy Observatory: 4.1, 4.2, 4.3, 4.4, 4.8
- Ryle papers, Churchill College Archives: 15.3
- Southworth collection, Niels Bohr Library, American Institute of Physics: 3.1
- Southworth papers, AT&T Archives: 5.6, 5.7
- Z. Bay: 12.6, 12.7, 12.8; E.-J. Blum: 10.11, 10.12;
 R. N. Bracewell: A.3; A. E. Covington: 10.7; J. H. DeWitt & US Army: 12.2, 12.3, 12.5; R. H. Dicke: 10.2; H. I. Ewen: 16.2, 16.3, 16.4; V. L. Ginzburg: 10.8; J. L. Greenstein: 14.15; J. P. Hagen: 10.2; D. W. Heightman: 5.5; J. S. Hey: 5.1; R. C. Jennison: 14.18, 14.19, 14.20; J. Katgert-Merkelijn: 16.1; J. D. Kraus: 1.1; A. C. B. Lovell: 9.1, 9.2, 9.3, 9.5, 9.7, 9.8, 9.10, 11.2, 11.5, 11.7; A. C. Muller: 16.6; J. H. Oort: 16.5, 16.7; J. W. Phillips: 6.2; G. W. Potapenko: 3.9, 3.10, 3.11; A. E. Salomonovich: 10.10; I. S. Shklovsky: 10.8; H. Tanaka: 10.13; F. Trenkle: 12.1; J. H. Trexler & US Navy: 12.13; US Navy: 10.4, 10.5

Unable to locate Electronics: 12.4 Hochfrequenztechnik und Electroakustik: 6.10 Radio News: 4.9 Science Progress: 9.4