Electromechanics and MEMS

Offering a consistent, systematic approach to capacitive, piezoelectric, and magnetic MEMS, this textbook equips students to design and develop practical, system-level MEMS models.

- Includes a concise yet thorough treatment of the underlying principles of electromechanical transduction.
- Makes extensive use of easy-to-interpret electrical and mechanical analogs, such as electrical circuits, electromechanical two-port models, and the cascade paradigm.
- Each chapter features extensive worked examples, and numerous homework problems.

Thomas B. Jones is Professor of Electrical Engineering at the University of Rochester. An experienced educator involved in teaching for over 40 years, his research has focused on electric field-mediated manipulation and transport of particles and liquids. He holds a Ph.D. from MIT, is the author of *Electromechanics of Particles* (Cambridge University Press, 1995) and is a Fellow of the IEEE.

Nenad G. Nenadic is a Research Associate Professor at the Rochester Institute of Technology. His career, spanning both industry and academia, has involved him in many aspects of MEMS, including design and analysis, system-level simulation, test development, and marketing. He holds a Ph.D. from the University of Rochester, where he assisted in the teaching of graduate-level MEMS courses.

"This is an excellent textbook presenting the fundamentals of electromechanics required by every practicing MEMS engineer. The authors treat the arduous concepts of coupled electrical and mechanical systems simultaneously with lucidity and a thorough pedagogical rigor that comes from deep appreciation of the field and the love to impart that knowledge as a teacher. The book elucidates the concepts with very topical examples of microelectromechanical systems such as MEMS microphones, comb drive actuators, gyroscopes, energy harvesters, and piezoelectric and magnetic devices, including MATLAB models and a comprehensive set of problems at the end of each chapter."

Srinivas Tadigadapa, The Pennsylvania State University

"A fantastic book for the student seeking a solid foundation in electromechanical device design and an essential reference for the expert MEMS engineer. Jones and Nenadic present the fundamental theory behind electromechanical transduction, with a focus on capacitive drive and sense microsystems. The authors systematically frame the device fundamentals into real world micro scale device applications that provide relevance to the underlying physics. This book captures and dutifully explains the foundational physics at work in the MEMS devices we often unknowingly use daily in our automobiles, mobile phones and electronic devices."

Chris Keimel, GE Global Research

"Electromechanics and MEMS is a thorough treatment of fundamental MEMS analysis for both the student and the practitioner. The readers are presented with the tools to methodically build system models that are comprehensive yet manageable."

Eric Chojnacki, MEMSIC, Inc.

Electromechanics and MEMS

THOMAS B. JONES

University of Rochester, New York

NENAD G. NENADIC

Rochester Institute of Technology, New York

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521764834

© Cambridge University Press & Assessment 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Jones, T. B. (Thomas Byron), 1944– Electromechanics and MEMS / Thomas B. Jones, University of Rochester, New York, Nenad G. Nenadic, Rochester Institute of Technology. pages cm Includes bibliographical references. ISBN 978-0-521-76483-4 (hardback) 1. Microelectromechanical systems. I. Nenadic, Nenad G. II. Title. TK7875.J66 2012 621.381 – dc23 2012021830

ISBN 978-0-521-76483-4 Hardback

Additional resources for this publication at www.cambridge.org/mems

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Cambridge University Press & Assessment 978-0-521-76483-4 — Electromechanics and MEMS Thomas B. Jones , Nenad G. Nenadic Frontmatter <u>More Information</u>

Contents

Preface			<i>page</i> xiii
Intro	ductior	1	1
1.1	Backg	ground	1
1.2	Some	terminology	2
1.3	Electr	omechanical systems	3
1.4	Concl	usion	7
Prob	lems		7
Refe	erence		9
Circ	uit-base	ed modeling	10
2.1	Funda	mentals of circuit theory	10
	2.1.1	Motivation	10
	2.1.2	Kirchhoff's current and voltage laws	11
	2.1.3	Circuit elements	12
	2.1.4	Tellegen's theorem: power and energy	12
	2.1.5	AC circuits, impedance, and admittance	14
2.2	Circui	it models for capacitive devices	15
	2.2.1	Basic RC circuit building block	16
	2.2.2	The series capacitive circuit	17
	2.2.3	The parallel capacitive circuit	18
	2.2.4	Special cases: series and parallel capacitance	20
	2.2.5	Summary	20
2.3	Two-p	port networks	22
	2.3.1	Impedance and admittance matrices	22
	2.3.2	The transmission matrix	24
	2.3.3	Cascaded two-port networks	25
	2.3.4	Some important two-port networks	27
	2.3.5	The gyrator and the transformer	29
	2.3.6	Embedded networks	30
	2.3.7	Source and impedance reflection	32
2.4	Summ	nary	34
Prot	lems		34
Refe	erences	43	

vi	Contents	
3	Capacitive lumped parameter electromechanics	44
	2.1 Pasia assumptions and concents	11
	3.1.1 The lossless electromechanical coupling	44
	3.1.2 State variables and conservative systems	46
	3.1.3 Evaluation of energy function	46
	3.1.4 Force of electrical origin	48
	3.2 Coenergy – an alternate energy function	49
	3.2.1 Definition of coenergy	49
	3.2.2 Integral evaluation of coenergy	50
	3.2.3 Evaluation of force of electrical origin	51
	3.3 Couplings with multiple ports	52
	3.3.1 Energy conservation relation	53
	3.3.2 System with two electrical and two mechanical ports	54
	3.4 Basic capacitive transducer types	56
	3.4.1 Variable-gap capacitors	56
	3.4.2 Variable-area capacitors	58
	3.4.3 Comparison of variable-gap and variable-area actuators	60
	3.4.4 Transducer stroke	62
	3.4.5 The comb-drive geometry	64
	3.4.6 Another variable-area capacitor	65
	3.5 Rotational transducers	66
	3.5.1 Modeling rotational electromechanics	67
	3.5.2 lorque of electrical origin	68
	3.5.3 An example	08
	2.7 Non linear concernative electromechanical systems	/1
	3.7 Non-initial conservation laws for conscitive devices	73
	3.7.2 Non linear oscillations and stability	73 דד
	3.7.3 Numerical solutions	79
	3.7.4 Constant charge constraint	80
	3.7.5 Discussion	83
	3.8 Summary	83
	Problems	84
	References	96
4	Small-signal capacitive electromechanical systems	97
	4.1 Background	97
	4.2 Linearized electromechanical transducers	98
	4.2.1 Some preliminaries	98
	4.2.2 Linearization in terms of energy and coenergy	99
	4.3 Electromechanical two-port networks	101
	4.3.1 The transducer matrix	101
	4.3.2 The linear capacitive transducer	103

			Contents	vii
		4.3.3 Important special cases		105
		4.3.4 Transducers with angular displacement		105
		4.3.5 Multiport electromechanical transducers		107
	4.4	Electromechanical circuit models		109
		4.4.1 Analogous variables		109
		4.4.2 M-form equivalent electromechanical circuit		110
		4.4.3 N-form equivalent electromechanical circuit		112
		4.4.4 More about the cascade paradigm		113
	4.5	Reconciliation with Neubert		113
	4.6	External constraints		114
		4.6.1 Mechanical constraints		115
		4.6.2 Electrical constraints		118
		4.6.3 Fully constrained electromechanical transducers		118
		4.6.4 Other useful matrix forms		120
	4.7	Applications of electromechanical two-port theory		121
		4.7.1 Application of source and impedance reflection		121
		4.7.2 A capacitive microphone		123
		4.7.3 Electromechanical transfer functions		125
		4.7.4 A comb-drive actuator		126
		4.7.5 The three-plate capacitive sensor		127
		476 Linear model for electret transducer		130
	48	Stability considerations		130
	4.0	4.8.1 Preliminary look at stability		132
		4.8.2 General stability criteria		132
		4.8.2 The pull in instability threshold		135
		4.8.5 The put-in instability in eshold		137
	4.0	4.8.4 A physical interpretation of instability		130
	4.9 Dech	Summary		140
	Refe	prences		141
_	•			1.50
5	Capa	icitive sensing and resonant drive circuits		150
	5.1	Introduction		150
	5.2	Basics of operational amplifiers		151
	5.3	Inverting amplifiers and capacitive sensing		152
		5.3.1 Basic inverting configuration		153
		5.3.2 One-sided high-impedance (charge) amplifier		154
		5.3.3 Variable-gap and variable-area capacitors		157
		5.3.4 Effect of op-amp leakage current		157
	5.4	Differential (three-plate) capacitance sensing		163
		5.4.1 DC feedback for the differential configuration		165
	5.5	AC (modulated) sensing		166
		5.5.1 Capacitive sensor excited by zero-mean sinusoidal v	oltage	167
		5.5.2 Two-plate capacitive sensing with AC excitation		169
		-		

viii	Cont	ents		
		5.5.3	Analysis including the feedback resistance $R_{\rm f}$	170
		5.5.4	AM signal demodulation	172
		5.5.5	Differential AC sensing	173
		5.5.6	Synchronous demodulation	174
	5.6	AC se	nsors using symmetric square-wave excitation	175
		5.6.1	Transducers using square-wave excitation	175
		5.6.2	Three-plate sensing using square-wave excitation	176
	5.7	Switcl	hed capacitance sensor circuits	178
		5.7.1	Basics of switched-capacitor circuits	178
		5.7.2	Simple sensor based on switched capacitance	179
		5.7.3	Half-wave bridge sensor using switched capacitance	180
	5.8	Noise	in capacitive MEMS	183
		5.8.1	Common noise characteristics	184
		5.8.2	Filtered noise	185
		5.8.3	Noisy two-ports	186
		5.8.4	Electrical thermal noise	186
		5.8.5	Mechanical thermal noise	189
		5.8.6	1/f amplifier noise	191
		5.8.7	Effect of modulation on $1/f$ noise	192
	5.9	Electr	ostatic drives for MEMS resonators	193
		5.9.1	Mechanical resonators	194
		5.9.2	Drive electrodes with sinusoidal drive	194
		5.9.3	Non-harmonic drives	197
		5.9.4	Sense electrodes	200
		5.9.5	Harmonic oscillators based on MEMS resonators	200
		5.9.6	Phase-locked loop drives	208
		597	PLL system linearization	210
	5 10	Summ		213
	Proh	lems		213
	Refe	erences		222
6	Dist	ributed	1-D and 2-D capacitive electromechanical structures	223
	6.1	Introd	uction	223
	6.2	A mot	tivating example – electrostatic actuation of a cantilevered	
		beam		224
		6.2.1	Problem description	224
		6.2.2	Derivation of the lumped parameter model	225
		6.2.3	Evaluation of equivalent spring constant, mass, and mechanical	
		0.2.0	damping	228
		624	Resonance of a cantilevered beam	220
		625	Recapitulation of lumped parameter model identification	22)
		0.2.0	nrocedure	233
			Provoduro	255

		Contents	ix
	6.3	A second look at the cantilevered beam	235
		6.3.1 Parameterization of distributed capacitance	236
		6.3.2 Discretized capacitance model for the beam	237
	6.4	MDF models for beams	239
		6.4.1 MDF description	240
		6.4.2 Application of boundary conditions	242
		6.4.3 Maxwell's reciprocity theorem	243
		6.4.4 Applications of static MDF model	245
		6.4.5 Modal analysis	249
		6.4.6 Decoupling of the equation of motion	252
		6.4.7 Equivalent circuit using modal analysis	254
		6.4.8 Damping	257
	6.5	Using the MDF model for dynamics	259
	6.6	A first look at plates	261
		6.6.1 Equivalent spring constant and mass	263
		6.6.2 Capacitance	263
		6.6.3 Resonance	263
	6.7	MDF modeling of plates	265
		6.7.1 Uniform discretization of rectangular 2-D plates	265
		6.7.2 2-D discretization of circular plates	267
		6.7.3 2-D example: electrostatic actuation of a circular plate	268
	6.8	Additional beam configurations	277
		6.8.1 Doubly clamped beam	277
		6.8.2 Simply supported beam	281
		6.8.3 Vibration isolation of the simply supported beam	285
		6.8.4 Closure	289
	6.9	Summary	289
	Prob	blems	290
	Refe	erences	296
7	Prac	tical MEMS devices	298
	71	Introduction	298
	7.2	Capacitive MEMS pressure sensors	299
		7.2.1 Basic displacement-based capacitive pressure sensor	299
		7.2.2 System-level model	302
		7.2.3 A differential configuration	304
		7.2.4 Closure	307
	73	MEMS accelerometers	307
	1.5	7 3 1 Principles of operation	308
		7.3.2 System transfer function and sensitivity	310
		7 3 3 Basic construction of an accelerometer	312
		7.3.4 Mechanical transfer function and mechanical thermal noise	314
			514

Х	Cont	tents		
		7.3.5	Selection of the electrode types	318
		7.3.6	Force-feedback configuration	319
		7.3.7	Higher-order effects	322
	7.4	MEM	S gyroscopes	325
		7.4.1	A qualitative description of mechanical gyroscopes with some	
			historical notes	326
		7.4.2	Rotating reference frames	328
		7.4.3	A simple z axis rate vibratory gyroscope	330
		7.4.4	Other examples of MEMS-based gyroscopes	336
		7.4.5	Background material	339
		7.4.6	Torsional-vibration gyroscope	342
		7.4.7	Higher-order effects	345
		7.4.8	Closure	346
	7.5	MEM	S energy harvesters	347
		/.5.1	Basic principle of capacitive energy harvesting	34/
		7.5.2	Power considerations and efficiency	349
		7.5.3	Multiple resonators	351
		7.5.4	Capacitive energy narvesters with bias voltage	350
	7.0	7.3.3 Samu	Practical electrostatic energy narvesters	357 250
	/.0 Duch	Summ	агу	260
	Prot	brenns		270
	Kelt	erences		570
8	Elec	tromect	hanics of piezoelectric elements	372
	8.1	Introd	luction	372
	8.2	Electr	omechanics of piezoelectric materials	373
		8.2.1	Piezoelectric phenomenology	373
		8.2.2	Piezoelectric properties	375
		8.2.3	The L-type piezoelectric transducer	377
		8.2.4	The T-type piezoelectric transducer	379
		8.2.5	Shear mode piezoelectric transducer	380
		8.2.6	Summary	381
	8.3	Two-p	oort models for piezoelectric systems	383
		8.3.1	General transformer-based two-port network model	383
		8.3.2	External constraints	384
	8.4	Piezoe	electric excitation of a cantilevered beam	386
		8.4.1	Force couple model	386
		8.4.2	Optimal placement of piezoelectric element	388
		8.4.3	Excitation of higher-order resonant modes	389
	8.5	Sensir	ng circuits for piezoelectric transducers	390
		8.5.1	The charge amplifier	391
		8.5.2	Two-port piezo sensor representation	392
	8.6	Summ	nary	395

		Contents	Х
	Problems		396
	References		398
9	Electromechanics of magnetic MEMS devices		399
	9.1 Preliminaries		399
	9.1.1 Organization and background		400
	9.1.2 Note to readers		400
	9.2 Lossless electromechanics of magnetic systems		400
	9.2.1 State variables and conservative systems		401
	9.2.2 Evaluation of magnetic energy		404
	9.2.5 Force of electrical origin		403
	9.2.5 Magnetic non-linearity		402
	9.2.6 Multiport magnetic systems		404
	9.3 Basic inductive transducer geometries		406
	9.3.1 Variable-gap inductors		409
	9.3.2 Variable-area inductors		411
	9.3.3 Nature of magnetic system constraints		411
	9.3.4 A magnetic transducer with two coils		413
	9.4 Rotational magnetic transducers		416
	9.4.1 Electromechanics of rotating magnetic transducers		416
	9.4.2 Rotating magnetic actuator		417
	9.5 Permanent magnet transducers		419
	9.6 Small-signal inductive electromechanics		421
	9.6.1 M-form transducer matrix based on $W'_{\rm m}(x, i)$		421
	9.6.2 N-form transducer matrix based on $W_{\rm m}(x, \lambda)$		422
	9.6.3 Linear circuit models for magnetic transducers		424
	9.6.4 External constraints		425
	9.6.5 Linear two-port transducers with external constrain	it	426
	9.6.6 Cascade forms		427
	9.7 Two-port models for magnetic MEMIS		427
	9.7.1 Current-blased magnetic transducers		420
	9.7.2 Variable-gap and variable-area transducers		430
	9.7.4 A permanent magnet actuator		434
	9.8 Stability of magnetic transducers		434
	9.8.1 Use of small-signal analysis		435
	9.8.2 Constant current and constant flux limits		436
	9.8.3 General stability criteria		436
	9.8.4 Variable-gap and variable-area devices		437
	9.9 Magnetic MEMS sensors		437
	9.9.1 DC biased current-bridge sensor		438
	9.9.2 Linear variable differential transformer sensor		441

xii	Contents			
	9.10 Summary	444		
	Problems	444		
	References	452		
	Appendix A Review of quasistatic electromagnetics	454		
	Appendix B Review of mechanical resonators	473		
	Appendix C Micromachining	498		
	Appendix D A brief review of solid mechanics	523		
	Index	552		

Preface

The growing interest in microsystems, and particularly in MEMS technology, has reasserted electromechanics as a key discipline. This book fills the need for a textbook that presents the fundamentals of electromechanics, classifies structures according to their functional capabilities, develops systematic modeling methods for the design of MEMS devices integrated into electronic systems, and provides practical examples derived from selected microdevice technologies. It is written for engineering students and physical science majors who want to learn about such systems. A further ambition is that the book will find its way slowly onto the shelves of practicing engineers involved in MEMS design and development.

Organization

The organization proceeds from basics to systems-oriented applications. The first three chapters focus on fundamentals of circuits and lumped parameter electromechanics. Chapter 1 provides some historical context, introducing key terminology and then offering a general description of electromechanical transducers based on power and energy considerations. Chapter 2 introduces the crucial concept of circuit-based modeling. Because the vast majority of MEMS devices are capacitive, this chapter focuses on circuits with capacitors and resistors. Chapter 3, drawing heavily on Part 1 of H. H. Woodson and J. R. Melcher's text, *Electromechanical Dynamics*, presents the classic, energy-based formulation for electromechanical interactions. The treatment here differs from their text by concentrating on capacitive microelectromechanical devices and introducing the geometries and dimensions characteristic of MEMS technology.

Next, we present in detail a systematic method for modeling and then analyzing practical MEMS. Chapter 4 introduces the general small-signal transducer formalism found in H. K. P. Neubert's classic text, *Instrument Transducers*. This formalism serves as the robust backbone for the chapters that follow. Representing the coupled small-signal behavior – mechanical and electrical – of a MEMS device is the key to developing a systematic, integrated coverage of the transient dynamics, frequency response, and mechanical stability of transducers and sensors.¹ The critical design and performance

¹ The formal basis of this integrated treatment was first published by H. A. Tilmans (*Journal of Micromechanics and Microengineering* 6, 1996, 157–176; *Journal of Micromechanics and Microengineering* 7, 1997, 285–309).

Preface

xiv

issues can be addressed in terms of a mechanical variable-dependent capacitance, C(x), and its first two derivatives, i.e., dC/dx, and d^2C/dx^2 . Small-signal analysis also facilitates the modeling of virtually any cascaded system-on-a-chip comprising both the MEMS device and the electronics that controls or monitors it.

The next three chapters deal in some depth with small-signal modeling of practical MEMS geometries, such as cantilevered beams, membranes, and diaphragms, and practical systems, such as pressure sensors, actuators, and gyroscopes. Chapter 5 introduces some operational amplifier-based electronics topologies for capacitive sensing devices. While the treatment is elementary, some prior exposure to electronic circuits may be helpful. These circuits are employed with variable-gap and variable-area capacitive sensors configured in single-ended and half-bridge configurations, with both DC and AC excitation. The chapter includes a brief summary of amplitude- and double-sideband suppressed carrier modulated schemes for capacitive sensors. Then, after a very concise presentation of noise, the advantages of modulated schemes for circumventing the often-prevalent 1/f noise are revealed. The chapter concludes with a consideration of phase-locked loop drives for resonant actuators.

Chapter 6 is devoted to mechanical modeling of deformable continua, such as cantilevered beams and plates. It is shown by analytical approximation that beams and plates can be reasonably well represented by linear, single-degree-of-freedom models and formulated as electromechanical two-ports, as introduced in Chapter 4. The more general, multiple-degree-of-freedom modeling approach is then presented. With proper attention given to the existence of multiple resonant modes, reduced order modeling is again restored. Practical MEMS devices amenable to this approach include pressure sensors, microphones, mirror arrays, and energy harvesters. Chapter 7 focuses on a few important examples of MEMS devices that utilize identifiable mechanical continua, including pressure transducers, accelerometers, gyroscopes, and energy harvesters. Specific geometries for each of these devices are considered in turn, with small-signal lumped parameter models as outcomes of the modeling exercise. This approach provides an opportunity to introduce important design considerations and higher-order effects that influence practical MEMS.

Because piezoelectric technology is important in certain microdevice applications, and will probably remain so, Chapter 8 offers a brief presentation of this subject. First, the standard phenomenological models, expressed in terms of mechanical and electrical field variables, are presented for the three important piezoelectric effects, that is, longitudinal, transverse, and shear modes. Then, adhering to the strategy of the previous chapters, these models are reduced to small-signal, two-port circuits useful in analysis of actuator and sensor devices.

Chapter 9, the last, offers a concise, largely self-contained coverage of the electromechanics of microscale magnetic transducers and linear, small-signal models for them. This chapter was prepared to anticipate likely breakthroughs in materials processing and fabrication methods for high-aspect ratio magnetic MEMS devices.² The

² See, for example, Section 2.02 of the new three-volume reference edited by Y. B. Gianchandani, O. Tabata, and H. Zappe, *Comprehensive Microsystems*, vols. 1, 2, and 3, Elsevier, 2008.

A block diagram representation of the organization of this textbook.

organization largely parallels the far more extensive treatment of capacitive devices found in Chapters 3, 4, and 5. A brief presentation of the basics of lumped parameter magnetic transducers comes first. Then, Neubert's small-signal formulation and the accompanying two-port circuit models are presented. The basic types of magnetic transducer are exemplified, as much as possible by introducing geometries that have already been or could be fabricated on the MEMS scale. The chapter concludes by presenting analyses of current bridge and linear variable differential transformer based sensors connected to operational amplifiers.

The diagram above reveals the organization of the text in a format mimicking standard block diagrams used throughout the book to represent general electromechanical systems. Thus, sections of the text that address the electromechanical conversion, the mechanical system, the electrical system, and MEMS device applications are separated into individual blocks.

The appendices found at the end of the text provide essential background and summaries of topics that intersect MEMS technology. Appendix A contains a very brief review of certain essentials from electromagnetic field theory. Appendix B covers mechanical systems, principally resonance of single- and multiple-degree-of-freedom systems. Appendix C offers a concise review of MEMS fabrication technology. The solid mechanics of typical MEMS structures, such as beams and plates, is covered in Appendix D.

Numerous examples and end-of-chapter problems reinforce and extend the important principles. A few more challenging design-oriented exercises have been included in some of the later chapters, and these are specially marked. Some of these exercises are good choices for assignment to teams composed of students from different disciplines.

xvi

Preface

Level

The highly interdisciplinary nature of MEMS is daunting to newcomers. Our challenge in writing this text has been to offer a cohesive treatment of the subject using material chosen to strike the right balance between theory and practice. The book is intended for fourth-year undergraduates and beginning graduate students in mechanical, electrical, optical, and biomedical engineering, plus physics. To maintain vital linkages to basic models and principles as new topics are introduced and as extra detail becomes warranted, the text returns again and again to certain capacitor geometries, viz., variable-gap and variable-area structures, and to the circuit constraints of constant voltage and constant charge. Many examples and end-of-chapter problems take advantage of coverage of the two capacitor types introduced in the earlier chapters. For this reason, it is probably best to go through the book in sequence, at least as far as Chapter 7.

Preparation in basic circuit theory, complex numbers, first- and second-order differential equations, some linear algebra and matrices, plus standard physics courses on mechanics, electricity, and magnetism are essential. In a typical setting, one might expect electrical and mechanical engineering students to dominate a class population, the electrical engineers having more understanding of circuits and linear systems and the mechanical engineers bringing their knowledge of mechanics and materials. Such an interdisciplinary mix is fertile. We are confident that industrious students will be able to overcome their respective "deficiencies" and gain deep understanding of the important basics of microelectromechanical interactions and how real MEMS devices are integrated into real systems. Our experience in teaching this material is that motivated students have little difficulty in overcoming any initial unfamiliarity with topic areas falling outside their undergraduate preparation. In fact, engineering and mechanical engineers and other students quickly form effective study teams and assist each other quite effectively in learning the material.

The sections with headings flagged by an asterisk provide details on related but peripheral topics. These sections are optional and may be passed over safely in a onesemester course.

Some limitations

While the acronym MEMS now seems to cover virtually all micromechanical devices, whether or not their actuation or transduction mechanism is really electromechanical in nature, this book is limited to devices with a true electromechanical mechanism. Thus, there is no coverage of magnetoresistive, bimetallic, or other thermally actuated devices. There is clearly a need for such a text, but we are not the ones to provide it.

Our coverage of mechanical continua is highly focused. A special effort has been made to demonstrate that the performance of the most common mechanical continua, e.g., the cantilevered beam and the circular plate diaphragm, can be reasonably approximated by reduced-order, lumped parameter models. Such models will prove useful to the systems

Preface

xvii

engineer whose ambition is to integrate a MEMS device with the drive electronics in a real system.

The fabrication of MEMS is a diverse and ever-evolving enterprise. Because of the pace of change and development in the field, this text limits its coverage to the very concise summary of microfabrication found in Appendix C. Critical terminology and basic processing methods are introduced but MEMS packaging is not covered. We believe that reliance on the fine reference books already available is the best strategy for those ready to learn how to build MEMS devices.

Guide to the use of this text

The study of MEMS is a very broad and highly interdisciplinary subject. That being the case, the length of this text is more a testament to the breadth of the subject than to authorial diligence or ambitions for thoroughness. Indeed, we had great difficulty – and some vigorous arguments – about what to include and what to leave out. The instructor trying to decide whether or not to adopt this book faces a related dilemma; namely, does this text adequately cover the material for an established MEMS course with given objectives. The table on page xviii, which identifies the sections, examples, and end-of-chapter problems relevant to many of the important MEMS technologies, provides guidance in making the right decision. The information is organized by the set of technologies appearing in the leftmost column. This set is no doubt incomplete but, we think, reasonably illustrative.

Selected references on MEMS

Advanced students, design engineers, and researchers might not find adequate coverage of certain topics relevant to their specific interests. These individuals can refer to the many fine texts, monographs, and reference volumes available for assistance. These books, listed chronologically by date of publication and accompanied by very brief synopses of their contents, should be of help. Students are urged to familiarize themselves with some of these MEMS resources.

An early MEMS compendium is *Micromechanics and MEMS, Classic and Seminal Papers to 1990* (IEEE Press, 1997), edited by W. D. Trimmer and containing seminal MEMS papers. This is required reading for students entering the field.

A general MEMS reference volume, Gregory T. Kovacs' *Micromachined Transducers Sourcebook* (McGraw-Hill, 1998), offers a very broad survey of sensors and actuators, including some MEMS devices.

On the subject of MEMS microwave systems, *Microelectromechanical (MEM) Microwave Systems* (Artech House, 1999), by Héctor de los Santos, offers a concise treatment of MEMS devices and mechanisms applied in microwave systems.

Microsystem Design (Kluwer Academic, 2001) by Stephen D. Senturia provides broad coverage of a large amount of material. Since its publication, practicing engineers in

xviii

Cambridge University Press & Assessment 978-0-521-76483-4 — Electromechanics and MEMS Thomas B. Jones , Nenad G. Nenadic Frontmatter <u>More Information</u>

Preface

Technology	Relevant sections & material	Relevant examples & end-of-chapter problems
Pressure sensors & microphones: Section 7.2	 Simple microphone model: 4.7.2 Deformation of plates & diaphragms: 6.6, 6.7, App. D.10, D.11 Distributed capacitive modeling: 6.7, App. A Three-plate (differential) sensors: 4.7.5 Modulation: 5.5, 5.6 Noise: 5.8 	Examples: 5.7, 6.9 Problems: 6.15, 6.16, 6.17, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8
MEMS switches	 Vibrating beam mechanics: 6.2 to 6.5, App. D.5, D.7 SDF resonance & transients: App. B Magnetic MEMS: Chapter 9, App. A.4 	Examples: 6.2
Accelerometers: Section 7.3	 Variable-gap & variable-area capacitors: 3.4, 4.3.3 Three-plate (differential) sensors: 4.7.5 Half-bridge amplification: 5.3, 5.4 Switched capacitance: 5.7 Modulation: 5.5, 5.6 Noise: 5.8 	Example 2.3, 5.6, 7.1, 7.2 Problems: 4.11, 7.9, 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16
Gyroscopes: Section 7.4	 Variable-gap & variable-area capacitors: 3.4 Multiport couplings: 3.3, 4.3.5 Three-plate (differential) sensors: 4.7.5 Half-bridge amplification: 5.3, 5.4 Switched capacitance: 5.7 Modulation: 5.5, 5.6 Noise: 5.8 Resonant drives: 5.9 Vibration isolation: 6.8.2, 6.8.3 	Examples: 3.4, 7.3 Problems: 5.16, 7.17, 7.18, 7.19, 7.20, 7.21
Energy harvesters: Section 7.5	 Mechanical resonance: App. B Vibrating beam mechanics: 6.2 to 6.5, App. D.5, D.7 Piezoelectric MEMS: Chapter 8 Electret-based MEMS: 3.6 	Examples: 4.2, 7.4 Problems: 5.17, 6.2, 6.8, 6.10, 7.21, 7.22, 7.23, 7.24, 7.25, 9.23
Rotating mirror displays	 Rotational capacitive transducers: 3.5 Rotational MEMS devices: 4.3.4	Examples: 3.5

Guide to the use of this textbook organized by the more well-recognized MEMS technologies. Relevant

the field have relied on this volume as a standard reference for the design of MEMS systems.

Fundamentals of Microfabrication: The Science of Miniaturization (CRC, 2nd edition, 2002), written by Marc Madou, is a recently updated and very complete resource for those interested in learning about MEMS fabrication.

For mechanical modeling of MEMS devices, John A. Pelesko and David H. Berstein's *Modeling MEMS and NEMS* (Chapman and Hall/CRC, 2003) chiefly concerns

Cambridge University Press & Assessment 978-0-521-76483-4 — Electromechanics and MEMS Thomas B. Jones , Nenad G. Nenadic Frontmatter <u>More Information</u>

Preface

xix

modeling of beams, diaphragms, and other continua on the microscale. A particularly valuable feature is its coverage of numerical analysis methods relevant to MEMS devices.

On the subject of piezoelectric MEMS devices, *Micromechatronics* (Marcel Dekker, 2003), written by Kenji Uchino and Jayne R. Giniewicz, is the best modern reference available on ferroelectric phenomena. It provides treatment of the relevant solid mechanics and examples of piezoelectric devices.

Chang Liu's book, *Foundations of MEMS* (Pearson Education, 2006), offers a very general treatment of microsystems and MEMS topics, although with somewhat limited coverage of electromechanics.

Another general MEMS reference, *Comprehensive Microsystems* by Y. B. Gianchandani, O. Tabata, and H. Zappe, in three volumes (Elsevier, 2008), is exhaustively complete and up-to-date.

Finally, V. Kaajakari's *Practical MEMS* (Small Gear Publishing, 2009) is a new textbook featuring coverage of many areas of MEMS with excellent practical examples distributed throughout the text.

Special acknowledgments

To provide the student with concrete examples of working MEMS devices, we have incorporated images of MEMS devices throughout the text. These inclusions were made possible through permissions granted by the engineers, students, and faculty researchers who created the images. We are humbly grateful for this generosity. Further, Weiqiang Wang obtained for us the SEM of the pyramidal etched pit shown that appears in Fig. C.13. We acknowledge James Moon, who thoroughly reviewed Appendix C, and Erica MacArthur, who helped us by preparing some of the SEM images. Additional assistance from Scott Adams, Zeljko Ignjatovic, Kelly Lee, Christopher Keimel, and Paul H. Jones is gratefully acknowledged.

Final note

The sources and inspirations for this text are many, and we can rightly claim full credit only for the errors. More than anything else, it was excellent undergraduate-level teaching that fostered our appreciation of electromechanics. The lead author (TBJ) was introduced to the subject in the Fall Semester of 1968 at MIT by Herman Schneider, who delivered crystal-clear, virtually error-free lectures without resort to any notes. A few years later, though not quite having mastered the ability to lecture without notes, TBJ got the chance to teach this same course. Anyone teaching the class in those days relied upon a thick, unwieldy binder of mimeographed notes, which were destined to become the textbook entitled *Electromechanical Interactions* and written by H. H. Woodson and J. R. Melcher.

xx Preface

In the first year of his electrical engineering undergraduate studies at the University of Novi Sad in Serbia, the second author (NN) was confronted by the requirement to take a course titled *Introduction to Mechanics*. Any doubts harbored about the value of this course were rapidly dispelled by the inspiring lectures of Dorđe Dukić and Teodor Atanacković. In 1996, during the first year of his graduate studies at the University of Rochester, NN enrolled in a course entitled *Transducers and Actuators*. This course revealed MEMS technology to be a tightly woven fabric of mechanics, electricity and magnetism, circuit theory, electronics, and beam mechanics. The lecture notes and problems prepared for this course by TBJ served as the foundation of the present text.