THE TRANSACTIONAL INTERPRETATION OF QUANTUM MECHANICS

A comprehensive exposition of the transactional interpretation of quantum mechanics (TI), this book sheds new light on longstanding problems in quantum theory and provides insight into the compatibility of TI with relativity. It breaks new ground in interpreting quantum theory, presenting a compelling new picture of quantum reality.

The book shows how TI can be used to solve the measurement problem of quantum mechanics, and to explain other puzzles, such as the origin of the “Born Rule” for the probabilities of measurement results. It addresses and resolves various objections and challenges to TI, such as Maudlin’s inconsistency challenge. It explicitly extends TI into the relativistic domain, providing new insight into the basic compatibility of TI with relativity and the physical meaning of “virtual particles.” This book is ideal for researchers and graduate students interested in the philosophy of physics and the interpretation of quantum mechanics.

RUTH E. KASTNER is a Research Associate and member of the Foundations of Physics group at the University of Maryland, College Park. She is the recipient of two National Science Foundation research awards for research in time symmetry issues and the transactional interpretation.
THE TRANSACTIONAL INTERPRETATION OF QUANTUM MECHANICS

The Reality of Possibility

RUTH E. KASTNER

University of Maryland, College Park
Contents

 Preface \hspace{10cm} page vii
 1 Introduction: quantum peculiarities \hspace{10cm} 1
 1.1 Introduction \hspace{10cm} 1
 1.2 Quantum peculiarities \hspace{10cm} 3
 1.3 Prevailing interpretations of QM \hspace{10cm} 14
 1.4 Quantum theory presents a genuinely new interpretational challenge \hspace{10cm} 25
 2 The map vs. the territory \hspace{10cm} 26
 2.1 Interpreting a “functioning theory” \hspace{10cm} 26
 2.2 The irony of quantum theory \hspace{10cm} 27
 2.3 “Constructive” vs. “principle” theories \hspace{10cm} 30
 2.4 Bohr’s Kantian orthodoxy \hspace{10cm} 31
 2.5 The proper way to interpret a “principle” theory \hspace{10cm} 34
 2.6 Heisenberg’s hint: a new metaphysical category \hspace{10cm} 36
 2.7 Ernst Mach: visionary/reactionary \hspace{10cm} 38
 2.8 Quantum theory and the noumenal realm \hspace{10cm} 41
 2.9 Science as the endeavor to understand reality \hspace{10cm} 42
 3 The original TI: fundamentals \hspace{10cm} 44
 3.1 Background \hspace{10cm} 44
 3.2 Basic concepts of TI \hspace{10cm} 51
 3.3 “Measurement” is well-defined in TI \hspace{10cm} 55
 3.4 Circumstances of CW generation \hspace{10cm} 65
 4 The new TI: possibilist transactional interpretation \hspace{10cm} 67
 4.1 Why PTI? \hspace{10cm} 67
 4.2 Basic concepts of PTI \hspace{10cm} 68
 4.3 Addressing some concerns \hspace{10cm} 76
Contents

4.4 “Transaction” is not equivalent to “trajectory” 84
4.5 Revisiting the two-slit experiment 88
5 Challenges, replies, and applications 91
5.1 Challenges to TI 91
5.2 Interaction-free measurements 101
5.3 The Hardy experiment II 107
5.4 Quantum eraser experiments 112
6 PTI and relativity 120
6.1 TI and PTI have basic compatibility with relativity 120
6.2 The Davies theory 121
6.3 PTI applied to QED calculations 126
6.4 Implications of offer waves as unconfirmed possibilities 132
6.5 Classical limit of the quantum electromagnetic field 136
6.6 Non-locality in quantum mechanics: PTI vs. rGRWf 140
6.7 The apparent conflict between “collapse” and relativity 144
6.8 Methodological considerations 147
7 The metaphysics of possibility in PTI 148
7.1 Traditional formulations of the notion of possibility 148
7.2 The PTI formulation: possibility as physically real potentiality 149
7.3 Offer waves, as potentia, are not individuals 151
7.4 The macroscopic world in PTI 154
7.5 An example: phenomenon vs. noumenon 160
7.6 Causality 164
7.7 Concerns about structural realism 167
8 PTI and “spacetime” 171
8.1 Recalling Plato’s distinction 171
8.2 Spacetime relationalism 181
8.3 The origin of the phenomenon of time: de Broglie waves 183
8.4 PTI vs. radical relationalism 190
8.5 Ontological vs. epistemological approaches, and implications for free will 191
9 Epilogue: more than meets the eye 196
9.1 The hidden origins of temporal asymmetry 196
9.2 Concluding remarks 202

Appendix A: Details of transactions in polarizer-type experiments 206
Appendix B: Feynman path amplitude 209
Appendix C: Berkovitz contingent absorber experiment 211
References 216
Index 223
This book came about as a result of my profound dissatisfaction with the existing “mainstream” interpretations of quantum theory and my conviction that the unusual mathematical structure of quantum theory indeed reflects something about physical reality, however subtle or hidden. In my early days as a physics graduate student, I was a “Bohmian”; however, I became dissatisfied with that interpretation for reasons discussed here and there throughout the book. It is my hope that, even if the reader does not come away convinced of the fruitfulness of the present approach, this presentation will serve as an invitation to further far-ranging and open discussion of the interpretational possibilities of quantum theory.

I have attempted to make much of the book accessible to the interested layperson with a mathematics and/or physics background, and to indicate where more technical sections can be omitted without losing track of the basic conceptual picture. For those in the field, I have endeavored to take into account as much as possible of the relevant literature and to use notes where a technical and/or esoteric point seems relevant. Chapters 5 and 6 are the most technical and may be omitted without losing track of the conceptual picture.

I am grateful to many colleagues, friends, and family members who gave generously of their time and energy to critically read drafts of various chapters, to offer comments, and to discuss material appearing herein. In particular, Professor John Cramer offered numerous suggestions for improvement of the manuscript, although we are not in agreement on all aspects of this proposal. His inclusion in the following list of acknowledgments therefore does not imply his endorsement of this formulation. Of course, final responsibility for the contents is mine alone.

My sincere thanks are owed to:

Stephen Brush
Leonardo Chiatti
John Cramer
Finally, I wish to thank my daughter, philosopher-artist Wendy Hagelgans, for valuable discussions concerning the nature of time and for drawing many of the images in this book, as well as friend and philosopher-artist Ty D’Avila for his insights and for allowing me to use his photo for two of the illustrations in Chapter 8. My other daughter, Janet, provided encouragement and inspiration by her example of perseverance in the face of challenge as she has pursued personal and career goals. My husband, Chuck, provided a sounding board as well as nonstop support and encouragement, as did my mother, Bernice Kastner. I would like to dedicate this book to my family, including the memory of my late father Sid Kastner, a physicist who was also fascinated by our elusive reality, seen and unseen.