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Preface

This is a book of 17 chapters, each of which provides some arithmetic, some geom-
etry, or some algebra. The basic ideas in each chapter we call threads, and there are
at least nine threads in this book – paper-folding threads, number-theory threads,
polyhedral threads, geometry threads, algebra threads, combinatorial threads, sym-
metry threads, group-theory threads, and historical threads. So this book utilizes,
exploits, and develops, by weaving these threads of a very different kind together,
many parts of mathematics. At the end of this preface we will give a table showing
how you might read this book in the very unlikely event that you are interested in
just one of these threads.

Many of the chapters involve the construction of models and these take time and
effort, but we believe that if you choose to carry out the constructions you will find
the activity satisfying. As Benno Artmann, reviewing one of Pedersen’s articles in
Mathematical Reviews, said about the construction of the golden dodecahedron:
“I tried a dodecahedron. It sits on my desk, looks nice and makes me feel like an
artist.” On the other hand, we understand that many of our readers won’t want to
construct these models, but we think that they can be appreciated without actually
constructing them. Surely you yourselves have enjoyed eating a piece of cake that
someone else baked; and, even though you didn’t actually do the baking, you might
be interested in its ingredients and how it came to be in its final shape. So we include
the instructions for building the models for those of you who want to construct them
and hope that our other readers will at least appreciate what goes into making them.

We have had the immense benefit of the cooperation of the artist Sylvie Don-
moyer who has provided beautiful, highly illustrative pictures, Hans Walser who
has provided the figures for Chapter 13, and Byron Walden who took responsibility
for the proofs in Chapter 17.

In addition to the various threads, there is one technical feature of this book
which we would like to mention. We adopt, when appropriate, the notation of
using radian measure, writing π (without the word “radians” following it) instead
of 180◦. The advantages of adopting this notation will, we believe, become obvious

xi
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xii Preface

to our readers when it is used; since it clearly emphasizes that the straight angles
of 180◦(= π ) at the edge of the strip of paper being folded play a special role in
the geometry, and subsequently in the number theory – as they obviously do. A
feature which we use throughout the book, to make it easier for the reader to spot
when a new idea is being named, is to use bold italic print to alert you that we
are introducing a technical term that will be used subsequently. On the other hand,
we use ordinary italic print for emphasis. We – and our readers – have found this
convention helpful in some of our previous publications.

The topics of this book were chosen because of their interconnectedness; and
the aim of the book is to show how pursuing a single idea in mathematics can
lead in many different directions forming a unified whole. We think this book
should be of interest to bright high-school students and all other intelligent people
with an interest in mathematics because it touches on so many fascinating aspects
of mathematics and the people who do it. We give some highlights below for
number-theorists and geometers.

For those interested in number theory there are at least two very significant
theorems in this book. It is intriguing to think that these two striking theorems
about numbers came about naturally by following the mathematics of paper-folding
described in Chapter 2, which was motivated by the hexaflexagons introduced in
Chapter 1. Just to whet your appetite we will tell you now that the first of these
important theorems, the quasi-order theorem, enables one to determine for any
given odd number b ≥ 3, using an algorithm that involves only subtraction and
division by the number 2, the smallest power k to which 2 must be raised in order
that either 2k − 1, or 2k + 1 is exactly divisible by b. And it tells us whether the
sign should be “−” or “+”. Furthermore, the algorithm never uses any number
larger than b itself. The proof of this theorem is the most delicate result we present,
but it seems, in the context of our development, to be a perfectly natural result.
It leads, indeed, to a proof that the Fermat number, F5, which is 232 + 1, is not
prime (see Chapter 7). It is, in fact, the smallest Fermat number to be composite.
Our proof is based on an algorithm that uses only subtraction and division by 2,
and involves no number larger than 641.

The second significant number-theoretic result occurs in Chapter 7. We call that
result the coach theorem because the mathematical symbols in the statement of the
theorem look like coaches on a train to the English author, and we yielded to his
wording, since to have called it a “car theorem” (because Americans refer to cars on
a train) didn’t sound nearly so nice to either of the authors. In Chapter 17 the coach
theorem enables us, by a logical extension of the quasi-order theorem, to determine
for any given b ≥ 3 the number of proper divisors of the number b. In other words
it gives us the value of what is well-known among number-theorists as the Euler
totient function of b, that we denote �(b) (as defined in Section 17.1). This result
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Preface xiii

is obtained through repeated use of the algorithm used for the quasi-order theorem.
We have described both of these theorems in terms of the number 2 but they both
have generalizations involving a general positive number t ≥ 2, which we also give
in Chapter 17 for the benefit of those truly interested in number theory.

There are also results about divisibility that are quite counter-intuitive. For
example, in Chapter 4 we take the basic number fact 7 × 3 = 21 and show that the
two related number facts

7 divides 21

and

3 divides 21

have very different generalizations to arbitrary bases!
Readers who are especially interested in geometry will find here a completely

systematic method for constructing arbitrarily good approximations to regular b-
gons, for any b ≥ 3; this is a result that we believe the Greeks and Gauss would
surely have liked to know about. These constructions led one of the authors to
discover a construction of braided polyhedra (Chapters 8 and 9) with remarkable
geometric properties of their own. Surprisingly, these same braided polyhedra are
useful in determining the number of unbounded regions created in space by the
extended face planes of the Platonic solids (Chapter 14).

The following table suggests which chapters to read for those of you with
an overpowering interest in one or another of the nine threads. It should not be
assumed, however, that if a chapter is not mentioned in one of the threads, then
the thread does not appear at all there – this table lists the chapters that have
some substantial parts devoted to the topic mentioned. For example, you may note
that all chapters are listed under symmetry; and you will find that some are of an
intensely geometric nature, while in other chapters the symmetry is in the statement
of number-theoretic results, and in yet other chapters the symmetry is only present
subtly without being mentioned explicitly.

Thread Chapters

paper-folding 2, 3, 7
number theory 2, 3, 4, 7, 17
polyhedral 5, 6, 8, 9, 10, 11, 12, 13, 14, 15
geometry 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16
algebra 1, 2, 3, 4, 5, 7, 17
combinatorial 10, 12, 14
symmetry 1–17
group theory 9, 11, 13, 14, 16
historical 1, 10, 15, 16
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xiv Preface

We realize that not all readers will be interested in reading highly technical
proofs. So we have placed an asterisk by the titles of certain sections, where the
mathematics gets more intense, to let you know you can, with impunity, skip all
(or part of) those sections on first reading and go straight on to the examples in
those sections, or to other concepts. In almost all cases you will still be able to
understand the subsequent material without having digested the proofs.
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