A MATHEMATICAL TAPESTRY

Demonstrating the Beautiful Unity of Mathematics

This easy-to-read book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, polyhedral geometry, combinatorial geometry, and group theory. Using a systematic paper-folding procedure, it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches.

Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth.

PETER HILTON is Distinguished Professor Emeritus in the Department of Mathematical Sciences at the State University of New York (SUNY), Binghamton.

JEAN PEDERSEN is Professor of Mathematics and Computer Science at Santa Clara University, California.

SYLVIE DONMOYER is a professional artist and freelance illustrator (www. scientific-illustrator.com).

A MATHEMATICAL TAPESTRY

Demonstrating the Beautiful Unity of Mathematics

PETER HILTON

State University of New York, Binghamton

JEAN PEDERSEN Santa Clara University, California

With illustrations by

SYLVIE DONMOYER

© in this web service Cambridge University Press

Cambridge University Press 978-0-521-76410-0 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521764100

© P. Hilton, J. Pedersen and S. Donmoyer 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Hilton, Peter John. A mathematical tapestry : demonstrating the beautiful unity of mathematics / Peter Hilton, Jean Pedersen ;

with illustrations by Sylvie Donmoyer.

p. cm. Includes bibliographical references and index. ISBN 978-0-521-76410-0 (hardback) 1. Mathematics. I. Pedersen, Jean. II. Title. QA36.H53 2010 510 - dc22 2010010230

> ISBN 978-0-521-76410-0 Hardback ISBN 978-0-521-12821-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> This book is dedicated to the memory of Martin Gardner (1914–2010)

Contents

	Preface		<i>page</i> xi
	Ackr	nowledgments	XV
1	Flexagons – A beginning thread		1
	1.1	Four scientists at play	1
	1.2	What are flexagons?	3
	1.3	Hexaflexagons	4
	1.4	Octaflexagons	11
2	Another thread – 1-period paper-folding		17
	2.1	Should you always follow instructions?	17
	2.2	Some ancient threads	20
	2.3	Folding triangles and hexagons	21
	2.4	Does this idea generalize?	24
	2.5	Some bonuses	37
3	Mor	e paper-folding threads – 2-period paper-folding	39
	3.1	Some basic ideas about polygons	39
	3.2	Why does the FAT algorithm work?	39
	3.3	Constructing a 7-gon	43
	*3.4	Some general proofs of convergence	47
4	A number-theory thread – Folding numbers, a number trick, and		
	some tidbits		52
	4.1	Folding numbers	52
	*4.2	Recognizing rational numbers of the form $\frac{t^a-1}{t^b-1}$	58
	*4.3	Numerical examples and why $3 \times 7 = 21$ is a very special	
		number fact	63
	4.4	A number trick and two mathematical tidbits	66
5	The	polyhedron thread – Building some polyhedra and defining	
	a regular polyhedron		71

Cambridge University Press 978-0-521-76410-0 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Frontmatter More information

viii	Contents	
	5.1 An intuitive approach to polyhedra	71
	5.2 Constructing polyhedra from nets	72
	5.3 What is a regular polyhedron?	80
6	Constructing dipyramids and rotating rings from straight strips	
	of triangles	86
	6.1 Preparing the pattern piece for a pentagonal dipyramid	86
	6.2 Assembling the pentagonal dipyramid	87
	6.3 Refinements for dipyramids	88
	6.4 Constructing braided rotating rings of tetrahedra	90
	6.5 Variations for rotating rings	93
	6.6 More fun with rotating rings	94
7	Continuing the paper-folding and number-theory threads	96
	7.1 Constructing an 11-gon	96
	*7.2 The quasi-order theorem	100
	*7.3 The quasi-order theorem when $t = 3$	104
	7.4 Paper-folding connections with various famous number	
	sequences	105
	7.5 Finding the complementary factor and reconstructing	
_	the symbol	106
8	A geometry and algebra thread – Constructing, and using,	
	Jennifer's puzzle	110
	8.1 Facts of life	110
	8.2 Description of the puzzle	111
	8.3 How to make the puzzle pieces	112
	8.4 Assembling the braided tetrahedron	115
	8.5 Assembling the braided octanedron	110
	8.0 Assembling the braided cube	11/
0	A polyhedral geometry thread Constructing braided Platonic	110
9	solids and other woven polyhedra	123
	9.1 A curious fact	123
	9.2 Prenaring the strins	125
	9.3 Braiding the diagonal cube	120
	9.4 Braiding the golden dodecahedron	129
	9.5 Braiding the dodecahedron	131
	9.6 Braiding the icosahedron	134
	9.7 Constructing more symmetric tetrahedra, octahedra,	
	and icosahedra	137
	9.8 Weaving straight strips on other polyhedral surfaces	139
10	Combinatorial and symmetry threads	145
	10.1 Symmetries of the cube	145

Cambridge University Press 978-0-521-76410-0 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Frontmatter More information

	Contents	ix
	10.2 Symmetries of the regular octahedron and regular tetrahedron	149
	10.3 Euler's formula and Descartes' angular deficiency	154
	10.4 Some combinatorial properties of polyhedra	158
11	Some golden threads – Constructing more dodecahedra	163
	11.1 How can there be more dodecahedra?	163
	11.2 The small stellated dodecahedron	165
	11.3 The great stellated dodecahedron	168
	11.4 The great dodecahedron	171
	11.5 Magical relationships between special dodecahedra	173
12	More combinatorial threads – Collapsoids	175
	12.1 What is a collapsoid?	175
	12.2 Preparing the cells, tabs, and flaps	176
	12.3 Constructing a 12-celled polar collapsoid	179
	12.4 Constructing a 20-celled polar collapsoid	182
	12.5 Constructing a 30-celled polar collapsoid	183
	12.6 Constructing a 12-celled equatorial collapsoid	184
	12.7 Other collapsoids (for the experts)	186
	12.8 How do we find other collapsoids?	186
13	Group theory – The faces of the trihexaflexagon	195
	13.1 Group theory and hexaflexagons	195
	13.2 How to build the special trihexaflexagon	195
	13.3 The happy group	197
	13.4 The entire group	200
	13.5 A normal subgroup	203
	13.6 What next?	203
14	Combinatorial and group-theoretical threads – Extended face planes	
	of the Platonic solids	206
	14.1 The question	206
	14.2 Divisions of the plane	206
	14.3 Some facts about the Platonic solids	210
	14.4 Answering the main question	212
	14.5 More general questions	222
15	A historical thread – Involving the Euler characteristic, Descartes'	
	total angular defect, and Pólya's dream	223
	15.1 Pólya's speculation	223
	15.2 Pólya's dream	224
	*15.3 The dream comes true	229
	*15.4 Further generalizations	232
16	Tying some loose ends together – Symmetry, group theory,	
	homologues, and the Pólya enumeration theorem	236
	16.1 Symmetry: A really big idea	236

Cambridge University Press 978-0-521-76410-0 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Frontmatter More information

x	Contents	
	*16.2 Symmetry in geometry	239
	*16.3 Homologues	247
	*16.4 The Pólya enumeration theorem	248
	*16.5 Even and odd permutations	253
	16.6 Epilogue: Pólya and ourselves – Mathematics, tea, and cakes	256
17 Returning to the number-theory thread – Generalized quasi-order		
	and coach theorems	260
	17.1 Setting the stage	260
	17.2 The coach theorem	260
	17.3 The generalized quasi-order theorem	264
	*17.4 The generalized coach theorem	267
	17.5 Parlor tricks	271
	17.6 A little linear algebra	275
	17.7 Some open questions	281
	References	282
	Index	286

Preface

This is a book of 17 chapters, each of which provides some arithmetic, some geometry, or some algebra. The basic ideas in each chapter we call *threads*, and there are at least nine threads in this book – paper-folding threads, number-theory threads, polyhedral threads, geometry threads, algebra threads, combinatorial threads, symmetry threads, group-theory threads, and historical threads. So this book utilizes, exploits, and develops, by weaving these threads of a very different kind together, many parts of mathematics. At the end of this preface we will give a table showing how you might read this book in the very unlikely event that you are interested in just one of these threads.

Many of the chapters involve the construction of models and these take time and effort, but we believe that if you choose to carry out the constructions you will find the activity satisfying. As Benno Artmann, reviewing one of Pedersen's articles in *Mathematical Reviews*, said about the construction of the golden dodecahedron: "I tried a dodecahedron. It sits on my desk, looks nice and makes me feel like an artist." On the other hand, we understand that many of our readers won't want to construct these models, but we think that they can be appreciated without actually constructing them. Surely you yourselves have enjoyed eating a piece of cake that someone else baked; and, even though you didn't actually do the baking, you might be interested in its ingredients and how it came to be in its final shape. So we include the instructions for building the models for those of you who want to construct them and hope that our other readers will at least appreciate what goes into making them.

We have had the immense benefit of the cooperation of the artist Sylvie Donmoyer who has provided beautiful, highly illustrative pictures, Hans Walser who has provided the figures for Chapter 13, and Byron Walden who took responsibility for the proofs in Chapter 17.

In addition to the various threads, there is one technical feature of this book which we would like to mention. We adopt, when appropriate, the notation of using radian measure, writing π (without the word "radians" following it) instead of 180°. The advantages of adopting this notation will, we believe, become obvious

xii

Preface

to our readers when it is used; since it clearly emphasizes that the straight angles of $180^{\circ}(=\pi)$ at the edge of the strip of paper being folded play a special role in the geometry, and subsequently in the number theory – as they obviously do. A feature which we use throughout the book, to make it easier for the reader to spot when a new idea is being named, is to use **bold italic** print to alert you that we are introducing a technical term that will be used subsequently. On the other hand, we use *ordinary italic* print for emphasis. We – and our readers – have found this convention helpful in some of our previous publications.

The topics of this book were chosen because of their interconnectedness; and the aim of the book is to show how pursuing a single idea in mathematics can lead in many different directions forming a unified whole. We think this book should be of interest to bright high-school students and all other intelligent people with an interest in mathematics because it touches on so many fascinating aspects of mathematics and the people who do it. We give some highlights below for number-theorists and geometers.

For those interested in number theory there are at least two very significant theorems in this book. It is intriguing to think that these two striking theorems about numbers came about naturally by following the mathematics of paper-folding described in Chapter 2, which was motivated by the hexaflexagons introduced in Chapter 1. Just to whet your appetite we will tell you now that the first of these important theorems, the quasi-order theorem, enables one to determine for any given odd number $b \ge 3$, using an algorithm that involves only subtraction and division by the number 2, the smallest power k to which 2 must be raised in order that either $2^{k} - 1$, or $2^{k} + 1$ is exactly divisible by b. And it tells us whether the sign should be "-" or "+". Furthermore, the algorithm never uses any number larger than b itself. The proof of this theorem is the most delicate result we present, but it seems, in the context of our development, to be a perfectly natural result. It leads, indeed, to a proof that the Fermat number, F_5 , which is $2^{32} + 1$, is not prime (see Chapter 7). It is, in fact, the smallest Fermat number to be composite. Our proof is based on an algorithm that uses only subtraction and division by 2, and involves no number larger than 641.

The second significant number-theoretic result occurs in Chapter 7. We call that result the coach theorem because the mathematical symbols in the statement of the theorem look like coaches on a train to the English author, and we yielded to his wording, since to have called it a "car theorem" (because Americans refer to cars on a train) didn't sound nearly so nice to either of the authors. In Chapter 17 the coach theorem enables us, by a logical extension of the quasi-order theorem, to determine for any given $b \ge 3$ the number of proper divisors of the number b. In other words it gives us the value of what is well-known among number-theorists as the Euler totient function of b, that we denote $\Phi(b)$ (as defined in Section 17.1). This result

Preface

xiii

is obtained through repeated use of the algorithm used for the quasi-order theorem. We have described both of these theorems in terms of the number 2 but they both have generalizations involving a general positive number $t \ge 2$, which we also give in Chapter 17 for the benefit of those truly interested in number theory.

There are also results about divisibility that are quite counter-intuitive. For example, in Chapter 4 we take the basic number fact $7 \times 3 = 21$ and show that the two related number facts

7 divides 21

and

3 divides 21

have very different generalizations to arbitrary bases!

Readers who are especially interested in geometry will find here a completely systematic method for constructing arbitrarily good approximations to regular *b*-gons, for *any* $b \ge 3$; this is a result that we believe the Greeks and Gauss would surely have liked to know about. These constructions led one of the authors to discover a construction of braided polyhedra (Chapters 8 and 9) with remarkable geometric properties of their own. Surprisingly, these same braided polyhedra are useful in determining the number of unbounded regions created in space by the extended face planes of the Platonic solids (Chapter 14).

The following table suggests which chapters to read for those of you with an overpowering interest in one or another of the nine threads. It should not be assumed, however, that if a chapter is not mentioned in one of the threads, then the thread does not appear at all there – this table lists the chapters that have some substantial parts devoted to the topic mentioned. For example, you may note that all chapters are listed under symmetry; and you will find that some are of an intensely geometric nature, while in other chapters the symmetry is in the statement of number-theoretic results, and in yet other chapters the symmetry is only present subtly without being mentioned explicitly.

Thread	Chapters
paper-folding	2, 3, 7
number theory	2, 3, 4, 7, 17
polyhedral	5, 6, 8, 9, 10, 11, 12, 13, 14, 15
geometry	1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16
algebra	1, 2, 3, 4, 5, 7, 17
combinatorial	10, 12, 14
symmetry	1–17
group theory	9, 11, 13, 14, 16
historical	1, 10, 15, 16

xiv

Preface

We realize that not all readers will be interested in reading highly technical proofs. So we have placed an asterisk by the titles of certain sections, where the mathematics gets more intense, to let you know you can, with impunity, skip all (or part of) those sections on first reading and go straight on to the examples in those sections, or to other concepts. In almost all cases you will still be able to understand the subsequent material without having digested the proofs.

Acknowledgments

We are grateful to Don Albers for his support and guidance during the prepublication stage of this book, and to Silvia Barbina, Clare Dennison, and Dawn Preston at Cambridge University Press, along with the copy-editor, Mike Nugent, who shepherded this project through the final publishing process. Alas! Long before the book came to be, we were encouraged by, and received excellent advice from, our colleagues and students about the content of the book – and we owe all of them a debt of gratitude for their enthusiasm and helpfulness.

We particularly wish to thank Gerald L. Alexanderson, Monika Caradonna, Victor Garcia, Jennifer Hooper, and Byron Walden for their careful attention to detail in helping with the proof-reading of this book. We also owe a huge special thanks to our spouses, Margaret Hilton and Kent Pedersen, and to our families for their ongoing support, and encouragement, of our joint work over the past 30 years!

Peter Hilton Jean Pedersen Binghamton, New York Santa Clara, California April 2010