> Early Development of Body Representations Edited by Virginia Slaughter and Celia A. Brownell

Because we engage with the world and each other through our bodies and bodily movements, being able to represent one's own and others' bodies is fundamental to human perception, cognition and behaviour. This edited book brings together, for the first time, developmental perspectives on the growth of body knowledge in infancy and early childhood and how it intersects with other aspects of perception and cognition. The book is organised into three sections, addressing the bodily self, the bodies of others and integrating self and other. Topics include perception and representation of the human form, infant imitation, understanding biological motion, self-representation, intention understanding, action production and perception and children's human figure drawings. Each section includes chapters from leading international scholars drawn together by an expert commentary that highlights open questions and directions for future research.

VIRGINIA SLAUGHTER is Professor of Developmental Psychology and a principal researcher in the Early Cognitive Development Centre at the University of Queensland, Australia.

CELIA A. BROWNELL is Professor of Psychology and Director of the Early Social Development Lab in the Department of Psychology, University of Pittsburgh.

CAMBRIDGE

Cambridge University Press 978-0-521-76382-0 — Early Development of Body Representations Edited by Virginia Slaughter, Celia A. Brownell Frontmatter <u>More Information</u>

Cambridge Studies in Cognitive and Perceptual Development

Series editors Giyoo Hatano[†], University of the Air, Chiba, Japan Kurt W. Fischer, Harvard University, USA

Advisory board Gavin Bremner, Lancaster University, UK Patricia M. Greenfield, University of California, Los Angeles, USA Paul Harris, Harvard University, USA Daniel Stern, University of Geneva, Switzerland Esther Thelen, Indiana University, USA[†]

The aim of this series is to provide a scholarly forum for current theoretical and empirical issues in cognitive and perceptual development. As the twenty-first century begins, the field is no longer dominated by monolithic theories. Contemporary explanations build on the combined influences of biological, cultural, contextual and ecological factors in well-defined research domains. In the field of cognitive development, cultural and situational factors are widely recognised as influencing the emergence and forms of reasoning in children. In perceptual development, the field has moved beyond the opposition of 'innate' and 'acquired' to suggest a continuous role for perception in the acquisition of knowledge. These approaches and issues will all be reflected in the series, which will also address such important research themes as the indissociable link between perceptual and cognitive development and modern ideas on the development of the brain, the significance of developmental processes themselves, dynamic systems theory and contemporary work in the psychodynamic tradition, especially as it relates to the foundations of self-knowledge.

Titles published in the series

- 1. Jacqueline Nadel and George Butterworth, Imitation in Infancy
- 2. Margaret Harris and Giyoo Hatano, *Learning to Read and Write: A Cross-Linguistic Perspective*
- 3. Michael Siegal and Candida Peterson, *Children's Understanding of Biology and Health*
- 4. Paul Light and Karen Littleton, Social Processes in Children's Learning
- 5. Antonio M. Battro, Half a Brain is Enough: The Story of Nico
- 6. Andrew N. Meltzoff and Wolfgang Prinz, *The Imitative Mind: Development, Evolution and Brain Bases*
- 7. Nira Granott and Jim Parziale, *Microdevelopment: Transition Processes in Development and Learning*
- 8. Heidi Keller, Ype H. Poortinga and Axel Schölmerich, *Between Culture and Biology: Perspectives on Ontogenetic Development*
- 9. Nobuo Masataka, The Onset of Language

- 10. Andreas Demetriou and Athanassios Raftopoulos, *Cognitive Developmental Change: Theories, Models and Measurement*
- 11. Kurt W. Fischer, Jane Holmes Bernstein and Mary Helen Immordino-Yang, *Mind, Brain and Education in Reading Disorders*
- 12. Pierre R. Dasen and Ramesh C. Mishra, *Development of Geocentric Spatial* Language and Cognition: An Eco-cultural Perspective

Early Development of Body Representations

Edited by

Virginia Slaughter and Celia A. Brownell

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521763820

© Cambridge University Press 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012 First paperback edition 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Early development of body representations / edited by Virginia Slaughter and Celia A. Brownell. p. cm. - (Cambridge studies in cognitive and perceptual development; 13) Includes bibliographical references and index. ISBN 978-0-521-76382-0 1. Human body – Social aspects. 2. Body image. I. Slaughter, Virginia. II. Brownell, Celia A. III. Title. IV. Series. HM636.E27 2011 305.231-dc23

2011023915

ISBN 978-0-521-76382-0 Hardback ISBN 978-1-107-68649-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Lis	st of figures		<i>page</i> ix
Lis	st of tables		xi
Lis	st of contributors		xii
Pa	rt I The bodily sel	f	1
1	Primordial sense of PHILIPPE ROCHA	•	3
2	visual-proprioceptiv	body representations: the integration of re information KER, CHRIS MOORE AND DANIEL	19
3		y development of the body image ELL, MARGARITA SVETLOVA AND SARA	37
4	·	d Goldilocks: young children and scale errors HE AND DAVID H. UTTAL	59
Co	mmentary on Part I	The embodied mini- <i>me</i> : tracing the development of body representations and their role for self-awareness MANOS TSAKIRIS	69
Pa	rt II The bodies of	fothers	79
5		e in human body perception HTER, MICHELLE HERON-DELANEY RISTIE	81
6	Children's represent MAUREEN COX	ations of the human figure in their drawings	101

vii

vii	Contents		
7		man motion, form and levels of meaning: erception of human point-light displays by with autism	122
8	How infants detect is VINCENT REID	nformation in biological motion	146
9	systems in infancy	ody representations and other inferential N AND SUSAN C. JOHNSON	163
Co	mmentary on Part II	Yet another approach to development of body representations KAZUO HIRAKI	183
Part III Bodily correspondences: integrating self and other 191			
10		bout human bodies' goals and intentions AND VICTORIA SOUTHGATE	193
11	•	and the acquisition of body knowledge ND HANAKO YOSHIDA	207
12	movements	and production of crawling and walking D MICHELLE POWER	227
13	action perception a JESSICA A. SOMM	the impact of self-produced action on infants' nd understanding IERVILLE, EMILY J. BLUMENTHAL, A AND KARA D. SAGE	247
Co	mmentary on Part III	Body and action representations for integrating self and other MORITZ M. DAUM AND WOLFGANG PRINZ	267

Index

283

Figures

3.1	Age-related decline in body-size errors for each of three tasks	page 45
3.2	Age-related decline in body-as-obstacle errors for each of two tasks	45
4.1	This child is committing a scale error: he is in all seriousness trying to force his foot into the miniature toy car	62
4.2	Incidence of scale errors by age	66
5.1	Typical and scrambled human body stimuli varying in realism	82
5.2	Proportions of 9-month-olds who discriminate scrambled from typical human body shapes, by stimulus type	89
5.3	Proportions of 12-month-olds who discriminate scrambled from typical human body shapes, by stimulus type	89
6.1	Tentative scribbles at age 1 year (left); side-to-side scribbles at 16 months (centre); and spiralling scribbles at 2 years (Major, 1906)	102
6.2	Amy, aged 1 year 11 months, added arms, legs and a hat to an adult's pre-drawn head and torso	103
6.3	'It's my Mummy', by Simon, aged 3 years (left); 'Mummy and Daddy', by Simon at 3 years 2 months (right)	104
6.4	Tadpole figures drawn by pre-school children	104
6.5	This figure (left), drawn by a 6-year-old, is in a canonical orientation; this figure (right), drawn by an 8-year-old, is in side-view and appears to be walking: the arm occludes the	
	contour of the torso	107
6.6	Amy, aged 5 years 2 months, drew her family using the same basic schema for each figure	107
6.7	A figure with no outline around the facial features (left), drawn by a 4-year-old; a contour figure (centre), drawn by a boy aged	100
	4 years 3 months: a stick figure (right), drawn by a 4-year-old	109

ix

x List of fig	gures
---------------	-------

6.8	These figures, drawn by a 9-year-old boy (left) and a 10-year-old girl (right) from Nigeria, display African features and rectangular torsos	111
6.9	These bi-triangular figures were drawn by a 14-year-old Zimbabwean girl	112
6.10	A group of people chatting around a campfire, drawn by an 8-year-old Warlpiri girl, central Australia; the U-shaped symbol has been used for most of the figures but the baby is a	
	conventional western form	113
7.1	How a human point-light display appears as a static image	124
7.2	Still image showing violation of the solidity of a human point-light display	130
9.1	Schematic representation of the tracking task in study (1)	168
9.2	Schematic representation of the individuation task in study (2)	171
9.3	Schematic representation of the goal inference task used in study (3)	174
9.4	Schematic representation of the tracking task used in study (3)	175
C2.1	The humanoid robot 'Robovie'	187
C2.2	Geminoid F, developed by Department of Systems Innovation and ATR Intelligent Robotics and Communication	
	Laboratories. Left: Geminoid F; right: real human	188
10.1	Inferential learning of bodily mechanical properties based on the 'efficacy' principles	202
12.1	Mean looking duration (ms) for the lower body AOI	238
	Cane-as-tool (CAT) procedure	255
	Looking times to the test outcomes as a function of condition and experiment	257
C3.1	The relationship between how knowledge about the structure and function of body parts is acquired in infancy	275

Tables

4.1	Examples of parents' descriptions of scale errors	page 64
5.1	Earliest age at which infants detect the human typical body shape, across stimulus realism conditions	88
7.1	Sensitivity to levels of motion and form in human PLDs in infancy and age capacity may emerge	133
7.2	Evidence for differential sensitivity to levels of motion and form in human PLDs in people with ASDs	139
9.1	Looking time data from study (1)	169
9.2	Looking time data from study (2)	172
9.3	Looking time data from study (3)	176

Contributors

- EMILY J. BLUMENTHAL is a doctoral candidate studying developmental cognitive neuroscience at the Psychology Department and the Institute for Learning and Brain Sciences at the University of Washington.
- CELIA A. BROWNELL is Professor of Psychology and Director of the Early Social Development Lab in the Department of Psychology, University of Pittsburgh.
- TAMARA CHRISTIE is a developmental psychologist working within the Department of Education and Training, Queensland, Australia.
- MAUREEN COX is Emeritus Reader in the Department of Psychology, University of York, UK.
- MORITZ M. DAUM is Head of the Infant Cognition and Action research group at the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- JUDY S. DELOACHE is William Kenan Professor of Psychology at the University of Virginia.
- TEODORA GLIGA is a research fellow at the Centre for Brain and Cognitive Development, Birkbeck College, UK.
- PETRA HAUF is Canada Research Chair in Cognitive Development and Principal Researcher in the Infant Action and Cognition Lab in the Department of Psychology at St. Francis Xavier University, Canada.
- MICHELLE HERON-DELANEY is a postdoctoral research fellow at the Centre of National Research on Disability and Rehabilitation Medicine in Brisbane, Australia.
- KAZUO HIRAKI is a professor in the Department of General Systems Studies and Center for Evolutionary Cognitive Sciences in the Graduate School of Arts and Sciences at the University of Tokyo, Japan.
- SUSAN C. JOHNSON is a cognitive scientist who studies infant social cognition at The Ohio State University.

xii

List of contributors

xiii

- SUSAN JONES is Professor of Psychological and Brain Sciences and the Program in Cognitive Science at Indiana University.
- CHRIS MOORE is Professor of Psychology and director of the Early Social Development Laboratory in the Department of Psychology, Dalhousie University, Canada.
- DEREK G. MOORE is Professor of Developmental Psychology and Director of the Institute for Research in Child Development at the University of East London, UK.
- SARA R. NICHOLS is a doctoral candidate studying developmental and clinical psychology at the University of Pittsburgh.
- KIRSTEN O'HEARN is a developmental psychologist studying visual processing in autism at the University of Pittsburgh.
- DANIEL POVINELLI is Professor of Biology at the University of Louisiana and Director of the National Chimpanzee Observatories Initiative.
- MICHELLE POWER is Manager of Ann Bigelow's Infant Development Lab and a researcher in Petra Hauf's Infant Action and Cognition Lab in the Department of Psychology at St. Francis Xavier University, Canada.
- WOLFGANG PRINZ is Director Emeritus at the Department of Psychology of the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- VINCENT REID is a lecturer in the Department of Psychology at Durham University, UK.
- PHILIPPE ROCHAT is Professor of Psychology and Head of the Emory Infant and Child Laboratory at Emory University, Atlanta, Georgia.
- KARA D. SAGE is a graduate student in developmental psychology and Manager of Dr. Dare Baldwin's Acquiring Minds Lab at the University of Oregon.
- VIRGINIA SLAUGHTER is Professor of Developmental Psychology and a principal researcher in the Early Cognitive Development Centre at the University of Queensland, Australia.
- JESSICA A. SOMMERVILLE is an associate professor in the Psychology Department and at the Institute for Learning and Brain Sciences at the University of Washington. She also directs the Early Childhood Cognition Lab.
- VICTORIA SOUTHGATE is a Research Fellow at the Centre for Brain and Cognitive Development, Birkbeck College, UK.

xiv List of contributors

- MARGARITA SVETLOVA is a doctoral candidate studying developmental psychology at the University of Pittsburgh and is a guest researcher in the Department of Developmental and Comparative Psychology at the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- MANOS TSAKIRIS is Reader in Neuropsychology at the Department of Psychology, Royal Holloway University of London, UK.
- DAVID H. UTTAL is Professor of Psychology and Education at Northwestern University, where he studies spatial and symbolic development.
- KAITLIN VENEMA is a research coordinator at the University of Washington Autism Center in Seattle, Washington. She formerly worked in the Early Childhood Cognition Lab under Jessica Sommerville.
- HANAKO YOSHIDA is an assistant professor in the Department of Psychology at the University of Houston and directs the Cognitive Development Laboratory.
- STEPHANIE ZWICKER is a doctoral candidate in the Department of Psychology, Dalhousie University, Canada. She is conducting her PhD research on the temporal parameters of visual-proprioceptive intermodal integration.