Semiconductor Devices for High-Speed Optoelectronics

Providing an all-inclusive treatment of electronic and optoelectronic devices used in high-speed optical communication systems, this book emphasizes circuit applications, advanced device design solutions, and noise in sources and receivers. Core topics covered include semiconductors and semiconductor optical properties, high-speed circuits and transistors, detectors, sources, and modulators. It discusses in detail both active devices (heterostructure field-effect and bipolar transistors) and passive components (lumped and distributed) for high-speed electronic integrated circuits. It also describes recent advances in high-speed devices for 40 Gbps systems. Introductory elements are provided, making the book open to readers without a specific background in optoelectronics, whilst end-of-chapter review questions and numerical problems enable readers to test their understanding and experiment with realistic data.

Giovanni Ghione is Full Professor of Electronics at Politecnico di Torino, Torino, Italy. His current research activity involves the physics-based and circuit-oriented modeling of high-speed electronic and optoelectronic components, with particular attention to III-N power devices, thermal and noise simulation, electrooptic and electroabsorption modulators, coplanar passive components, and integrated circuits. He is a Fellow of the IEEE and has authored or co-authored over 200 technical papers and four books.

Semiconductor Devices for High-Speed Optoelectronics

GIOVANNI GHIONE Politecnico di Torino, Italy

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521763448

© Cambridge University Press & Assessment 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-76344-8 Hardback

Additional resources for this publication at www.cambridge.org/Ghione

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To the memory of my parents

Contents

Preface

1

page	X1	1	1

Sem	iconductors, alloys, heterostructures			
1.1	Introd	ucing semiconductors	1	
1.2	Semiconductor crystal structure		2	
	1.2.1	The Miller index notation	3	
	1.2.2	The diamond, zinc-blende, and wurtzite semiconductor cells	5	
	1.2.3	Ferroelectric crystals	6	
	1.2.4	Crystal defects	7	
1.3	Semic	Semiconductor electronic properties		
	1.3.1	The energy-momentum dispersion relation	8	
	1.3.2	The conduction and valence band wavefunctions	12	
	1.3.3	Direct- and indirect-bandgap semiconductors	13	
1.4	Carrie	Carrier densities in a semiconductor		
	1.4.1	Equilibrium electron and hole densities	17	
	1.4.2	Electron and hole densities in doped semiconductors	20	
	1.4.3	Nonequilibrium electron and hole densities	21	
.5	Hetero	ostructures	24	
.6	Semiconductor alloys		25	
	1.6.1	The substrate issue	27	
	1.6.2	Important compound semiconductor alloys	28	
1.7	Bandstructure engineering: heterojunctions and quantum wells			
	1.7.1	Carrier density and density of states in a quantum well	33	
	1.7.2	Carrier density and density of states in a quantum wire	38	
	1.7.3	Superlattices	40	
	1.7.4	Effect of strain on bandstructure	40	
1.8	Semic	Semiconductor transport and generation-recombination		
	1.8.1	Drift and diffusion	42	
	1.8.2	Generation and recombination	43	
	1.8.3	Trap-assisted (Shockley-Read-Hall) recombination	44	
	1.8.4	Auger recombination and generation by impact		
		ionization	46	

viii	Cont	tents	
	1.9	Questions and problems	48
		1.9.1 Questions	48
		1.9.2 Problems	50
2	Sem	iconductor optical properties	52
	2.1	Modeling the interaction between EM waves and the semiconductor	52
	2.2	The macroscopic view: permittivities and permeabilities	53
	• •	2.2.1 Isotropic vs. anisotropic media	58
	2.3	The microscopic view: EM wave–semiconductor interaction	59
		2.3.1 Energy and momentum conservation	61
		2.3.2 Perturbation theory and selection rules	68
	2.4	2.3.3 Total scattering rates	74
	2.4	The macroscopic view: the EM wave standpoint	78
		2.4.1 The semiconductor gain energy profile	80
		2.4.2 The semiconductor absorption energy profile	83
		2.4.3 The QW absorption profile	84
		2.4.4 Spontaneous emission spectrum	89
		2.4.5 Spontaneous emission, gain, and absorption	01
	2.5	spectra	91
	2.5	The macroscopic view: the semiconductor standpoint	93
	26	2.5.1 Carrier radiative lifetimes	95 101
	2.6	Questions and problems	101
		2.6.1 Questions	101
		2.6.2 Problems	102
3	High	n-speed semiconductor devices and circuits	104
	3.1	Electronic circuits in optical communication systems	104
	3.2	Transmission lines	104
		3.2.1 <i>RG</i> , <i>RC</i> , and high-frequency regimes	109
		3.2.2 The reflection coefficient and the loaded line	111
		3.2.3 Planar integrated quasi-TEM transmission lines	113
		3.2.4 Microstrip lines	114
		3.2.5 Coplanar lines	115
	3.3	The scattering parameters	117
		3.3.1 Power and impedance matching	119
	3.4	Passive concentrated components	121
		3.4.1 Bias Ts	124
	3.5	Active components	126
		3.5.1 Field-effect transistors (FETs)	126
		3.5.2 FET DC model	128
		3.5.3 FET small-signal model and equivalent circuit	130
		3.5.4 High-speed FETs: the HEMT family	133
		3.5.5 High-speed heterojunction bipolar transistors	141

		Contents	ix
		3.5.6 HBT equivalent circuit	143
		3.5.7 HBT choices and material systems	145
	3.6	Noise in electron devices	147
		3.6.1 Equivalent circuit of noisy <i>N</i> -ports	148
		3.6.2 Noise models of active and passive devices	149
	3.7	Monolithic and hybrid microwave integrated circuits	
		and optoelectronic integrated circuits	151
	3.8	Questions and problems	155
		3.8.1 Questions	155
		3.8.2 Problems	157
4	Dete	ctors	158
	4.1	Photodetector basics	158
	4.2	Photodetector structures	159
	4.3	Photodetector materials	161
		4.3.1 Extrinsic and QW detectors	165
	4.4	Photodetector parameters	165
		4.4.1 PD constitutive relation	165
		4.4.2 Responsivity and quantum efficiency	167
		4.4.3 PD electrical bandwidth and equivalent circuit	171
		4.4.4 Photodetector gain	174
	4.5	Photodetector noise	174
	4.6	Photodiodes	178
	4.7	The <i>pn</i> photodiode	179
		4.7.1 Analysis of the <i>pn</i> photodiode response	180
	4.8	The <i>pin</i> photodiode	184
		4.8.1 The <i>pin</i> photocurrent, responsivity, and efficiency	185
		4.8.2 Conventional <i>pin</i> photodetector structures	188
	4.9	The <i>pin</i> frequency response	189
		4.9.1 Carrier diffusion and heterojunction charge trapping	190
		4.9.2 Dynamic <i>pin</i> model and space-charge effects	191
		4.9.3 Transit time analysis and transit time-limited bandwidth	193
		4.9.4 Capacitance-limited bandwidth	197
	4.10	4.9.5 Bandwidth–efficiency trade-off	199
	4.10	Advanced <i>pin</i> photodiodes	200
		4.10.1 Waveguide photodiodes	201
		4.10.2 Traveling-wave photodetectors	203
		4.10.3 Velocity-matched traveling-wave photodetectors	209
		4.10.4 Uni-traveling carrier photodiodes	210
	4.11	Avalanche photodiodes	211
		4.11.1 Analysis of APD responsivity	213
	4.12	Noise in APDs and <i>pins</i>	220
		4.12.1 Analysis of APD noise	222

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-76344-8 — Semiconductor Devices for High-Speed Optoelectronics Giovanni Ghione Frontmatter More Information

Contents Х 4.13 The APD frequency response 228 4.14 Advanced APD structures 231 4.15 Concluding remarks on high-speed PDs 232 4.16 The photodiode front end 233 4.16.1 Photodetector and front-end signal and noise model 234 4.16.2 High- and low-impedance front ends 234 4.16.3 Transimpedance amplifier front ends 236 4.16.4 High-speed transimpedance stages 240 4.17 Front-end SNR analysis and pin-APD comparison 242 4.18 Front-end examples 247 4.18.1 Hybrid and monolithic front-end solutions 250 4.19 Questions and problems 251 4.19.1 Questions 251 4.19.2 Problems 253 5 Sources 255 5.1 255 Optical source choices 5.2 Light-emitting diodes 255 5.2.1 LED structures 256 257 5.2.2 Homojunction LED power-current characteristics Charge control model and modulation bandwidth 5.2.3 260 5.2.4 Heterojunction LED analysis 261 5.2.5 LED emission spectrum 262 5.2.6 LED materials 264 5.3 From LED to laser 265 The Fabry-Perot cavity resonant modes 5.4 268 5.4.1 Analysis of the TE slab waveguide fundamental mode 269 5.4.2 Longitudinal and transversal cavity resonances 272 5.5 Material and cavity gain 275 5.5.1 Analysis of the overlap integral 275 5.6 The FP laser from below to above threshold 278 5.6.1 279 The threshold condition 5.6.2 The emission spectrum 281 5.6.3 The electron density and optical power 282 5.6.4 The power-current characteristics 283 5.6.5 The photon lifetimes 283 Power-current characteristics from photon lifetimes 284 5.6.6 5.7 The laser evolution: tailoring the active region 285 Quantum-well lasers 5.7.1 286 5.7.2 Laser material systems 290 5.8 The laser evolution: improving the spectral purity and stability 290 5.8.1 Conventional Fabry-Perot lasers 291 5.8.2 291 Gain-guided FP lasers

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-76344-8 — Semiconductor Devices for High-Speed Optoelectronics Giovanni Ghione Frontmatter <u>More Information</u>

		Contents	X
	5.	8.3 Index-guided FP lasers	292
	5.	8.4 Distributed-feedback (DFB and DBR) lasers	294
	5.	8.5 DBR and tunable DBR lasers	299
	5.	8.6 Vertical cavity lasers	300
	5.	8.7 Quantum dot lasers	302
	5.9 TI	he laser temperature behavior	303
	5.10 La	aser linewidth	304
	5.	10.1 Linewidth broadening analysis	306
	5.11 La	aser dynamics and modulation response	315
		ynamic large-signal and small-signal laser modeling	321
		12.1 Steady-state (DC) solution	323
		12.2 Small-signal model	325
		12.3 Chirp analysis	329
		aser relative intensity noise	330
		13.1 Analysis of Langevin sources	331
		13.2 Carrier and photon population fluctuations	338
		13.3 Output power fluctuations	340
		13.4 Relative intensity noise	343
		13.5 Phase noise and linewidth from the Langevin approach	346
		uestions and problems	352
		14.1 Questions	352
		14.2 Problems	353
6	Modulat	tors	356
	6.1 Li	ight modulation and modulator choices	356
	6.2 M	lodulator parameters	358
	6.	2.1 Electrooptic (static) response	358
	6.	2.2 Dynamic response	360
		2.3 Small-signal frequency response	360
	6.	2.4 Optical and electrical modulation bandwidth	362
	6.	2.5 Chirp	363
		2.6 Optical bandwidth	363
		2.7 Electrical or RF input matching	363
		2.8 Linearity and distortion	363
		lectrooptic modulators	364
		3.1 Lithium niobate electrooptic modulators	365
		3.2 Semiconductor electrooptic modulators	372
		3.3 Polymer modulators	374
		he Mach–Zehnder electrooptic modulator	375
		4.1 The lumped Mach–Zehnder modulator	376
		4.2 Static electrooptic response	370
		4.2 State electrooptic response 4.3 Lumped modulator dynamic response	377
	0.	4.4 Efficiency–bandwidth trade-off in lumped MZ modulators	380

xii	Contents			
	6.5	The traveling-wave Mach–Zehnder modulator	382	
		6.5.1 Mach–Zehnder traveling-wave modulator dynamic response	383	
		6.5.2 Analysis of the TW Mach–Zehnder modulator response	387	
		6.5.3 The Mach–Zehnder modulator chirp	391	
	6.6	High-speed electrooptic modulator design	394	
		6.6.1 Lithium niobate modulators	396	
		6.6.2 Compound semiconductor, polymer, and silicon modulators	399	
	6.7	Electroabsorption modulator physics	402	
		6.7.1 The Franz–Keldysh effect (FKE)	403	
		6.7.2 The quantum confined Stark effect (QCSE)	404	
	6.8	Electroabsorption modulator structures and parameters	409	
		6.8.1 EAM static response	410	
		6.8.2 Lumped EAM dynamic response	412	
		6.8.3 EAM chirp	414	
	6.9	The distributed electroabsorption modulator	415	
	6.10	Electroabsorption modulator examples	420	
		6.10.1 Integrated EAMs (EALs)	423	
	6.11	Modulator and laser biasing	425	
	6.12	2 Modulator and laser drivers	427	
		6.12.1 The high-speed driver amplifier	430	
	6.13	Questions and problems	436	
		6.13.1 Questions	436	
		6.13.2 Problems	438	
	List	of Symbols	44(
	Refe	erences	450	

Index

457

Preface

The development of high-speed fiber-based optical communication systems that has taken place since the early 1970s can be really considered as a technological wonder. In a few years, key components were devised (such as the semiconductor laser) with the help of novel technological processes (such as epitaxial growth) and found immediate application thanks to the development of low-loss optical fibers. New compound semiconductor alloys (namely, InGaAsP) were ready to provide their potential to emit the right wavelengths needed for long-haul fiber propagation. When electronic repeaters seemed unable to provide a solution to long-haul propagation, fiber amplifiers were developed that allowed for all-optical signal regeneration. And the list could be continued. A miracle of ingenuity from a host of researchers made it possible to assemble this complex puzzle in a few years, thus bringing optoelectronic technology to a consumer electronics level.

Increasing the system capacity by increasing the transmission speed was, of course, a main concern from the early stages of optical system development. While optoelectronic devices behave, on the electronic side, in a rather conventional way up to speeds of the order of 1 Gbps, for larger speeds (up to 40 Gbps and beyond) RF wave propagation has to be accounted for in designing and modeling optoelectronic devices. When speed increases, the distributed interaction between RF and optical waves becomes a useful, sometimes indispensable, ingredient in many optoelectronic devices, like modulators and (to a lesser extent) detectors. Similarly, the electronic circuits that interface light sources, modulators, and detectors should provide broadband operation up to microwave or millimeter-wave frequencies, thus making it mandatory to exploit compound semiconductor electronics (GaAs- or InP-based) or advanced Si-based solutions (like SiGe HBT integrated circuits or nanometer MOS processes).

Increasing speed beyond the 10 Gbps limit by improving device performance, however interesting it is from the research and development side, may in practice be less appealing from the market standpoint. The ultimate destiny of optoelectronic devices (such as sources, modulators, and detectors) optimized for 40 Gbps (or even faster) systems after the post-2000 market downturn still is uncertain, and research in the field has followed alternative paths to the increase of system capacity. At the same time, new application fields have been developed, for instance in the area of integrated all-Si optical signal processing systems, and also for integrated circuit level high-capacity communications. However, the development of high-speed optoelectronic devices has raised a number of stimulating (and probably lasting) design issues. An example is the

xiv Preface

principle of the distributed interaction between optical and RF waves, which is common to a variety of high-speed components. Another relevant theme is the co-design and the (possibly monolithic) integration of the electronic and optoelectronic components of a system, not to mention the critical aspects concerning device packaging and interconnection in systems operating at 40 Gbps and beyond.

Taking the above into account, it is not surprising that the main purpose of the present book is to provide a kind of unified (or, perhaps, not too widely separated) treatment of high-speed electronics and optoelectronics, starting from compound semiconductor basics, down to high-speed transistors, ICs, detectors, sources and modulators. Part of the material was originally developed for a number of postgraduate and Master courses, and therefore has the ambition (but also the limitation) of providing a treatment starting from the very basics. It is hoped that this justifies both the presence of introductory material on semiconductors and semiconductor optical properties, and a treatment of high-speed electronics starting from a review of transmission lines and scattering parameters. From this standpoint, the text attempts to be as self-contained as possible. Of course, the choice of subjects is somewhat influenced by the author's personal tastes and previous research experience (not to mention the need to keep the page count below 500): some emphasis has been put on noise, again with an attempt to present a self-contained treatment of this rather difficult topic, and many important optoelectronic components have not been included (to mention one, semiconductor optical amplifiers). Yet another innovative subject that is missing is microwave photonics, where of course the RF and microwave and optoelectronic worlds meet. Nevertheless, the text is (in the author's opinion, at least) different enough from the many excellent textbooks on optoelectronics available on the market to justify the attempt to write it.

I wish to thank a number of colleagues (from Politecnico di Torino, unless otherwise stated) for their direct or indirect contribution to this book. Ivo Montrosset provided many useful suggestions on the treatment of optical sources. Incidentally, it was under the guidance of Ivo Montrosset and Carlo Naldi that (then an undergraduate student) I was introduced to the basics of passive and active optoelectronic devices, respectively; this happened, alas, almost 30 years ago. Helpful discussions with Gian Paolo Bava and Pierluigi Debernardi (Consiglio Nazionale delle Ricerche) on laser noise, with Simona Donati Guerrieri on the semiconductor optical properties and with Fabrizio Bonani and Marco Pirola on active and passive high-speed semiconductor electronic devices and circuits are gratefully acknowledged. Michele Goano kindly revised the sections on compound semiconductors and the numerical problems, and provided useful suggestions on III-N semiconductors. Federica Cappelluti prepared many figures (in particular in the section on photodetectors), initially exploited in lecture slides. Finally, Claudio Coriasso (Avago Turin Technology Center, Torino) kindly provided material on integrated electroabsorption modulators (EAL), including some figures. Additionally, I am indebted to a number of ME students who cooperated in research, mainly on lithium niobate modulators; among those, special mention goes to F. Carbonera, D. Frassati, G. Giarola, A. Mela, G. Omegna, L. Terlevich, P. Zandano. A number of PhD students also worked on subjects relevant to the present book: Francesco Bertazzi (now with Politecnico di Torino) on EM modeling of distributed electrooptic structures; Pietro Bianco,

Preface

XV

on high-speed modulator drivers; Federica Cappelluti, on electroabsorption modulator modeling; Gloria Carvalho, on EAL modeling; Antonello Nespola (now with Istituto Superiore Mario Boella), on the modeling of distributed high-speed photodetectors. Part of the thesis work of Antonello Nespola and Federica Cappelluti was carried out within the framework of a cooperation with UCLA (Professor Ming Wu, now at University of California, Berkeley). Finally, I gratefully recall many helpful discussions with colleagues from the industry: among those, Marina Meliga, Roberto Paoletti, Marco Romagnoli, and Luciano Socci.

Giovanni Ghione January 2009