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1 Semiconductors, alloys,
heterostructures

1.1 Introducing semiconductors

Single-crystal semiconductors have a particularly important place in optoelectronics,

since they are the starting material for high-quality sources, receivers and amplifiers.

Other materials, however, can be relevant to some device classes: polycrystalline or

amorphous semiconductors can be exploited in light-emitting diodes (LEDs) and solar

cells; dielectrics (also amorphous) are the basis for passive devices (e.g., waveguides

and optical fibers); and piezoelectric (ferroelectric) crystals such as lithium niobate are

the enabling material for a class of electrooptic (EO) modulators. Moreover, polymers

have been recently exploited in the development of active and passive optoelectronic

devices, such as emitters, detectors, and waveguides (e.g., fibers). Nevertheless, the

peculiar role of single-crystal semiconductors justifies the greater attention paid here

to this material class with respect to other optoelectronic materials.

From the standpoint of electron properties, semiconductors are an intermediate

step between insulators and conductors. The electronic structure of crystals generally

includes a set of allowed energy bands, that electrons populate according to the rules

of quantum mechanics. The two topmost energy bands are the valence and conduction

band, respectively, see Fig. 1.1. At some energy above the conduction band, we find the

vacuum level, i.e., the energy of an electron free to leave the crystal. In insulators, the

valence band (which hosts the electrons participating to the chemical bonds) is separated

from the conduction band by a large energy gap Eg , of the order of a few electronvolts

(eV). Due to the large gap, an extremely small number of electrons have enough energy

to be promoted to the conduction band, where they could take part into electrical con-

duction. In insulators, therefore, the conductivity is extremely small. In metals, on the

other hand, the valence and conduction bands overlap (or the energy gap is negative),

so that all carriers already belong to the conduction band, independent of their energy.

Metals therefore have a large conductivity. In semiconductors, the energy gap is of the

order of 1–2 eV, so that some electrons have enough energy to reach the conduction

band, leaving holes in the valence band. Holes are pseudo-particles with positive charge,

reacting to an external applied electric field and contributing, together with the electrons

in the conduction band, to current conduction. In pure (intrinsic) semiconductors, there-

fore, charge transport is bipolar (through electrons and holes), and the conductivity is

low, exponentially dependent on the gap (the larger the gap, the lower the conductivity).

However, impurities can be added (dopants) to provide large numbers of electrons to
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Figure 1.1 Main features of semiconductor bandstructure. Eg is the energy gap; Ec is the conduction band

edge; Ev is the valence band edge.

the conduction band (donors) or of holes to the valence band (acceptors). The resulting

doped semiconductors are denoted as n-type and p-type, respectively; their conductiv-

ity can be artificially modulated by changing the amount of dopants; moreover, the dual

doping option allows for the development of pn junctions, one of the basic building

blocks of electronic and optoelectronic devices.

1.2 Semiconductor crystal structure

Crystals are regular, periodic arrangements of atoms in three dimensions. The point

set r defining the crystal nodes, corresponding to the atomic positions (Bravais lattice)

satisfies the condition r = ka1 + la2 + ma3, where k, l, m are integer numbers and a1,

a2, a3 are the primitive vectors denoting the primitive cell, see Fig. 1.2. Bravais lattices

can be formed so as to fill the entire space only if the angles α1, α2, α3 assume values

from a discrete set (60◦, 90◦, 120◦, or the complementary value to 360◦). According to

the relative magnitudes of a1, a2, a3 and to the angles α1, α2, α3, 14 basic lattices can be

shown to exist, as in Table 1.1. In semiconductors, only two lattices are technologically

important at present, i.e. the cubic and the hexagonal. Most semiconductors are cubic

(examples are Si, Ge, GaAs, InP. . . ), but some are hexagonal (SiC, GaN). Both the cubic

and the hexagonal structure can be found in carbon (C), where they are the diamond and

graphite crystal structures, respectively.

Three kinds of Bravais cubic lattices exist, the simple cubic (sc), the face-centered

cubic (fcc) and the body-centered cubic (bcc), see Fig. 1.3. The cubic semiconductor

crystal structure can be interpreted as two shifted and compenetrated fcc Bravais

lattices.

Let us consider first an elementary semiconductor (e.g., Si) where all atoms are equal.

The relevant cubic lattice is the diamond lattice, consisting of two interpenetrating
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1.2 Semiconductor crystal structure 3

Table 1.1 The 14 Bravais lattices.

Name Bravais lattices Conditions on primitive vectors

Triclinic 1 a1 �= a2 �= a3, α1 �= α2 �= α3

Monoclinic 2 a1 �= a2 �= a3, α1 = α2 = 90◦ �= α3

Orthorhombic 4 a1 �= a2 �= a3, α1 = α2 = α3 = 90◦

Tetragonal 2 a1 = a2 �= a3, α1 = α2 = α3 = 90◦

Cubic 3 a1 = a2 = a3, α1 = α2 = α3 = 90◦

Trigonal 1 a1 = a2 = a3, α1 = α2 = α3 < 120◦ �= 90◦

Hexagonal 1 a1 = a2 �= a3, α1 = α2 = 90◦, α3 = 120◦

α1

α2 α3

a3–

a2–

a1–

Figure 1.2 Semiconductor crystal structure: definition of the primitive cell.
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Figure 1.3 Cubic Bravais lattices: (a) simple, (b) body-centered, (c) face-centered.

fcc Bravais lattices, displaced along the body diagonal of the cubic cell by one-

quarter the length of the diagonal, see Fig. 1.4. Since the length of the diagonal is

d = a
∣

∣x̂ + ŷ + ẑ
∣

∣ = a
√

3, the displacement of the second lattice is described by the

vector

s = a
√

3

4

x̂ + ŷ + ẑ√
3

= a

4

(

x̂ + ŷ + ẑ
)

.

1.2.1 The Miller index notation

The Miller indices are a useful notation to denote planes and reference directions

within a lattice. The notation (h, k, l), where h, k, l are integers, denotes the set of

parallel planes that intercepts the three points a1/h, a2/k and a3/ l, or some multiple

thereof, while [h, k, l] in square brackets is the direction orthogonal to plane (h, k, l).
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Figure 1.4 The diamond lattice as two cubic face-centered interpenetrating lattices. The pale and dark gray

points represent the atoms falling in the basic cell.
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Figure 1.5 Examples of planes and directions according to the Miller notation.

Additionally, {h, k, l} is a family of planes with symmetries and �h, k, l� is the related

direction set. In cubic lattices, the primitive vectors coincide with the Cartesian axes

and a1 = a2 = a3 = a, where a is the lattice constant; in this case, we simply have

[h, k, l] ≡ hx̂ + k ŷ + l̂ z where x̂ , ŷ and ẑ are the Cartesian unit vectors.

To derive the Miller indices from the plane intercepts in a cubic lattice, we normalize

with respect to the lattice constant (thus obtaining a set of integers (H, K , L)), take the

reciprocal (H−1, K −1, L−1) and finally multiply by a minimum common multiplier

so as to obtain a set (h, k, l) such as h : k : l = H−1 : K −1 : L−1. Notice that a zero

index corresponds to an intercept point at infinity. Examples of important planes and

directions are shown in Fig. 1.5.

Example 1.1: Identify the Miller indices of the following planes, intersecting the coor-

dinate axes in points (normalized to the lattice constant): (a) x = 4, y = 2, z = 1;

(b) x = 10, y = 5, z = ∞; (c) x = 3.5, y = ∞, z = ∞; (d) x = −4, y = −2, z = 1.

We take the reciprocal of the intercept, and then we multiply by the minimum com-

mon multiplier, so as to obtain an integer set with minimum module. In case (a),

the reciprocal set is (1/4, 1/2, 1), with minimum common multiplier 4, leading to

the Miller indices (1, 2, 4). In case (b), the reciprocals are (1/10, 1/5, 0) with Miller

indices (1, 2, 0). In case (c), the plane is orthogonal to the z axis, and the Miller indices

simply are (1, 0, 0). Finally, case (d) is similar to case (a) but with negative intercepts;

according to the Miller notation we overline the indices rather than using a minus sign;

we thus have (1, 2, 4).

www.cambridge.org/9780521763448
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76344-8 — Semiconductor Devices for High-Speed Optoelectronics
Giovanni Ghione 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment
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1.2.2 The diamond, zinc-blende, and wurtzite semiconductor cells

The cubic diamond cell includes 8 atoms; in fact, if we consider Fig. 1.6, the corner

atoms each contribute to eight adjacent cells, so that only 8/8 = 1 atom belongs to the

main cell. The atoms lying on the faces belong half to the main cell, half to the nearby

ones, so that only 6/2 = 3 atoms belong to the main cell. Finally, the other (internal)

4 atoms belong entirely to the cell. Therefore, the total number of atoms in a cell is

1 + 3 + 4 = 8. In the diamond cell, each atom is connected to the neighbours through

a tetrahedral bond. All atoms are the same (C, Si, Ge...) in the diamond lattice, while in

the so-called zinc-blende lattice the atoms in the two fcc constituent lattices are different

(GaAs, InP, SiC. . . ). In particular, the corner and face atoms are metals (e.g., Ga) and

the internal atoms are nonmetals (e.g., As), or vice versa.

In the diamond or zinc-blende lattices the Miller indices are conventionally defined

with respect to the cubic cell of side a. Due to the symmetry of the tetrahedral atom

bonds, planes (100) and (110), etc. have two bonds per side, while planes (111) have

three bonds on the one side, two on the other. Moreover, the surface atom density is

different, leading, for example, to different etch velocities.

Some semiconductors, such as SiC and GaN, have the hexagonal wurtzite crystal

structure. Hexagonal lattices admit many polytypes according to the stacking of succes-

sive atom layers; a large number of polytypes exists, but only a few have interesting

semiconductor properties (e.g. 4H and 6H for SiC). The wurtzite cell is shown in

Fig. 1.7, including 12 equivalent atoms. In the ideal lattice, one has

∣

∣a3

∣

∣ = c,
∣

∣a1

∣

∣ =

∣

∣a2

∣

∣ = a,
c

a
=

√

8

3
≈ 1.633.

Some properties of semiconductor lattices are shown in Table 1.2.1 It can be

noted that wurtzite-based semiconductors are often anisotropic (uniaxial) and have two

dielectric constants, one parallel to the c-axis, the other orthogonal to it.

Figure 1.6 The diamond (left) and zinc-blende (right) lattices.

1 Semiconductor properties are well documented in many textbooks; an excellent online resource is provided

by the Ioffe Institute of the Russian Academy of Sciences at the web site [1].
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6 Semiconductors, alloys, heterostructures

Table 1.2 Properties of some semiconductor lattices: the crystal is D (diamond), ZB (zinc-blende) or W

(wurtzite); the gap is D (direct) or I (indirect); �� is along the c axis, �⊥ is orthogonal to the c axis for

wurtzite materials. Permittivities are static to RF. Properties are at 300 K.

Material Crystal Eg D/I �r or �� �⊥ a c Density, ρ

(eV) gap (Å) (Å) (g/cm3)

C D 5.50 I 5.57 3.57 3.51
Si D 1.12 I 11.9 5.43 2.33
SiC ZB 2.42 I 9.72 4.36 3.17
Ge D 0.66 I 16.2 5.66 5.32
GaAs ZB 1.42 D 13.2 5.68 5.32
GaP ZB 2.27 I 11.11 5.45 4.14
GaSb ZB 0.75 D 15.7 6.09 5.61
InP ZB 1.34 D 12.56 5.87 4.81
InAs ZB 0.36 D 15.15 6.06 5.67
InSb ZB 0.23 D 16.8 6.48 5.77
AlP ZB 2.45 I 9.8 5.46 2.40
AlAs ZB 2.17 I 10.06 5.66 3.76
AlSb ZB 1.62 I 12.04 6.13 4.26
CdTe ZB 1.47 D 10.2 6.48 5.87
GaN W 3.44 D 10.4 9.5 3.17 5.16 6.09
AlN W 6.20 D 9.14 3.11 4.98 3.25
InN W 1.89 D 14.4 13.1 3.54 5.70 6.81
ZnO W 3.44 D 8.75 7.8 3.25 5.21 5.67

a2–

a1–

a3 
=

 
c

– –

Figure 1.7 The hexagonal wurtzite cell. The c-axis corresponds to the direction of the a3 = c vector.

1.2.3 Ferroelectric crystals

Ferroelectric materials have a residual spontaneous dielectric polarization after the
applied electric field has been switched off. The behavior of such materials is some-
what similar to that of ferromagnetic materials. Below a transition temperature, called
the Curie temperature Tc, ferroelectric materials possess a spontaneous polarization
or electric dipole moment. The magnitude of the spontaneous polarization is greatest
at temperatures well below the Curie temperature, and approaches zero as the Curie
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1.2 Semiconductor crystal structure 7

Table 1.3 Properties of some ferroelectric crystals. KDP stands for potassium dihydrogen phosphate.

Data from [2], Ch. 13, Table 2.

Material class Material Curie temperature Spontaneous polarization

Tc (K) Ps (µC/cm2)

KDP KH2PO4 123 4.75

Perovskites BaTiO3 408 26

Perovskites LiNbO3 1480 71

Perovskites KNbO3 708 30

temperature is approached. Ferroelectric materials are inherently piezoelectric; that is,

in response to an applied mechanical load, the material will produce an electric charge

proportional to the load. Similarly, the material will produce a mechanical deformation

in response to an applied voltage. In optoelectronics, ferroelectric materials are particu-

larly important because of the excellent electrooptic properties, i.e., the strong variation

of the material refractive index with an applied electric field. The crystal structure is

often cubic face-centered, and the material is anisotropic and uniaxial. The most impor-

tant ferroelectric crystal for optical applications is probably lithium niobate, LiNbO3

(LN for short); some other materials (such as barium titanate) belonging to the so-

called perovskite class are also sometimes used. The crystal structure of perovskites

is face-centered cubic. Above the Curie temperature, the crystal is strictly cubic, and

positive and negative ions are located in the cell so as to lead to zero dipole moment.

Below the Curie temperature, however, a transition takes place whereby positive and

negative ions undergo a shift in opposite directions; the crystal structure becomes tetrag-

onal (i.e., the elementary cell height a3 is different from the basis a1 = a2) and, due

to the charge displacement, a net dipole moment arises. Table 1.3 shows a few prop-

erties of ferroelectric crystals, namely the spontaneous polarization Ps and the Curie

temperature [2].

1.2.4 Crystal defects

In practice, the crystal lattice is affected by defects, either native (i.e., not involv-

ing external atoms) or related to nonnative impurities. Moreover, defects can be point

defects (0D), line defects (1D), surface defects (2D), such as dislocations, and vol-

ume defects (3D), such as precipitates. Native point defects are vacancies, see Fig. 1.8,

and self-interstitials, while interstitials are nonnative atoms placed in the empty space

between the already existing lattice atoms. Substitutional defects involve an external

atom, e.g., a dopant, which replaces one native atom. Typically, dopants act as donors

or acceptors only if they are in a substitutional site; if they are in an interstitial site, they

are inactive (chemically inactivated).2

2 Dopants can also be electrically inactivated when they are not ionized.
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Vacancy (1D)

Substitutional defect (1D) Frenkel defect (1D)
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Self-interstitial and

interstitial (1D)

Figure 1.8 Point defects in a crystal (1D) and dislocations (2D).

1.3 Semiconductor electronic properties

1.3.1 The energy–momentum dispersion relation

A crystal is a periodic arrangement of atoms; since each positively charged nucleus

induces a spherically symmetric Coulomb potential, superposition yields in total a

periodic potential U (r) such as

U (r) = U (r + L),

where L = ka1 + la2 + ma3. In such a periodic potential, electrons follow the rules of

quantum mechanics, i.e., they are described by a set of wavefunctions associated with

allowed electron states. Allowed states correspond to allowed energy bands, which col-

lapse into energy levels for isolated atoms; allowed bands are separated by forbidden

bands. Low-energy electrons are bound to atoms, and only the two topmost allowed

bands (the last, being almost full, is the valence band; the uppermost, almost empty,

is the conduction band) take part in carrier transport. As already recalled, the vac-

uum level U0 is the minimum energy of an electron free to move in and out of the

crystal.

Electrons in a crystal are characterized by an energy–momentum relation E(k), where

the wavevector k is related to the electron momentum p as p = h̄k. The dispersion

relation E(k) is defined in the k space, also called the reciprocal space; it is generally

a multivalued function, periodic in the reciprocal space, whose fundamental period is

called the first Brillouin zone (FBZ). A number of branches of the dispersion relation

refer to the valence band, a number to the conduction band; the total number of branches

depends on the crystal structure and is quite large (e.g., 12 for the conduction band and

8 for the valence band) in wurtzite semiconductors.

In cubic semiconductors, the FBZ is a solid with six square faces and eight hexagonal

faces, as shown in Fig. 1.9. Owing to symmetries, only a portion of the FBZ, called

the irreducible wedge, actually includes independent information; all the rest can be

recovered by symmetry. Important points in the FBZ are the center (� point), the X

point (center of the square face), and the L point (center of the hexagonal face).

The full details of the dispersion relation are not essential for understanding low-

energy phenomena in semiconductors; attention can be restricted to the branches
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Figure 1.9 The first Brillouin zone (FBZ) in a cubic lattice (lattice constant a).
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Figure 1.10 Simplified dispersion relation for GaAs.

describing low-energy electrons in the conduction band (around the conduction band

edge Ec) and high-energy electrons (low-energy holes) in the valence band (around

the valence band edge Ev). Valence band electrons are more efficiently described in

terms of pseudoparticles (the holes) related to electrons missing from the valence band.

Holes behave as particles with positive charge and potential energy opposite to the elec-

tron energy, so that the topmost branches of the dispersion relation (i.e., the branches

describing low-energy holes) define the valence band edge.

As a relevant example, let us discuss the dispersion relation for a direct-bandgap

semiconductor, GaAs. The term direct bandgap refers to the fact that the minimum

of the conduction band and the maximum of the valence band (both located in the �

point) correspond to the same momentum h̄k, in this case h̄k = 0. The dispersion rela-

tion shown in Fig. 1.10 is simplified, in the sense that only the lowest branch of the

conduction band is shown, while three branches of the valence band appear, the heavy

hole (HH), the light hole (LH), and the split-off band. Light and heavy hole bands are

degenerate, i.e., they share the same minimum in the � point, and they differ because

of the E(k) curvature near the minimum, which corresponds to a larger or smaller hole

effective mass. The split-off band enters some transport and optical processes but can

be neglected in a first-order treatment. The conduction band has the lowest minimum at
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the � point, and two secondary minima at the L and X points. The main gap is 1.42 eV,

while the secondary gaps are 1.72 eV (L point) and 1.90 eV (X point). Only a section of

the dispersion relation is presented, running from the L point to the � point (the center

of the FBZ), and then from the � point to the X point and back to the origin through the

K point.

Since electrons and holes have, at least in the absence of an applied field, a Boltz-

mann energy distribution (i.e., their probability to have energy E is proportional to

exp(−E/kB T ), where kB T = 26 meV at ambient temperature), most electrons and

holes can be found close to the conduction band and valence band edges, respectively.

Consider now the lowest minimum of the conduction band or highest maximum in

the valence band; the dispersion relation can be approximated (around the � point) by

a parabola as

En − Ec ≈
h̄2k2

2m∗
n

, Ev − Eh ≈
h̄2k2

2m∗
h

,

where m∗
n and m∗

h are the electron and hole effective masses.3 Therefore, the electron

kinetic energy En − Ec or hole kinetic energy Ev − Eh (assuming the valence band

edge energy Ev and the conduction band edge energy Ec to be the energy of a hole

or of an electron, respectively, at rest) have, approximately, the same expression as the

free-space particle kinetic energy, but with an effective mass m∗
n or m∗

h instead of the

in vacuo inertial mass m0. If the minimum is not located in the center of the first BZ

(as for the conduction band of indirect bandgap semiconductors) the momentum (in a

dynamic sense) can be defined “with respect to the minimum,” so that the following

approximation applies:

En − Ec ≈
h̄2

∣

∣k−kmin

∣

∣

2

2m∗
n

.

The effective mass can be evaluated from the inverse of the curvature of the dispersion

relation around a minimum or a maximum. In general, the approximating surface can

be expressed as

En − Ec =
h̄2k

2

a

2m∗
na

+
h̄2k

2

b

2m∗
nb

+
h̄2k

2

c

2m∗
nc

,

which is an ellipsoid; the coordinate system coincides with the principal axes. If the

three effective masses are equal, the ellipsoid degenerates into a spherical surface, and

we say that the minimum is spherical, with isotropic effective mass. This typically

happens at � point minima. In indirect-bandgap semiconductors, the constant-energy

3 Corrections to the parabolic approximation accounting for nonparaboliticity effects can be introduced (e.g.,

in the conduction band) through the expression:

Ek (1 + αEk ) =
h̄2k2

2m∗
n

,

where Ek is the electron kinetic energy En − Ec and α is a nonparabolicity correction factor.
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