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Origins, models and motivations

Abstract

We introduce the basic spin glass models, namely the Edwards–

Anderson model on a finite-dimensional lattice with short-range

interaction and the Sherrington–Kirkpatrick model on the complete

graph. The quenched equilibrium state which is used to describe

the thermodynamical properties of a general disordered system is

defined, together with the concept of real replicas. The notion of mean-

field for a spin glass model is discussed. Finally, the original com-

putations for the Sherrington–Kirkpatrick model based on the replica

method are presented – namely the replica symmetric solution and the

Parisi replica symmetry breaking scheme.

1.1 The spin glass problem

Spin glass models have been considered in different scientific contexts, includ-

ing experimental condensed matter physics, theoretical physics, mathematical

statistical physics and, more recently, probability. They have also been used to

solve problems in fields as diverse as theoretical computer science (combinato-

rial optimization, traveling salesman, Boolean satisfiability, number partitioning,

random assignment, error correcting codes, etc.), biology (Hopfield model), popu-

lation genetics (hierarchical coalescence), and the economy (modelization of finan-

cial markets). Thus spin glasses represent a true example of a multi-disciplinary

topic.

The study of spin glasses began after experiments on magnetic alloys, for

instance metals like Fe, Mn and Cr weakly diluted in metals such as Au, Ag and

Cu. It was observed that their thermodynamical behavior was not compatible with

the theory of ferromagnetism and showed peculiar dynamical out-of-equilibrium
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2 Origins, models and motivations

properties such as aging and rejuvenation effects (for a recent account of spin

glass dynamics and connection to experimental data see Cugliandolo and Kurchan

(2008)). The experiments motivated the introduction of an Ising model with ran-

dom interactions by Edwards and Anderson (1975). To simplify the model, and in

the quest of a solvable model, a mean-field version was proposed by Sherrington

and Kirkpatrick (1975). The mean-field theory was fully developed by G. Parisi,

who proposed an ansatz to solve the problem exactly. Nowadays that theory is

called replica symmetry breaking or mean-field spin glass theory. It revealed both

unconventional physical properties and a very rich mathematical structure (Mézard

et al. (1987)). In recent times some features of the theory have received a rigorous

mathematical proof, in particular the computation of the free energy density in the

thermodynamic limit due to Guerra (2003) and Talagrand (2006).

For the time being there is no consensus on the virtues of the mean-field Parisi

solution in describing the behavior of magnetic alloys. While numerical simula-

tions point to a mean-field behavior of the short-range Edwards–Anderson model

on three-dimensional lattices, the mean-field picture has been questioned by the

droplet-like picture in theoretical physics (Fisher and Huse (1988)) as well as by

the metastate approach in mathematical physics (Newman and Stein (1996, 1998,

2002, 2003b); Newman (1997)).

Despite the lack of consensus about its relevance in condensed matter, in the last

three decades the replica symmetry breaking theory has without doubt become a

major paradigm in the theory of complex systems. It has been applied in the solution

of many applied problems outside the realm of condensed matter physics, and the

rich mathematical structure which has emerged from the Parisi solution of the

Sherrington–Kirkpatrick (SK) model with non-rigorous techniques has attracted

the interest of pure mathematicians and people working on rigorous results.

1.2 Random interactions, finite-dimensional models, mean-field models

The characteristic property of spin glass models is the presence of both positive

ferromagnetic and negative antiferromagnetic interactions between the spins. While

ferromagnetic couplings force the alignment of the spins in the low temperature

phase, antiferromagnetic couplings prefer to anti-align the spins. When all bonds

between spins cannot be satisfied, the model is generically said to be frustrated. For

a precise definition of the concept of frustration one can look at the original paper by

Toulouse (1977); the simplest example of a model containing apparent disorder –

which can actually be removed by a gauge transform – is given in Mattis (1976).

Frustration can be realized in deterministic systems by properly choosing the

couplings. An interesting class of deterministic systems with frustration and con-

sequent glassy behavior is given by the so-called “sine model”, introduced in
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1.2 Random interactions, finite-dimensional models, mean-field models 3

Bouchaud and Mézard (1994); Marinari et al. (1994a, b) and further studied in

Degli Esposti et al. (2001, 2003); Contucci et al. (2002).

However, the standard spin glass models have random interactions. Three distinct

classes of models are usually considered:

� finite-dimensional spin glasses are defined on a d-dimensional lattice (with d an

integer number) and typically have finite-range interactions among the spins;
� mean-field spin glasses are defined on the complete graph with interactions

between all pairs (or k-tuples, for an integer number k) of spins;
� spin glasses on random graphs are defined on a random graph with interaction

between the spins linked by an edge.

Random graphs constitute a very interesting subject per se. The simplest example

is the Erdős–Rényi random graph with edges which are independently present with

identical probability. More general random graphs, such as the configuration model

or the preferential attachment model, also include dependence structures showing

power law degree distribution and small-world effects (see for instance the lecture

notes by van der Hofstad (2012)). Spin glasses on random graphs therefore have a

double source of randomness, given by the spatial structure where the interaction

takes place, and the sign and magnitude of the couplings between spins. They will

not be investigated in this book; the interested reader may consult Mézard and

Montanari (2009).

In this book we shall focus on the first two classes of spin glass models, showing

whenever possible their differences and similarities. We now define the primary

examples of each class.

Definition 1.1 (Edwards–Anderson Model) Consider a system in a box � ¢ Z
d

made of interacting spins Ã = {Ãi}i*� with Ãi * {21, +1}; the Edwards–Anderson

model is defined by the Hamiltonian

H�(Ã, J ) = 2
�

||i2j ||=1

Ji,jÃiÃj , (1.1)

where || · || denotes Euclidean distance and the couplings J = {Ji,j } are indepen-

dent random variables, all having the same distribution, which are assumed to be

symmetric with

E
�

Ji,j

�

= 0 E
�

J 2
i,j

�

= 1 (1.2)

where E [·] denotes expectation. Note that the sum in the Hamiltonian is restricted

to pairs of nearest-neighbor sites. A straightforward computation based on (1.2)

and on independence gives, for the covariance of the Hamiltonian (a family of 2|�|
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4 Origins, models and motivations

centered random variables),

E(H�(Ã, J )H�(Ä, J )) = d|�|Q�(Ã, Ä ), (1.3)

where Q�(Ã, Ä ) is the bond overlap between two spin configurations Ã and Ä and

is given by

Q�(Ã, Ä ) =
1

d|�|
�

||i2j ||=1

ÃiÃjÄiÄj . (1.4)

In the case of standard Gaussian distributed interactions {Ji,j }, the previous formula

for the covariance completely identifies the model and can be used as an alternative

definition.

Remark 1.2 Boundary conditions do matter both in (1.1) and (1.4). This will be

analyzed in Chapter 3.

Definition 1.3 (SK model) Consider a system of N spins Ã = {Ãi}i*{1,...,N} with

Ãi * {21, +1}; the SK model is defined by the Hamiltonian

HN (Ã, J ) = 2
1

:
2N

N
�

i,j=1

Ji,jÃiÃj , (1.5)

where, for each couple (i, j ) * {1, . . . , N}2, the couplings J = {Ji,j } are a fam-

ily of independent identical random variables with symmetric distribution, and

E
�

Ji,j

�

= 0 and E

"

J 2
i,j

"

= 1.

If the couplings {Ji,j } have a standard Gaussian distribution, then an equivalent

definition is that the energy levels of the SK model in the volume {1, . . . , N} are

given by a family of 2N centered Gaussian random variables with covariance

E(HN (Ã, J )HN (Ä, J )) =
N

2
q2

N (Ã, Ä ), (1.6)

where qN (Ã, Ä ) is the site overlap between two spin configurations Ã and Ä and is

given by

qN (Ã, Ä ) =
1

N

N
�

i=1

ÃiÄi . (1.7)

In this book we will often work with a general spin glass model which includes

(as special cases) both the Edwards–Anderson model and the SK model, as well

as other finite-dimensional or mean-field models which will be defined later. If

the couplings are chosen to have a Gaussian distribution then it is possible to use
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1.2 Random interactions, finite-dimensional models, mean-field models 5

properties of Gaussian random variables (such as the integration by parts formula)

which allow a few simplifications in the computations. The construction of such a

model will be discussed in Chapter 2 where a general representation theorem for

Gaussian Hamiltonians will be presented. The condition on the model parameters

(means and variances of the couplings) for the thermodynamic limit to exist will

be analyzed in Chapter 3. Here we limit ourselves to the following definition.

Definition 1.4 (General spin glass model) For a volume � ¢ Z
d and spins Ãi =

{21, +1} sitting on every site i * �, the general spin glass model is defined by the

Hamiltonian

H�(Ã, J ) = 2
�

X¢�

JXÃX, (1.8)

where ÃX =
�

i*X Ãi and the couplings J = {JX}X*� are independent random

variables (with J' = 0).

If those random variables are chosen to have a centered Gaussian distribution

with variance E(J 2
X) = "2

X, then an equivalent definition of the model is given by

a family of 2|�| centered Gaussian random variables H�(Ã, J ) with covariance

E(H�(Ã, J )H�(Ä, J )) = C(Ã, Ä ) = |�|c�(Ã, Ä ), (1.9)

where c�(Ã, Ä ) is the generalized overlap between the two spin configurations Ã

and Ä and is given by

c�(Ã, Ä ) =
1

|�|
�

X¢�

"2
XÃXÄX. (1.10)

Remark 1.5 By Schwartz’ inequality, |c�(Ã, Ä )| � c�(Ã, Ã ). A sufficient condi-

tion to guarantee existence of the thermodynamic limit is sup� c�(Ã, Ã ) � c̄ < +>
(see Section 3.2). Without loss of generality we will often assume that c�(Ã, Ã ) = 1.

Remark 1.6 The Edwards–Anderson model and the SK model correspond to

special choices of the volume � and of the centered couplings JX in the general

spin glass model. Namely:

1. Definition 1.1 is recovered with the choice: � ¢ Z
d , and "X = 1 for X = (i, j )

with (i, j ) * Z
d × Z

d and ||i 2 j || = 1, and "X = 0 otherwise.

2. Definition 1.3 is recovered with the choice: � = {1, . . . , N}, and "X = 1:
2N

for X = (i, j ) with (i, j ) * {1, . . . , N}2, and "X = 0 otherwise.

Note however that the differences between finite-range interactions (constant vari-

ances "2
X) and infinite-range interactions (variances "2

X depend on the volume)
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6 Origins, models and motivations

could imply substantial differences a priori on the thermodynamic properties in the

large-volume limit.

1.3 Quenched measure and real replicas

The description of the thermodynamic properties of a disordered system with a

random Hamiltonian requires the introduction of the quenched state notion. In spin

glasses, the timescale of the spin variables’ relaxation was observed to be much

shorter than that of the interaction variables. This dynamical feature led physics

to consider the interaction coefficient as frozen with respect to the spin ones. A

proper mathematical formulation is then obtained by first averaging over the spin

variables and computing the Boltzmann–Gibbs expectations, and then averaging

over the disorder.

Definition 1.7 (Quenched expectation) For a random Hamiltonian of the form

(1.8) on the volume � and a random (i.e. possibly depending on the J ) function

f : �� ³ R with �� = {21, +1}|�|, the expectation with respect to the random

Boltzmann–Gibbs measure at inverse temperature ³ � 0 is given by

Ë�,³(f ) =
�

Ã*��
f (Ã ) exp [2³H�(Ã, J )]

�

Ã*��
exp [2³H�(Ã, J )]

. (1.11)

Averaging over the disorder, one obtains the quenched expectation, denoted by

�f ��,³ = E
�

Ë�,³(f )
�

. (1.12)

Remark 1.8 To alleviate the notation, we will not always write explicitly the

volume- or temperature-dependence of either the random Boltzmann–Gibbs expec-

tations or the quenched expectations.

Moreover, it is useful to distinguish between random thermodynamic observ-

ables and their quenched average. The fundamental thermodynamical quantity is

the pressure (which gives up to a factor 1/³ the negative of the free energy).

Definition 1.9 (Pressure) We define the random partition function

Z�(³) =
�

Ã*��

exp [2³H�(Ã, J )], (1.13)

the random pressure

P�(³) = logZ�(³) (1.14)

and the quenched pressure

P�(³) = E [P�(³)] . (1.15)
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1.3 Quenched measure and real replicas 7

Remark 1.10 In the above definition we assume free boundary conditions. We

will return to the choice of boundary conditions in Chapter 3, where we will show

that they do not matter for the thermodynamic limit of the pressure and we will

analyze the effect of them on the surface pressure in Section 3.8.

The generalized overlap in Eq. (1.10) is the main observable of spin glass

theory. Indeed the standard thermodynamic quantities can be expressed in terms of

the quenched expectation of the generalized overlaps among copies of the system,

called real replicas, all subject to the same disorder. It is thus useful to introduce the

product random Boltzmann–Gibbs state over real replicas and the corresponding

quenched state.

Definition 1.11 (Real replicas) For a random Hamiltonian of the form (1.8) on

the volume � and a random function f : �R
� ³ R, the expectation with respect to

the R-product random Boltzmann–Gibbs state (with R being an integer) is

��,³(f ) =
�

{Ã (1),...,Ã (R)}*�R
�

f (Ã (1), . . . , Ã (R))e2³[H�(Ã (1),J )+···+H�(Ã (R),J )]

[Z�(³)]R
, (1.16)

The quenched expectation is then

�f ��,³ = E
�

��,³(f )
�

. (1.17)

We now show how the concept of real replicas, which might seem artificial at

first sight, naturally arises in the expression of the main thermodynamic quantities

in the context of Gaussian spin glass models. Consider, for instance, the internal

energy given by:

U�(³) = 2
dP�

d³
(³) = E(Ë�,³(H�)). (1.18)

Using the integration by parts formula for a set of centered Gaussian random

variables X = (X1, . . . , Xk) with covariances ai,j = E
�

XiXj

�

, namely

E(Xif (X)) =
n

�

j=1

ai,j E

�

"f

"xj

(X)

�

, (1.19)

and assuming c�(Ã, Ã ) = 1, one obtains the following expression for the internal

energy:

U�(³) = 2³|�|�1 2 c1,2��,³, (1.20)

with

�c1,2��,³ = E

£

£

�

{Ã (1),Ã (2)}*�2
�

c�(Ã (1), Ã (2))
e2³[H�(Ã (1),J )+H�(Ã (2),J )]

[Z�(³)]2

¤

§ . (1.21)
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8 Origins, models and motivations

Another example is the specific heat

C�(³) = 2³2 dU�

d³
(³) = ³2

E
�

Ë�,³

�

H 2
�

�

2 Ë2
�,³(H�)

�

. (1.22)

As for the internal energy, now using integration by parts twice, one obtains the

following result:

C�(³) = ³2|�|�1 2 c1,2��,³ 2 2³4|�|2
�

c2
1,2 2 4c1,2c2,3 + 3c1,2c3,4

�

�,³
, (1.23)

with

�c1,2c2,3��,³ = E

£

£

�

{Ã (1),Ã (2),Ã (3)}*�3
�

c�(Ã (1), Ã (2))c�(Ã (2), Ã (3))

×
e2³[H�(Ã (1),J )+H�(Ã (2),J )+H�(Ã (3),J )]

[Z�(³)]3

¤

§ , (1.24)

and an analogous expression (involving four replicas) for �c1,2c3,4��,³ .

In the previous formula we used the same bracket symbol as (1.17) in the

lefthand sides of (1.21) and (1.24) where the observable f was a function of the

spin configurations. The precise meaning of such a small abuse of notation is given

by the following:

Definition 1.12 (Generalized overlaps random variables) For any integer R � 1

the formulas (1.21) and (1.24) and their generalization to arbitrary powers and an

arbitrary number R of copies, define the family of random variables {cl,m} with

1 � l < m � R and their joint distribution p
(�)
lm , p

(�)
lm,l�m�, . . . via

�

ck
1,2

�

�
=

�

dxxkp
(�)
12 (x) (1.25)

�

ck
1,2c

l
2,3

�

�
=

�

dx

�

dyxky lp
(�)
12,23(x, y) (1.26)

and similar. What the spin glass theory is interested in is the behavior of the former

random variables in the thermodynamic limit whose distribution we will denote by

p12(x), p12,23(x, y), etc.

Remark 1.13 We point out that the joint distribution of the overlap random

variables is invariant under the action of the permutation group on the set {1, . . . , R}.
Denoting the symmetric random matrix with elements {cl,m} by C and assuming

without loss of generality cl,l = 1, the invariance under the permutation group is
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1.4 Definition of a mean-field spin glass 9

expressed by

PCP 21 D= C for all P, (1.27)

where P is the matrix associated to a permutation of the set {1, 2, . . . , R}. For

example:

p12(x) = p56(x), p12,23(x, y) = p13,35(x, y). (1.28)

1.4 Definition of a mean-field spin glass

A spin glass model, such as the SK model, was given the name mean-field type

for reasons of similarity with the Curie–Weiss model of ferromagnetism, in which

the spins’ interaction space is the complete graph of N vertices and the mutual

interaction is invariant with respect to the permutation group. A similar property is

also true for the SK model since the interaction space is still the complete graph and

the interactions are invariant, in distribution, under the action of the permutation

group. The apparent similarity between the two models goes much further and is

manifest in the replica symmetric solution of the SK model, to the point that one

could think of this model as a random version of the Curie–Weiss model. The

similarity goes as follows.

The magnetization of the Curie–Weiss model, defined as

m = lim
N³>

Ë
(CW )
N

�

1

N

N
�

i=1

Ãi

�

(1.29)

where ËCW
N (·) denotes expectation with respect to the Boltzmann–Gibbs measure

with Hamiltonian

H
(CW )
N (Ã ) = 2

1

2N

N
�

i,j=1

ÃiÃj 2 h

N
�

i=1

Ãi, (1.30)

satisfies the equation (at positive inverse temperature ³)

m = tanh(³[h + m]). (1.31)

This equation can also be obtained from the mean-field ferromagnetic model with

Hamiltonian

H
(MF )
N (Ã ) = 2

N
�

i=1

Ãi(h + M) (1.32)
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10 Origins, models and motivations

where M is a parameter representing the average field which is caused by all the

other spins and which is required to satisfy the self-consistency equation

M = Ë
(MF )
N

�

1

N

N
�

i=1

Ãi

�

, (1.33)

with Ë
(MF )
N (·) the expectation with respect to the Boltzmann–Gibbs measure with

Hamiltonian (1.32). An immediate computation shows that the self-consistency

equation (1.33) is equivalent to Eq. (1.31) with M = m = limN³> Ë
(CW )
N (Ãi).

Therefore, one usually says that the Curie–Weiss model is the mean-field theory of

ferromagnetism.

Considering now the SK model, we will see in Section 1.6 that the original replica

symmetric solution yields the following equation for the quenched expectation of

the overlap:

q =
�

d¿(z) tanh2(³(h + :
qz)), (1.34)

where d¿(z) = 1:
2Ã

e2 z2

2 dz and

q = lim
N³>

�

1

N

N
�

i=1

ÃiÄi

�(SK)

N

= lim
N³>

E

�

1

N

N
�

i=1

"

Ë
(SK)
N (Ãi)

"2

�

, (1.35)

with �·�(SK)
N denoting the quenched expectation associated to the Hamiltonian

H
(SK)
N (Ã ) = 2

1
:

2N

N
�

i,j=1

Ji,jÃiÃj 2 h

N
�

i=1

Ãi (1.36)

and {Ji,j } independent and identically distributed (i.i.d.) standard Gaussian random

variables. Equation (1.34) can also be obtained from non-interacting spin models

of the form

H̃
(MF )
N (Ã ) = 2

N
�

i=1

Ãi(h + Mi) (1.37)

where each spin Ãi , besides the external field h, feels the action of a centered

Gaussian random field Mi with covariance

E(MiMj ) = ·i,jM̄
2 (1.38)

where M̄ is determined self-consistently by imposing that

M̄2 =
�

1

N

N
�

i=1

ÃiÄi

�(MF )

N

(1.39)
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