Advanced Transport Phenomena

An integrated, modern approach to transport phenomena for graduate students, featuring traditional and contemporary examples to demonstrate the diverse practical applications of the theory. Written in an easy-to-follow style, the basic principles of transport phenomena and model building are recapped in Chapters 1 and 2 before progressing logically through more advanced topics including physicochemical principles behind transport models. Treatments of numerical, analytical, and computational solutions are presented side-by-side, often with sample code in MATLAB, to aid students' understanding and develop their confidence in using computational skills to solve real-world problems.

Learning objectives and mathematical prerequisites at the beginning of chapters orient students to what is required in the chapter, and summaries and over 400 end-of-chapter problems help them retain the key points and check their understanding. Online supplementary material including solutions to problems for instructors, supplementary reading material, sample computer codes, and case studies completes the package (available at www.cambridge.org/ramachandran).

P. A. Ramachandran is a Professor in the Department of Energy, Environment, and Chemical Engineering at Washington University, St. Louis. He has extensive teaching experience, mainly in transport phenomena, mathematical methods, and chemical reaction engineering, and he has also held many visiting appointments at various international institutions. He has written or co-written two previous books, as well as over 200 journal articles in which he has pioneered many new concepts and computational tools for the modeling of chemical reactors. He is a recipient of the Moulton Medal from the Institution of Chemical Engineers, UK, the NASA certificate of recognition, USA, and the NEERI award from the Institution of Chemical Engineers, India.

> "Anyone who teaches transport phenomena will treasure this book because it provides an integrated approach to help students better understand the core theories through both traditional and contemporary examples of transport phenomena problems, along with sideby-side presentations of both analytical and numerical methods and sample MATLAB codes – the long-awaited, all-in-one solution."

> > **Roger Lo** California State University

Advanced Transport Phenomena

ANALYSIS, MODELING, AND COMPUTATIONS

P. A. RAMACHANDRAN

Washington University, St. Louis

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521762618

© P. A. Ramachandran 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Ramachandran, P. A., author. Transport phenomena : analysis, modeling and computations / P.A. Ramachandran. pages cm ISBN 978-0-521-76261-8 (Hardback) 1. Transport theory–Textbooks. I. Title. TP156.T7R36 2014 530.13'8–dc23 2014014317

ISBN 978-0-521-76261-8 Hardback

Additional resources for this publication at www.cambridge.org/ramachandran

Cover illustration: close-up of ink spreading in water mixed with droplets of paint. This image was created by dropping a small amount of oil- and xylene-based gold paint onto the surface of colored water. Different inks were then dropped onto the gold paint until the weight of the ink caused the gold paint to dip and allowed the inks to burst into the water. The complex colors, shapes, and patterns are a result of varying levels of flow rate, ink density, and surface tension. This creates eddies and vortices that affect the way light is reflected from the surface. Image © Perry Burge/Science Photo Library.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

	Prefa	ice		<i>page</i> xvii
	Topi	cal outli	ne	xxi
	Nota	tion		xxiii
1	Intr	Introduction		
	1.1		, why, and how?	1 2
		1.1.1	What?	2
		1.1.2	Why?	3
		1.1.3	How?	6
		1.1.4	Conservation statement	6
		1.1.5	The need for constitutive models	7
		1.1.6	Common constitutive models	8
	1.2	Typic	al transport property values	10
		1.2.1	Viscosity: pure gases and vapors	10
		1.2.2	Viscosity: liquids	11
		1.2.3	Thermal conductivity	11
		1.2.4	Diffusivity	12
	1.3	The c	ontinuum assumption and the field variables	13
		1.3.1	Continuum and pointwise representation	13
		1.3.2	Continuum vs. molecular	16
		1.3.3	Primary field variables	16
		1.3.4	Auxiliary variables	16
	1.4	Coord	linate systems and representation of vectors	18
		1.4.1	Cartesian coordinates	18
		1.4.2	Cylindrical coordinates	19
		1.4.3	Spherical coordinates	20
		1.4.4	Gradient of a scalar field	20
	1.5	Mode	eling at various levels	22
		1.5.1	Levels based on control-volume size	22
		1.5.2	Multiscale models	24
		1.5.3	Multiscale modeling below the continuum level	25
	1.6	Mode	el building: general guidelines	25
	1.7	An ex	ample application: pipe flow and tubular reactor	27
		1.7.1	Pipe flow: momentum transport	28
		1.7.2	Laminar or turbulent?	28
		1.7.3	Use of dimensionless numbers	30
		1.7.4	Pipe flow: heat transport	32
		1.7.5	Pipe flow: mass exchanger	35
		1.7.6	Pipe flow: chemical reactor	35
	1.8		ink between transport properties and molecular models	36
		1.8.1	Kinetic theory concepts	37
		1.8.2	Liquids	42
		1.8.3	Transport properties of solids	44

vi	

2

Contents

1.9	Six decades of transport phenomena	45
1.10	Closure	48
	Summary	49
	Additional Reading	50
	Problems	50
Eva	mplac of transport and system models	56
2.1	mples of transport and system models	58
2.1	Macroscopic mass balance 2.1.1 Species balance equation	58 58
	2.1.2 Transient balance: tracer studies	63
	2.1.2 Overall mass balance	65
2.2	Compartmental models	68
2.2	2.2.1 Model equations	68
	2.2.2 Matrix representation	69
	2.2.3 A numerical IVP solver in MATLAB	70
2.3	Macroscopic momentum balance	72
	2.3.1 Linear momentum	72
	2.3.2 Angular momentum	77
2.4	Macroscopic energy balances	79
	2.4.1 Single inlet and outlet	79
	2.4.2 The Bernoulli equation	81
	2.4.3 Sonic and subsonic flows	85
	2.4.4 Cooling of a solid: a lumped model	91
2.5	Examples of differential balances: Cartesian	97
	2.5.1 Heat transfer with nuclear fission in a slab	97
	2.5.2 Mass transfer with reaction in a porous catalyst	99
•	2.5.3 Momentum transfer: unidirectional flow in a channel	101
2.6	Examples of differential models: cylindrical coordinates	102
	2.6.1 Heat transfer with generation2.6.2 Mass transfer with reaction	102 104
	2.6.2 Mass transfer with reaction 2.6.3 Flow in a pipe	104
2.7	Spherical coordinates	105
2.7	Examples of mesoscopic models	100
2.0	2.8.1 Tubular reactor with heat transfer	108
	2.8.2 Heat transfer in a pin fin	108
	2.8.3 Countercurrent heat exchanger	110
	2.8.4 Counterflow: matrix method	115
	Summary	116
	Problems	119
Flov	v kinematics	126
3.1	Eulerian description of velocity	128
3.2	Lagrangian description: the fluid particle	128
3.3	Acceleration of a fluid particle	130
3.4	The substantial derivative	130
3.5	Dilatation of a fluid particle	130
3.6	Mass continuity	132
3.0 3.7	•	134
	The Reynolds transport theorem	
3.8	Vorticity and rotation	136

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

vii

		3.8.1 3.8.2	Curl in other coordinate systems Circulation along a closed curve	137 139
	3.9		potential representation	140
	3.10		ifunctions	141
	5.10		Two-dimensional flows: Cartesian	141
			Two-dimensional flows: polar	143
			Streamfunctions in axisymmetric flows	143
		3.10.4	The relation to vorticity: the E^2 operator	144
	3.11	The gr	adient of velocity	145
	3.12	Deform	nation and rate of strain	146
		3.12.1	The physical meaning of the rate of strain	148
		3.12.2	Rate of strain: cylindrical	151
			Rate of strain: spherical	151
			Invariants of a tensor	152
	3.13	Index	notation for vectors and tensors	152
		Summa	,	154
		Probler	ms	155
4	Force		their representations	159
	4.1	Forces	on fluids and their representation	160
		4.1.1	Pressure forces	161
		4.1.2	Viscous forces	163
			The divergence of a tensor	167
	4.2		juation of hydrostatics	169
			Archimedes' principle	169
		4.2.2	The force on a submerged surface: no curvature	170
		4.2.3	Force on a curved surface	171
	4.3	•	statics at interfaces	172
		4.3.1	The nature of interfacial forces	172
		4.3.2 4.3.3	Contact angle and capillarity	174 175
	4.4		The Laplace–Young equation	
	4.4	-	and lift forces	177
		Summa	,	180
		Probler	ms	181
5	•		of motion and the Navier–Stokes equation	184
	5.1	-	on of motion: the stress form	185
			The Lagrangian point particle	185
		5.1.2 5.1.3	The Lagrangian control volume The Eulerian control volume	186
	5.2			187
	5.2	• •	of fluid behavior Types and classification of fluid behavior	189
		5.2.1 5.2.2	Stress relations for a Newtonian fluid	189 191
	5.3		avier–Stokes equation	191
	5.5	5.3.1	The Laplacian of velocity	191
		5.3.2	Common boundary conditions for flow problems	192
	5.4		mensionless form of the flow equation	195
	5.4	5.4.1	Key dimensionless groups	195
		5.4.2	The Stokes equation: slow flow or viscous flow	195
		5.4.3	The Euler equation	197

6

Contents

5.6 Alternative representations for the Navier–Stokes equations 201 5.6.1 Plane flow: the vorticity–streamfunction form 201 5.6.2 Plane flow: the streamfunction representation 201 5.6.3 Inviscid and potential flow 202 5.6.4 The velocity–vorticity formulation 202 5.6.5 Slow flow in terms of vorticity 203 5.7 Constitutive models for non-Newtonian fluids 203 Summary 206 Problems 208 6.1 Introduction 210 6.1.3 Summary of equations 211 6.1.4 Summary of equations 211 6.1.2 Simplifications 211 6.1.3 Solution methods 212 6.2.4 Shear-driven flow 215 6.2.5 Gravity-driven flow 215 6.3.1 Circular pipe 219 6.3.2 Gravity-driven flow 215 6.2.4 Shear-driven flow 215 6.2.5 Gravity-driven flow 220 6.4 Torsional flow 220			
5.6.1 Plane flow: the vorticity-streamfunction form 201 5.6.2 Plane flow: the streamfunction representation 201 5.6.3 Inviscid and potential flow 202 5.6.4 The velocity-vorticity formulation 202 5.6.5 Slow flow in terms of vorticity 202 5.6.6 The relocity-vorticity formulation 203 5.7 Constitutive models for non-Newtonian fluids 203 Summary 205 Problems 206 Illustrative flow problems 208 6.1 Introduction 210 6.1.1 Summary of equations 210 6.1.2 Simplifications 211 6.2.3 Beneral solution 214 6.2.4 Shear-driven flow 215 6.2.5 Gravity-driven flow 215 6.3.1 Circular pipe 219 6.3.2 Axial flow in cylindrical geometry 218 6.3.1 Circular pipe 220 6.4 Torsional flow 220 6.5 Radial flow 222 6.6 Flow in	5.5	Use of similarity for scaleup	197
5.6.2 Plane flow: the streamfunction representation 201 5.6.3 Inviscid and potential flow 202 5.6.4 The velocity-vorticity formulation 202 5.6.5 Slow flow in terms of vorticity 202 5.6.6 The pressure Poisson equation 203 5.7 Constitutive models for non-Newtonian fluids 203 Summary 205 Problems 206 Illustrative flow problems 208 6.1 Introduction 210 6.1.2 Simmary of equations 211 6.1.3 Solution methods 211 6.2 Channel flow 212 6.2.1 Entry-region flow in channels or pipes 212 6.2.2 General solution 214 6.2.3 Pressure-driven flow 215 6.2.4 Shear-driven flow 216 6.3 Axial flow in cylindrical geometry 218 6.3.1 Circular pipe 220 6.4 Torsional flow 222 6.5 Radial flow 222 6.6 Flow in a spherical ga	5.6	Alternative representations for the Navier-Stokes equations	201
5.6.3 Inviscid and potential flow 202 5.6.4 The velocity-vorticity formulation 202 5.6.6 The pressure Poisson equation 203 5.7 Constitutive models for non-Newtonian fluids 203 5.7 Constitutive models for non-Newtonian fluids 203 5.7 Constitutive models for non-Newtonian fluids 203 6.1 Introduction 210 6.1.1 Summary of equations 210 6.1.2 Simplifications 211 6.1.3 Solution methods 211 6.2 General solution 212 6.2.1 Entry-region flow in channels or pipes 212 6.2.2 General solution 214 6.2.3 Pressure-driven flow 215 6.2.4 Shear-driven flow 216 6.3.1 Circular pipe 219 6.3.1 Circular pipe 219 6.3.2 Annular pipe: pressure-driven 219 6.3.4 Circular pipe 222 6.6 Flow in a spherical gap 223 6.7 Non-circular channels <td></td> <td>5.6.1 Plane flow: the vorticity–streamfunction form</td> <td>201</td>		5.6.1 Plane flow: the vorticity–streamfunction form	201
5.64 The velocity-vorticity formulation 202 5.6.5 Slow flow in terms of vorticity 202 5.6.6 The pressure Poisson equation 203 5.7 Constitutive models for non-Newtonian fluids 203 Summary 206 Problems 208 6.1 Introduction 210 6.1.1 Summary of equations 211 6.1.2 Simplifications 211 6.1.3 Solution methods 211 6.1.4 Entry-region flow in channels or pipes 212 6.2.1 Entry-region flow 215 6.2.3 Oresure-driven flow 215 6.2.4 Shear-driven flow 215 6.3.1 Circular pipe 219 6.3.1 Circular pipe 219 6.3.2 Annular pipe: pressure-driven 219 6.3.3 Annular pipe: shear-driven 219 6.4 Torsional flow 222 6.6 Flow in a spherical gap 223 6.7 Non-circular channels 224 6.8 The lubrication approximatio		5.6.2 Plane flow: the streamfunction representation	201
5.6.5Slow flow in terms of vorticity2025.6.6The pressure Poisson equation2035.7Constitutive models for non-Newtonian fluids203Summary205Problems206Illustrative flow problems2086.1Introduction2106.1.1Summary of equations2116.1.2Simplifications2116.1.3Solution methods2116.2Channel flow2126.2.4General solution2146.2.5Gravity-driven flow2156.2.6Gravity-driven flow2156.2.7Gravity-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: shear-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow in a tapered pipe2286.9External flow2336.10Annular viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The adhinowitsch equation2366.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336		5.6.3 Inviscid and potential flow	
5.6.6The pressure Poisson equation2035.7Constitutive models for non-Newtonian fluids203Summary205Problems206Illustrative flow problems2086.1Introduction2106.1.1Summary of equations2116.1.2Simplifications2116.1.3Solution methods2116.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3.1Circular pipe2196.3.2Anular pipe: pressure-driven2196.3.3Anular pipe: shear-driven2196.3.4Torsional flow2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2336.10.1A power-law model2336.10.2Flow in a tapered pipe2346.11The effect of fluid elasticity2376.12Flow ing equation244Additional Reading244Additional Reading244Additional Reading244Additional Reading244Additional Reading246The energy balance equation<		5.6.4 The velocity–vorticity formulation	202
5.7 Constitutive models for non-Newtonian fluids 203 Summary 205 Problems 206 Illustrative flow problems 208 6.1 Introduction 210 6.1.1 Summary of equations 210 6.1.2 Simplifications 211 6.1.3 Solution methods 211 6.2 Channel flow 212 6.2.1 Entry-region flow in channels or pipes 212 6.2.2 General solution 214 6.2.3 Pressure-driven flow 215 6.3.4 Shear-driven flow 216 6.3 Axial flow in cylindrical geometry 218 6.3.1 Circular pipe 220 6.4 Torsional flow 220 6.5 Radial flow 220 6.4 Torsional flow 220 6.5 Radial flow 220 6.6 Flow in a spherical gap 223 6.7 Non-circular channels 224 6.8 The lubrication approximation 233 6.10 Non-Newto		5.6.5 Slow flow in terms of vorticity	202
Summary Problems205 206Illustrative flow problems2086.1Introduction210 6.1.16.1.1Summary of equations210 6.1.26.1.2Simplifications211 6.1.36.1.3Solution methods211 6.2.16.2.4Entry-region flow in channels or pipes212 6.2.26.2.3Pressure-driven flow215 6.2.46.2.4Shear-driven flow2166.3.2Axial flow in cylindrical geometry218 6.3.36.3.1Circular pipe219 6.3.36.3.2Annular pipe: pressure-driven2206.4Torsional flow2226.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation227 6.8.26.9External flow233 6.10.1A power-law model6.10Non-Newtonian viscoinelastic fluids233 6.10.2233 6.10.36.11The effect of fluid elasticity237 6.33234 6.10.36.12Flow in a tapered pipe234 6.10.3244 4.244 Additional Reading244 244 244 Additional Reading2467.1Application of the first law of thermodynamics to a moving control volume252		5.6.6 The pressure Poisson equation	203
Problems206Illustrative flow problems2086.1Introduction2106.1.1Summary of equations2106.1.2Simplifications2116.1.3Solution methods2116.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2156.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: pressure-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2276.8.1Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A singher magnetohydodynamic problem244Additional Reading244Additional Reading246Problems246The energy balance equation2467.1Application of the first law of thermodynamics to a moving control volume252	5.7	Constitutive models for non-Newtonian fluids	203
Illustrative flow problems2086.1Introduction2106.1.1Summary of equations2106.1.2Simplifications2116.1.3Solution methods2116.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem244Additional Reading246Problems246The energy balance equation246The upplication of the first law of thermodynamics to a moving control252		Summary	205
6.1Introduction2106.1.1Summary of equations2106.1.2Simplifications2116.1.3Solution methods2116.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: sesure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2226.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2386.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Radinowisch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation246Volume255		Problems	206
6.1Introduction2106.1.1Summary of equations2106.1.2Simplifications2116.1.3Solution methods2116.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: sesure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2226.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2386.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Radinowisch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation246Volume255	مىاللىم	trativa flavu problama	200
6.1.1Summary of equations2106.1.2Simplifications2116.1.3Solution methods2116.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3.5Gravity-driven flow2166.3.4Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2386.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow in a Binpam fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control251			
6.1.2Simplifications2116.1.3Solution methods2116.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3.5Gravity-driven flow2166.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: pressure-driven2206.4Torsional flow2226.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2386.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control251	6.1		
6.1.3Solution methods2116.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2226.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10.1Non-Newtonian viscoinelastic fluids2336.10.2The windel model2336.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume252			
6.2Channel flow2126.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: pressure-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2336.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control251		-	
6.2.1Entry-region flow in channels or pipes2126.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2156.2.5Gravity-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2336.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The Rebinowitsch equation2366.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control251			
6.2.2General solution2146.2.3Pressure-driven flow2156.2.4Shear-driven flow2156.2.5Gravity-driven flow2166.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: pressure-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control volume252	6.2		212
6.2.3Pressure-driven flow2156.2.4Shear-driven flow2166.3.5Gravity-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2106.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control251			
6.2.4Shear-driven flow2156.2.5Gravity-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252			
6.2.5Gravity-driven flow2166.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control volume252			
6.3Axial flow in cylindrical geometry2186.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems2467.1Application of the first law of thermodynamics to a moving control volume252			
6.3.1Circular pipe2196.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252		5	
6.3.2Annular pipe: pressure-driven2196.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume252	6.3		
6.3.3Annular pipe: shear-driven2206.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.11The Rabinowitsch equation2366.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume252			
6.4Torsional flow2206.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume252			
6.5Radial flow2226.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume251		1 1	
6.6Flow in a spherical gap2236.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume251	6.4	Torsional flow	220
6.7Non-circular channels2246.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume251	6.5	Radial flow	222
6.8The lubrication approximation2276.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume251	6.6	Flow in a spherical gap	223
6.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252	6.7	Non-circular channels	224
6.8.1Flow between two inclined plates2276.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252	6.8	The lubrication approximation	227
6.8.2Flow in a tapered pipe2286.9External flow2306.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252			227
6.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252		-	228
6.10Non-Newtonian viscoinelastic fluids2336.10.1A power-law model2336.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252	6.9	External flow	230
6.10.1 A power-law model2336.10.2 Flow of a Bingham fluid in a pipe2346.10.3 The Rabinowitsch equation2366.11 The effect of fluid elasticity2376.12 A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1 Application of the first law of thermodynamics to a moving control volume252	6.10	Non-Newtonian viscoinelastic fluids	233
6.10.2Flow of a Bingham fluid in a pipe2346.10.3The Rabinowitsch equation2366.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252			
6.10.3 The Rabinowitsch equation2366.11 The effect of fluid elasticity2376.12 A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1 Application of the first law of thermodynamics to a moving control volume251		1	
6.11The effect of fluid elasticity2376.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation7.1Application of the first law of thermodynamics to a moving control volume252			236
6.12A simple magnetohydrodynamic problem240Summary244Additional Reading246Problems246The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252	6.11		
Summary Additional Reading Problems244 246The energy balance equation 7.12517.1Application of the first law of thermodynamics to a moving control volume252		-	
Additional Reading Problems246 246The energy balance equation 7.1251 Application of the first law of thermodynamics to a moving control volume251	0.12		
Problems 246 The energy balance equation 251 7.1 Application of the first law of thermodynamics to a moving control 252		-	
The energy balance equation2517.1Application of the first law of thermodynamics to a moving control volume252		5	
7.1Application of the first law of thermodynamics to a moving control volume252			240
volume 252	The	energy balance equation	251
volume 252	7.1	Application of the first law of thermodynamics to a moving control	
7.2 The working rate of the forces 253		volume	252
	7.2	The working rate of the forces	253

ix

	7.3	Kinetic energy and internal energy equations	256
	7.4	The enthalpy form	257
	7.5	The temperature equation	257
	7.6	Common boundary conditions	259
	7.7	The dimensionless form of the heat equation	261
	7.8	From differential to macroscopic	262
	7.9	Entropy balance and the second law of thermodynamics	263
		7.9.1 Some definitions from thermodynamics	263
		Summary	267
		Problems	268
8	Illus	trative heat transport problems	269
	8.1	Steady heat conduction and no generation	270
		8.1.1 Constant conductivity	270
		8.1.2 Variable thermal conductivity	273
	0.0	8.1.3 Two-dimensional heat conduction problems	274
	8.2	Heat conduction with generation: the Poisson equation	276 276
	0 2	8.2.1 The constant-generation case	278
	8.3	Conduction with temperature-dependent generation 8.3.1 Linear variation with temperature	277
		8.3.2 Non-linear variation with temperature	279
		8.3.3 Two-dimensional Poisson problems	281
	8.4	Convection effects	282
		8.4.1 Transpiration cooling	282
		8.4.2 Convection in boundary layers	285
	8.5	Mesoscopic models	286
		8.5.1 Heat transfer from a fin	286
		8.5.2 A single-stream heat exchanger	288
	8.6	Volume averaging or lumping	290
		8.6.1 Cooling of a sphere in a liquid	290
		8.6.2 An improved lumped model	291
		Summary Problems	292
		Problems	293
9	Equ	ations of mass transfer	296
	9.1	Preliminaries	298
	9.2	Concentration jumps at interfaces	300
	9.3	The frame of reference and Fick's law	302
	9.4	Equations of mass transfer	307
		9.4.1 Mass basis	308
		9.4.2 Mole basis	310
		9.4.3 Boundary conditions	311
	9.5	From differential to macroscopic	312
	9.6	Complexities in diffusion	313
		Summary	316
		Problems	317
10	Illus	trative mass transfer problems	321
	10.1	Steady-state diffusion: no reaction	322
		10.1.1 Summary of equations	322

Х

	10.2	The film concept in mass-transfer analysis	328
		10.2.1 Fluid–solid interfaces	328
		10.2.2 Gas–liquid interfaces: the two-film model	331
	10.3	Mass transfer with surface reaction	333
		10.3.1 Heterogeneous reactions: the film model	333
	10.4	Mass transfer with homogeneous reactions	334
		10.4.1 Diffusion in porous media	334
		10.4.2 Diffusion and reaction in a porous catalyst	335
		10.4.3 First-order reaction	335
		10.4.4 Zeroth-order reaction	339
		10.4.5 Transport in tissues: the Krogh model	340
		10.4.6 <i>m</i> th-order reaction	342
	10.5	Models for gas-liquid reaction	343
		10.5.1 Analysis for the pseudo-first-order case	346
		10.5.2 Analysis for instantaneous asymptote	347
		10.5.3 The second-order case: an approximate solution	347
		10.5.4 The instantaneous case: the effect of gas film resistance	348
	10.6	Transport across membranes	350
		10.6.1 Gas transport: permeability	350
		10.6.2 Complexities in membrane transport	352
	10.5	10.6.3 Liquid-separation membranes	353
	10.7	Transport in semi-permeable membranes	354
		10.7.1 Reverse osmosis	355
		10.7.2 Concentration-polarization effects	356
		10.7.3 The Kedem–Katchalsky model	358
	10.0	10.7.4 Transport in biological membranes	360
	10.8	Reactive membranes and facilitated transport	360
		10.8.1 Reactive membrane: facilitated transport	360
	10.0	10.8.2 Co- and counter-transport	363
	10.9	A boundary-value solver in MATLAB	364
		10.9.1 Code-usage procedure	364
		10.9.2 BVP4C example: the selectivity of a catalyst	364
		Summary	367
		Additional Reading	370
		Problems	370
11	Ana	lysis and solution of transient transport processes	377
	11.1	Transient conduction problems in one dimension	378
	11.2	Separation of variables: the slab with Dirichlet conditions	380
		11.2.1 Slab: temperature profiles	383
		11.2.2 Slab: heat flux	384
		11.2.3 Average temperature	384
	11.3	Solutions for Robin conditions: slab geometry	385
	11.4	Robin case: solutions for cylinder and sphere	387
	11.4	Two-dimensional problems: method of product solution	388
	11.5	Transient non-homogeneous problems	389
	11.0	11.6.1 Subtracting the steady-state solution	389 390
		11.6.2 Use of asymptotic solution	390 391
		11.0.2 Ose of asymptotic solution	591

xi

	11.7	Semi-infinite-slab analysis	391
		11.7.1 Constant surface temperature	392
		11.7.2 Constant flux and other boundary conditions	393
	11.8	The integral method of solution	394
	11.9	Transient mass diffusion	396
		11.9.1 Constant diffusivity model	396
		11.9.2 The penetration theory of mass transfer	399
		11.9.3 The effect of chemical reaction	399
		11.9.4 Variable diffusivity	403
	11.10	Periodic processes	404
		11.10.1 Analysis for a semi-infinite slab	405
		11.10.2 Analysis for a finite slab	407
	11.11	Transient flow problems	408
		11.11.1 Start-up of channel flow	409
		11.11.2 Transient flow in a semi-infinite mass of fluid	409
		11.11.3 Flow caused by an oscillating plate	409
		11.11.4 Start-up of Poiseuille flow	411
		11.11.5 Pulsatile flow in a pipe	412
	11.12	A PDE solver in MATLAB	413
		11.12.1 Code usage	413
		11.12.2 Example general code for 1D transient conduction	415
		Summary	417
		Additional Reading	418
		Problems	419
12	Conv	vective heat and mass transfer	425
	12.1	Heat transfer in laminar flow	427
		12.1.1 Preliminaries and the model equations	427
		12.1.2 The constant-wall-temperature case: the Graetz problem	430
		12.1.3 The constant-flux case	434
	12.2	Entry-region analysis	435
		12.2.1 The constant-wall-temperature case	435
		12.2.2 The constant-flux case	437
	12.3	Mass transfer in film flow	437
		12.3.1 Solid dissolution at a wall in film flow	438
		12.3.2 Gas absorption from interfaces in film flow	439
	12.4	Laminar-flow reactors	440
		12.4.1 A 2D model and key dimensionless groups	440
		12.4.2 The pure convection model	443
	12.5	Laminar-flow reactor: a mesoscopic model	444
		12.5.1 Averaging and the concept of dispersion	444
		12.5.2 Non-linear reactions	446
	12.6	Numerical study examples with PDEPE	446
		12.6.1 The Graetz problem	446
		Summary	449
		Problems	450
13	Cour	oled transport problems	453
IJ	-		
	13.1	Modes of coupling	454
		13.1.1 One-way coupling	454

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

xii

		13.1.2 Two-way coupling	455
	13.2	Natural convection problems	455
		13.2.1 Natural convection between two vertical plates	455
		13.2.2 Natural convection over a vertical plate	459
		13.2.3 Natural convection: concentration effects	460
	13.3	Heat transfer due to viscous dissipation	460
		13.3.1 Viscous dissipation in plane Couette flow	460
		13.3.2 Laminar heat transfer with dissipation: the Brinkman problem	461
	13.4	Laminar heat transfer: the effect of viscosity variations	463
	13.5	Simultaneous heat and mass transfer: evaporation	465
		13.5.1 Dry- and wet-bulb temperatures	465
		13.5.2 Evaporative or sweat cooling	468
	13.6	Simultaneous heat and mass transfer: condensation	468
		13.6.1 Condensation of a vapor in the presence of a non-condensible gas	468
		13.6.2 Fog formation	472
		13.6.3 Condensation of a binary gas mixture	472
	13.7	Temperature effects in a porous catalyst	476
		Summary	480
		Additional Reading	481
		Problems	481
14	Scal	ing and perturbation analysis	484
17		Dimensionless analysis revisited	485
	14.1	14.1.1 The method of matrix transformation	485
		14.1.1 The method of matrix transformation 14.1.2 Momentum problems	486
		14.1.2 Momentum problems 14.1.3 Energy transfer problems	489
		14.1.4 Mass transfer problems	491
		14.1.5 Example: scaleup of agitated vessels	492
		14.1.6 Example: pump performance correlation	493
	14.2	Scaling analysis	495
	17.2	14.2.1 Transient diffusion in a semi-infinite region	495
		14.2.2 Example: gas absorption with reaction	496
		14.2.3 Kolmogorov scales for turbulence: an example of scaling	496
		14.2.4 Scaling analysis of flow in a boundary layer	497
		14.2.5 Flow over a rotating disk	501
	14.3	Perturbation methods	503
		14.3.1 Regular perturbation	503
		14.3.2 The singular perturbation method	506
		14.3.3 Example: catalyst with spatially varying activity	507
		14.3.4 Example: gas absorption with reversible reaction	508
		14.3.5 Stokes flow past a sphere: the Whitehead paradox	511
	14.4	Domain perturbation methods	513
		Summary	515
		Additional Reading	516
		Problems	516
15	Mar	o flow analycic	EJJ
15		re flow analysis	523
	15.1	Low-Reynolds-number (Stokes) flows 15.1.1 Properties of Stokes flow	525 525
	15.2	The mathematics of Stokes flow	525
	13.4	The manemanes of Stokes now	541

xiii

Contents

	15.2.1 General solutions: spherical coordinates	527
	15.2.2 Flow past a sphere: use of the general solution	528
	15.2.3 Bubbles and drops	531
	15.2.4 Oseen's improvement	533
	15.2.5 Viscosity of suspensions	534
	15.2.6 Nanoparticles: molecular effects	535
15.3	Inviscid and irrotational flow	536
	15.3.1 Properties of irrotational flow	536
	15.3.2 The Bernoulli equation revisited	537
15.4	Numerics of irrotational flow	539
	15.4.1 Boundary conditions	539
	15.4.2 Solutions using harmonic functions	540
	15.4.3 Solution using singularities	542
15.5	Flow in boundary layers	546
	15.5.1 Relation to the vorticity transport equation	547
	15.5.2 Flat plate: integral balance	548
	15.5.3 The integral method: the von Kármán method	549
	15.5.4 The average value of drag	550
	15.5.5 Non-flat systems: the effect of a pressure gradient	550
15.6	Use of similarity variables	551
10.0	15.6.1 A simple computational scheme	553
	15.6.2 Wedge flow: the Falkner–Skan equation	554
	15.6.3 Blasius flow	554
	15.6.4 Stagnation-point (Hiemenz) flow	555
15.7	Flow over a rotating disk	556
10.7	Summary: Stokes flow	557
	-	
	Summary: potential flow	558
	Summary: boundary-layer theory	558
	Additional Reading	559
	Problems	559
Bifu	rcation and stability analysis	566
16.1	Introduction to dynamical systems	567
10.1	16.1.1 Arc-length continuation: a single-equation example	571
	16.1.2 The arc-length method: multiple equations	572
16.2	Bifurcation and multiplicity of DPSs	576
10.2	16.2.1 A bifurcation example: the Frank-Kamenetskii equation	576
	16.2.2 Bifurcation: porous catalyst	577
16.3	Flow-stability analysis	
10.5	16.3.1 Evolution equations and linearized form	578 578
	•	
164	-	580
16.4	Stability of shear flows	581
	16.4.1 The Orr–Sommerfeld equation	581
	16.4.2 Stability of shear layers: the role of viscosity	583
	16.4.3 The Rayleigh equation	583
	16.4.4 Computational methods	584
16.5	More examples of flow instability	585

16.5 More examples of flow instability 16.5.1 Kelvin–Helmholtz instability 16.5.2 Rayleigh–Taylor instability

16.5.3 Thermal instability: the Bénard problem

16

585

586

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

xiv

Contents

17

	16.5.4 Marangoni instability	588
	16.5.5 Non-Newtonian fluids	588
	Summary	589
	Additional Reading	589
	Problems	589
Turh	ulent-flow analysis	592
17.1	•	593
	Flow transition and properties of turbulent flow	593 594
17.2	Time averaging	
17.3	Turbulent heat and mass transfer	597
17.4	Closure models	598
17.5	Flow between two parallel plates	599
17.6	Pipe flow	603
	17.6.1 The effect of roughness	605
17.7	Turbulent boundary layers	606
17.8	Other closure models	607
	17.8.1 The two-equation model: the $k-\epsilon$ model	608
	17.8.2 Reynolds-stress models	609
	17.8.3 Large-eddy simulation	610
17.0	17.8.4 Direct numerical simulation	610
17.9	Isotropy, correlation functions, and the energy spectrum	610
17.10	Kolmogorov's energy cascade	613
	17.10.1 Correlation in the spectral scale	614
	Summary	615
	Additional Reading	616
	Problems	616
Mor	e convective heat transfer	619
18.1	Heat transport in laminar boundary layers	620
	18.1.1 Problem statement and the differential equation	620
	18.1.2 The thermal boundary layer: scaling analysis	621
	18.1.3 The heat integral equation	624
	18.1.4 Thermal boundary layers: similarity solution	627
18.2	Turbulent heat transfer in channels and pipes	628
	18.2.1 Pipe flow: the Stanton number	633
18.3	Heat transfer in complex geometries	635
18.4	Natural convection on a vertical plate	636
	18.4.1 Natural convection: computations	640
18.5	Boiling systems	641
	18.5.1 Pool boiling	641
	18.5.2 Nucleate boiling	641
18.6	Condensation problems	645
18.7	Phase-change problems	647
	Summary	650
	Additional reading	651
	Problems	651

xv

Contents

19 656 Radiation heat transfer 19.1 Properties of radiation 657 Absorption, emission, and the black body 19.2 657 Interaction between black surfaces 19.3 661 19.4 Gray surfaces: radiosity 664 19.5 Calculations of heat loss from gray surfaces 666 19.6 Radiation in absorbing media 670 Summary 674 Additional Reading 675 Problems 675 20 More convective mass transfer 678 20.1 Mass transfer in laminar boundary layers 679 20.1.1 The low-flux assumption 679 20.1.2 Dimensional analysis 680 20.1.3 Scaling analysis 681 20.1.4 The low-flux case: integral analysis 682 20.1.5 The low-flux case: exact analysis 685 20.2 Mass transfer: the high-flux case 686 20.2.1 The film model revisited 686 20.2.2 The high-flux case: the integral-balance model 688 20.2.3 The high-flux case: the similarity-solution method 689 20.3 Mass transfer in turbulent boundary layers 689 20.4 Mass transfer at gas-liquid interfaces 691 20.4.1 Turbulent films 691 20.4.2 Single bubbles 692 20.4.3 Bubble swarms 693 20.5 Taylor dispersion 693 Summary 696 Additional Reading 696 Problems 697 21 Mass transfer: multicomponent systems 700 21.1 A constitutive model for multicomponent transport 701 21.1.1 Stefan-Maxwell models 701 21.1.2 Generalization 702 21.2 Non-reacting systems and heterogeneous reactions 703 21.2.1 Evaporation in a ternary mixture 703 21.2.2 Evaporation of a binary liquid mixture 704 707 21.2.3 Ternary systems with heterogeneous reactions 21.3 Application to homogeneous reactions 709 21.3.1 Multicomponent diffusion in a porous catalyst 709 21.3.2 MATLAB implementation 710 21.4 Diffusion-matrix-based methods 713 717 21.5 An example of pressure diffusion

21.6 An example of thermal diffusion719

xvi

	Summary	720
	Additional Reading	721
	Problems	721
Mas	s transport in charged systems	725
22.1	Transport of charged species: preliminaries	726
22.1	22.1.1 Mobility and diffusivity	726
	22.1.2 The Nernst–Planck equation	727
	22.1.3 Potential field and charge neutrality	728
22.2	Electrolyte transport across uncharged membranes	732
22.3	Electrolyte transport in charged membranes	734
22.4	Transport effects in electrodialysis	735
22.5	Departure from electroneutrality	738
22.6	Electro-osmosis	741
22.7	The streaming potential	744
22.8	The sedimentation potential	746
22.9	Electrophoresis	747
22.10	Transport in ionized gases	748
	Summary	750
	Additional Reading	751
	Problems	751
	Closure	757
	References	758
	Index	766

PREFACE

The analysis, modeling, and computation of processes involving the transport of heat, mass, and momentum (transport phenomena) play a central role in engineering education and practice. The study of this subject originated in the field of chemical engineering but is now an integral part of most engineering curricula, for example, in biological, biomedical, chemical, environmental, mechanical, and metallurgical engineering both at undergraduate and at graduate level. There are many textbooks in this area, with varying levels of treatment from introductory to advanced, all of which are useful to students at various levels. However, my teaching experience over thirty years has convinced me that there is a need for a book that develops the subject of transport phenomena in an integrated manner with an easy-to-follow style of presentation. A book of this nature should ideally combine theory and problem formulation with mathematical and computational tools. It should illustrate the usefulness of the field with regard to practical problems and model development. This is the primary motivation for writing this book. This comprehensive textbook is intended mainly as a graduate-level text in a modern engineering curriculum, but parts of it are also useful for an advanced senior undergraduate class. Students studying this book will understand the methodology of modeling transport processes, along with the fundamentals and governing differential equations. They will develop an ability to think through a given physical problem and cast an appropriate model for the system. They will also become aware of the common analytical and numerical methods to solve these models, and develop a feel for the diverse technological areas where these concepts can be used.

Goals and outcome

The book is written with the objective that students finishing a first-year-level graduate course in this field should acquire the following skills and knowledge.

- **Fundamentals and basic understanding** of the phenomena and the governing differential equations. They should develop an ability to analyze a given physical problem and cast an appropriate model for the system. They should be exposed to the philosophy of the modeling process and appreciate the various levels at which models can be developed, and the interconnection and parameter requirements of various models.
- Analytical and numerical skills to solve these problems. They should develop the capability to solve some of the transport problems in a purely analytical setting and also expand their capability using numerical methods with some common software or programming tools. Often solving the same problem by both methods reinforces the physics and speeds up the learning process.
- An understanding of technological areas where transport models are useful. Students should develop an understanding of the diverse range of applications of this subject and

xviii

Preface

understand how the basic theory, models, and computations can be used in practical applications.

To achieve these goals the book focuses on analysis and model development of transport process in detail, starting from the very basics. It illustrates the solution methods by using the classical analytical tools as well as some common computational tools. The application of the theory is demonstrated with numerous illustrative problems; some sample numerical codes are provided for some problems to facilitate learning and the development of problem-solving abilities. References to many areas of application are provided, and some case-study problems are included.

Intended audience

The level and the sequence of presentation are such that the book is suitable for a firstlevel graduate course or a comprehensive advanced undergraduate course. In a modern graduate engineering curriculum, the entering students often have diverse backgrounds, and some graduate students might not have taken introductory undergraduate courses in transport phenomena. The introductory part of the book presented in the first two chapters is expected to bring these students up to speed.

Style and scope

The style of presentation is informal, and has more of a "classroom" conversational tone rather than being heavy scholarly writing. Each chapter starts off with clearly defined learning objectives and ends with a summary of "must-know" things that should have been mastered from that chapter. Computer simulations are also illustrated, together with analytical solutions. Often solutions to the same problem obtained by both analytical and numerical methods are shown. This helps the students to validate and benchmark their solutions, and to develop confidence in their computational skills. Also sample packages are included to accelerate the application of computer-aided problem solving in the classroom. These sample codes are presented in separate subsections or are boxed off for easier reading of the main text. Key equations are shown in boxes for easy reference. Case studies are given in several chapters, although the space limitation prohibits an extensive discussion of these applications. Additional material and computer codes will be posted on the accompanying website, which is being developed as supplementary material. This web-based material can be viewed as a living and evolving component of the book.

For instructors

Instructors will find the presentations novel and interesting and will be able to motivate the students to appreciate the beauty in the integrated structure of the field. They will also find

xix

Preface

the worked examples and exercise problems useful to amplify the class lectures and illustrate the theory. Also the mathematical prerequisites listed at the beginning of each chapter will help the instructor to adjust the lecture content according to the students' mathematical preparedness. Additional web-based material that will aid the teaching of these necessary mathematical tools in a concise manner is being planned.

The book has more material than can be covered in one semester, and it can be used in the following manner in teaching.

- For an integrated course for students entering a modern graduate program with **diverse** undergraduate background, Chapters 1–13 can be covered at a reasonable pace in a one-semester course with some reading materials assigned from the other chapters.
- For a course focused mainly on flow problems Chapters 3–6 followed by Chapters 14–17 will provide a nice one-semester textbook.
- For a course focused mainly on heat and mass transfer the course can start with Chapters 7–13 and end with Chapters 18–22.

Distinguishing features

The book provides an integrated approach to the field. Theory is illustrated with many worked examples and case-study problems are indicated. The book also discusses many important and practically relevant topics that are not adequately covered in many earlier books. Some novel topics and features of the current book are indicated below.

- Discussion on multiscale modeling, model reduction by averaging and "information" flow.
- · Solution of illustrative problems by both numerical and analytical methods.
- Sample codes in MATLAB for help in the development of numerical problem-solving skills.
- Detailed analysis of coupled transport problems.
- · Introduction to non-Newtonian flow, microfluid analysis, and magnetohydrodynamics.
- Introduction to perturbation, bifurcation, and stability analysis.
- Detailed discussion on analysis of transport with chemical reaction.
- Detailed analysis of multicomponent diffusion with many worked examples.
- · A full chapter on electrochemical systems and ionic transport.
- Application examples drawn from a wide range of areas and some suggested case-study problems.

Acknowledgement

Washington University, St. Louis, provided me with an academic home, and I wish to express my gratitude. Many summers of being visiting professor at Kasetsart University,

ХХ

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

Preface

Bangkok, helped me to teach and fine-tune many topics. I would like to mention my appreciation of my *alma mater*, ICT, Mumbai, formerly known as UDCT. In a significant manner, I have been beneficiary of the rigorous and often disciplinary system of education in India, starting from my elementary school and continuing all the way to UDCT. I would like to acknowledge my many mentors and colleagues, too numerous to thank individually, from whom I have benefited throughout my career. Most of all I would like to thank all my students. My real education started with them, and still continues.

I would like to express my appreciation of my immediate family in the USA, Nima, Josh, Gabe, and Maya, and my brothers, sisters, and sisters-in-law in India for all their support and encouragement. I would like to express my appreciation of my friends in University City, Missouri, and to thank Dawn, who stressed the importance of diet and nutrition when training for a marathon.

On the editorial side, many thanks are due to Cambridge editors and especially to Claire Eudall, who provided valuable advice on the style and structure of various chapters. Also I appreciate the help of Ramesh Prajapati for the preparation of many figures in the text.

TOPICAL OUTLINE

The topical organization of this book is as follows.

Chapter 1 is the basic introductory material which illustrates the richness of the subject, spanning applications to a wide range of problems in science and engineering. This chapter also provides the introduction to the basics of model building and shows the relationships among models of various levels of hierarchy. The basic vocabulary is introduced, and the physical properties needed in transport problems are discussed. The link between continuum and molecular models is indicated. The chapter concludes with a brief note on the historical development of the subject.

Chapter 2 illustrates the formulation of model equations for many common transport problems using a basic control-volume-balance type of approach. All three modes of transport are illustrated so that the student can grasp the similarities. Some "standard" problems are illustrated. This chapter is written assuming no significant earlier background knowledge in this field, and is therefore useful to bring such students up to speed.

The next few chapters, Chapters 3–6, provide the detailed framework for the analysis of momentum transport problems. The kinematics of flow are reviewed in Chapter 3, while the kinetics of flow are discussed in Chapter 4, leading to the derivation of the differential equations for the stress field and the velocity field in Chapter 5. Solutions to illustrative flow problems are then reviewed in Chapter 6, and here some "standard" flow problems shown in Chapters 1 and 2 are revisited in a more general setting, and solutions to some additional complex problems are reviewed. Flows involving non-Newtonian fluids and magnetohydrodynamics are also treated briefly, since they find extensive applications in practice and it is necessary to expose the student to these topics.

Chapters 7 and 8 deal with the differential equations for energy transport and the temperature field, with many illustrative heat-transfer problems in Chapter 8. Similarly, Chapters 9 and 10 deal with differential equations for mass transport and illustrative applications. These chapters bring out the close analogy and common problem-solving strategies for these two transport processes. In the heat-transfer context entropy balance is introduced in a simple manner and the relation to the second law is pointed out in a succinct manner. In the mass-transfer context several important topics such as gas—liquid reactions, membrane transport, and dispersion are presented in detail. Numerical methods involving MATLAB for both ODE and PDE are presented. Sample codes are provided as examples, and sideby-side comparisons with analytical solutions are provided for many problems, so that the students can benchmark their results. The transient problems for both heat and mass are then analysed in Chapter 11 in a unified setting, while some convective transport problems are studied in Chapter 12.

Chapter 13 provides an analysis of a number of coupled problems, for example natural convection, simultaneous heat and mass transfer, condensation, fog formation, and temperature effects in porous catalysts.

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

xxii

Topical outline

Chapter 14 develops some tools to analyze transport problems in further detail. The dimensionless analysis is revisited using novel matrix-algebra-based methods. The concept of scaling and pertubation methods is introduced together with many applications. The scaling tools also provide the necessary background to the boundary-layer flows discussed in Chapter 15. Chapter 15 also discusses additional topics in fluid mechanics such as low-Reynolds-number flow and irrotational flows. Chapter 16 deals with bifurcation and stability analysis. Chapter 17 provides an introductory treatment of turbulent flows.

Chapters 18 and 19 deal with additional topics in heat transfer, including convection in turbulent flow, boiling, condensation, and radiation heat transfer (Chapter 19). The final three chapters (Chapters 20–22) discuss some topics in mass transfer, including more discussion on convective transport and axial dispersion (Chapter 20), multicomponent systems (Chapter 21), and transport of charged species (Chapter 22).

NOTATION

$a_{\rm w}$	activity of water or solute indicated in the subscript in Section 10.7
A	area of cross-section for flow
A	Arrhenius pre-exponential factor in Section 8.3.2
A	amplitude of surface temperature oscillation in Section 11.10, K
A_1, A_2	usually integration constants
$A_{\rm p}$	projected area of solid in the direction of flow
Ār	Archimedes number
В	dimensionless parameter defined as $(L/R)Pe$ in Section 12.4
Bi_{G}	Biot number in gas–liquid mass transfer, $k_{\rm G}H_{\rm A}/k_{\rm L}$
Bi _h	Biot number for heat transfer, hL_{ref}/k_{solid}
Bim	Biot number for mass transfer, $k_{\rm m}L_{\rm ref}/D$
Bo	Bond number
Br	Brinkman number for viscous production of heat, Eq. (13.23)
С	total molar concentration of a multicomponent mixture, mol/m ³
Ca	capillary number, $\mu v_{ref}/\sigma$
C_{A}	local concentration of species indicated in the subscript (A here), mol/m ³
C^*_{A}	concentration of A in liquid if in equilibrium with the bulk gas (Section 10.5)
$\langle \hat{C}_{A} \rangle$	cross-sectionally averaged concentration
C_{Ab}	concentration of species A indicated in the bulk phase, mol/m ³
C_{Ab}	cup mixed average concentration of species A, Section 12.4
$C_{\rm Ai}$	concentration of species A at the interface, mol/m ³
$C_{\mathrm{A,i}}$	inlet concentration of species A for flow reactor, Chapter 2, mol/m ³
C_{As}	concentration of species A at a solid surface, mol/m ³
$C_{\rm AG}$	Concentration of species indicated in the subscript in the bulk gas, mol/m ³
C_{AL}	Concentration of species indicated in the subscript in the bulk liquid, mol/m ³
C^*_{AL}	hypothetical concentration of A if in equilibrium with the bulk gas, mol/m ³
$C_{\rm A,e}$	concentration of species indicated in the subscript exit
C_{b}	cup mixed (flow) average concentration of species A, Section 20.5
$C_{\rm BL}$	concentration of liquid-phase reactant in bulk liquid in Section 10.5
С	molecular speed in Chapter 1 (kinetic theory)
ē	average molecular speed in Chapter 1 (kinetic theory)
$\bar{c^2}$	average of the squares of the molecular speed in Chapter 1 (kinetic theory)
С	speed of sound in Chapter 2
С	speed of light in radiation heat transfer in Chapter 19
c_{A}	dimensionless concentration of species indicated in the subscript (A here), C_A/C_{ref}
ī	average speed of molecules in Section 1.8.1
$C_{\rm D}$	drag coefficient
$C_{\rm L}$	lift coefficient
c_p	specific heat of a species, mass basis, under constant-pressure conditions, $J/kg \cdot K$

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

xxiv

Notation

C_p	specific heat of a species, mole basis, J/mol · K
c_v^P	specific heat of a species, mass basis, under constant-volume conditions, $J/kg \cdot K$
d	diameter of the molecules treated as rigid spheres in Section 1.8.1
d, d_{t}	diameter of a tube or pipe
d_{I}	impeller or pump diameter, Sections 14.1.5 and 14.1.6
$d_{\rm P}$	particle or solid diameter
$D_{\rm e}$	effective diffusivity of a species in a heterogeneous medium
D_i	molecular diffusivity of species <i>i</i>
$\dot{D_{\mathrm{K}}}$	Knudsen diffusion coefficient for small pores
$D_{\rm t}$	turbulent mass diffusivity, m ² /s
Da	Damköhler number Vk/Q
е	charge on an electron in Chapter 22
е	pipe roughness parameter in Sections 5.5 and 17.6.1
е	total energy content per unit mass
e_x	unit vector in the x-direction
E	electric field
E^2	operator defined by Eq. (3.53) or Eq. (3.55)
E^4	Stokes operator defined as $E^2 E^2$
Ε	emissive power of a gray body
$E_{\mathbf{b}}$	emissive power of a black body, W/m^2
E_{bk}	emissive power of a black body from surface k , W/m ²
$E_{b\lambda}$	spectral emissive power, W/m ² nm
\tilde{E}	rate-of-strain tensor
f	dimensionless streamfunction in boundary-layer flow
f	Fanning friction factor
F_{ik}	radiation view factor, surface <i>i</i> to <i>k</i>
F	Faraday constant = 96 485 C/mol
$oldsymbol{F}$	force acting on a control volume
$\mathcal{F}, \mathcal{F}_m$	correction factor for unidirectional mass transfer, Sections 10.1 and 20.2.1
\mathcal{F}_{h}	augmentation factor for heat transfer due to blowing
g	acceleration due to gravity
g_s	rate of production of entropy per unit volume, $W/K \cdot m^3$
G	pressure-drop parameter defined as $-dP/dx$
\dot{G}	superficial gas velocity, kg/m ² · s
Gr	Grashof number
ĥ	enthalpy per unit mass
h	heat transfer coefficient (usually from solid to fluid), W /m ² \cdot k
h	elevation or height from a datum plane for flow problems
h	Planck's constant in radiation chapter, $6.6208 \times 10^{-34} \text{ J} \cdot \text{s}$
h_{f}	head loss due to friction
$h_{\rm G}$	heat transfer coefficient in the gas film
$h_{\rm L}$	heat transfer coefficient in the liquid film
$\hat{h}_{ m gl}$	heat released on condensation of a species, J/kg
$\hat{h}_{ m lg}$	heat of vaporization, J/kg
$\hat{h}_{\rm sl}$	heat needed for melting a solid, J/kg
$H_{\rm A}$	Henry's-law constant for solubility of A defined by $P_A = H_A C_A$, Pa m ³ /mol

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

XXV

Notation

На	Hartmann number
Ha	Hatta number for gas–liquid reactions
i	current density in Chapter 22, A/m^2
i I	square root of -1 in Section 11.11
-	intensity of radiation, W/m^2
ĴA I	mass diffusion flux of A (mass reference), $kg/m^2 \cdot s$
$J_{\rm A}$	molar diffusion flux of A (mole reference), $mol/m^2 \cdot s$
J_k	radiosity of a surface in radiation, W/m^2
$k_{ m G}$	mass transfer coefficient from gas to interface
1	(partial pressure driving force), mol/Pa \cdot m ² \cdot s
$k_{\rm L}$	mass transfer coefficient from an interface to bulk liquid
1	(concentration driving force), m/s
k	thermal conductivity of a species, subscript l for liquid, g for gas, s for solid, $W/m \cdot K$
k	turbulent kinetic energy per unit mass, m^2/s^2
k	rate constant for reaction, general D. It may a superstant 1.28×10^{-23} L/K
$k_{\rm B}$	Boltzmann constant, 1.38×10^{-23} J/K
k_0	rate constant for a zeroth-order reaction, $mol/m^3 \cdot s$
k_1	rate constant for a first-order reaction, 1/s
k_2	rate constant for a second-order reaction, $m^3/mol \cdot s$
$k_{\rm m}$	mass transfer coefficient from a solid to fluid (concentration driving force), m/s mass transfer coefficient under low-mass-flux conditions, m/s
$k_{ m m}^{ m o} \ ilde{K}$	
к Ã	diffusivity matrix in Section 21.4
к K _G	matrix of multicomponent diffusion coefficient in Section 21.4 overall mass transfer coefficient from a bulk gas to a bulk liquid
лG	(gas phase partial pressure driving force), $mol/m^2 \cdot s \cdot Pa$
KL	overall mass transfer coefficient from a bulk gas to a bulk liquid
πL	(liquid concentration driving force), m/s
L	length of the plate or tube or catalyst slab, m
L M	local Mach number, v/c
m	mass of a molecule in Section 1.8.1
m ṁ	mass flow rate, kg/s
$m_{\rm A,tot}$	total mass of A in an unit or control volue, kg
\dot{m}_{Ai}	mass flow rate of A entering a unit, kg/s
<i>m</i> _{Ae}	mass flow rate of A exiting a unit, kg/s
m _{AW,tot}	total mass of A transferred to walls from an unit or procss, kg/s
\bar{M}	average molecular weight of a mixture, kg/g.mol
M	momentum flow rate vector, N
$M_{\rm A}$	molecular weight of species indicated in the subscript, kg/g.mol
$M_{\rm W}$	molecular weight in general
\mathcal{M}	total moles present in a control volume, g-mol
M	moles per second entering/leaving the unit, $i = inlet$, $e = exit$
\mathcal{M}_{A}	moles of A in the system or control volume
Nu	Nusselt number, usually defined as hd_t/k or hx/k
$N_{\rm Av}$	Avogadro number = 6.23×10^{23} molecules/g-mol
n	number density of molecules in Section 1.8.1

xxvi

Notation

\boldsymbol{n}	normal vector outward from a control surface
$n_{ m A}$	mass flux vector of species A, stationary frame, kg-A/m ² · s
n_{Ax}	component of mass flux vector of A in the x-direction, kg-A/m ² \cdot s
$N_{\rm tu}$	number of transfer of unit parameter
р	fluid pressure; equal to the average normal stress, Pa
$p_{\rm vap}$	vapor pressure of a species, Pa
P	thermodynamic pressure used in equation of state, Pa
р	the concentration gradient or temperature gradient in the p-substitution method
p^*	dimensionless pressure, $p/\rho v_{\rm ref}^2$
p^{**}	dimensionless pressure, p^*Re
P	power input for agitated vessels, W
$P_{\rm c}$	critical pressure of a species, Pa
$\tilde{\mathcal{P}}$	modified pressure defined as $p + \rho gh$
p	temperature gradient in Example 8.3 and concentration gradient in Section 10.4.6
Pe	Péclet number, $d_t \langle v \rangle / \alpha$
Pe_R	Péclet number based on pipe radius, $d_t \langle v \rangle /D$
Pe^*	dispersion Péclet number in Section 12.5, $\langle v \rangle L/D_E$
Po	power number as $p/(\rho N_i^3 d_i^5)$ in Section 14.15
Pr	Prandtl number, $c_p \mu/k$
q	dimensionless stoichiometric ratio defined by Eq. (10.44) in Section 10.5
	volumetric flow rate in a pipe, m^3/s
$\begin{array}{c} Q \\ (\dot{Q})_{\rm v} \end{array}$	internal heat generation rate, W/m^3
q	heat flux vector (molecular) W/m^2
$q^{(m)}$	heat flux vector (molecular), same as q , W/m ²
$q_{\rm s}$	heat flux from a surface or wall to a flowing fluid
q^{s}	heat flux vector due to turbulence, W/m^2
q_x	component of the heat flux vector in the <i>x</i> -direction
q_y	component of the heat flux vector in the <i>y</i> -direction
	heat flux to the wall of a pipe from a fluid
$q_{ m w}$ \dot{Q} $\dot{Q}_{ m V}$	rate at which heat is added to the control volume; unit volume basis, W/m^3
Ž. Öv	rate at which heat is generated within control volume per unit volume, W/m^3
q_z	component of the heat flux vector in the <i>z</i> -direction
r^{q_2}	radial coordinate in cylindrical and spherical system
R	radius of cylinder or catalyst particle
r _A	local rate of mass production of A by reaction per unit volume, mass units, kg/m ³ \cdot s
$R_{\rm A}$	local rate of mole production of A by reaction per unit volume, mole units, $mol/m^3 \cdot s$
R^*	gas constant defined as R_G/M_w
R _A	rate of production of a species A by reaction
Re	Reynolds number, $L_{ref} \nu_{ref} \rho / \mu$
R _G	gas constant, 8.314 Pa $m^3/mol \cdot K$
ŝ	entropy energy per unit mass of fluid, $J/K \cdot kg$
<i>s</i>	entropy flux vector, $W/K \cdot m^2$
s	entropy flux vector. $W/K \cdot m^2$

sentropy flux vector, $W/K \cdot m^2$

shape parameter for conduction or diffusion, S

1 for slab, 2 for long cylinder, 3 for sphere

Cambridge University Press 978-0-521-76261-8 - Advanced Transport Phenomena: Analysis, Modeling, and Computations P. A. Ramachandran Frontmatter More information

xxvii

Notation

Sc	Schmidt number, $\mu/(\rho D)$
Sh	Sherwood number, $k_m x/D$
St	Stanton number, $Nu/(RePr)$ or $Sh/(ReSc)$
t	time variable
$t_{\rm E}$	exposure time for a gas-liquid interface
T	local temperature in the medium
$T_{\rm a}$	temperature of the surroundings
$\langle T \rangle$	cross-sectionally averaged temperature
$T_{\rm b}$	cup mixing (flow-averaged) temperature
$T_{\rm c}$	critical temperature of a species
T_{f}	temperature of the surrounding fluid in contact with a solid
$T_{\rm i}$	temperature of a gas-liquid interface
$T_{\rm w}$	temperature of a wall or tube
T_{∞}	temperature of the approaching fluid
û	internal energy unit mass of fluid, J/kg
\hat{U}	internal energy per unit mole of fluid, J/mol
U	overall heat transfer coefficient from hot fluid to cold fluid, $W/m^2 \cdot K$
ŷ	specific volume, $1/\rho$, m ³ /kg.
v_{i}	velocity vector; also mass-fraction-averaged velocity in a multicomponent mixture, m/s
$m{v}'$	fluctuating velocity vector in turbulent flow
$ar{m{v}} \ m{v}^*$	time-averaged velocity vector in turbulent flow
	mole-fraction-averaged velocity in a multicomponent mixture, m/s x-component of the velocity; v_v and v_z defined similarly
v_x v_z	axial $(z-)$ component of velocity in cylindrical coordinates
$v_Z = v_{\theta}$	velocity component of velocity in cylindrical coordinates velocity component in the tangential (θ) direction
$v_{ m A}$	velocity of species A in a multicomponent mixture, stationary frame, m/s
ve	velocity component in the fluid outside the boundary layer, m/s
Ň	total control volume
\hat{V}	molar volume, m ³ /mol
V	speed of a moving solid in shear flow in flow direction, m/s
vb	molecular volume at boiling point of solvent
$V_{\rm f}$	friction velocity defined as $\sqrt{\tau_{\rm f}/ ho}$ used in turbulent flow, m/s
Ŵ	rate at which work is done on the control volume, W/m ³
$\dot{W}_{ m s}$	rate at which work is done by a moving part on the control volume, W/m^3
$\dot{W}_{ m f}$	rate at which heat energy is produced by friction, W/m ³
x	distance variable in the x-direction, y and x defined similarly.
x_i	mole fraction of species indicated by the subscript (usually in the liquid phase)
<i>y</i>	distance variable in the y-direction
$\frac{y_i}{y^+}$	mole fraction of species indicated by the subscript (usually in the gas phase) dimensionless length used in turbulence analysis near a wall
y^{+} $y_{\rm B}(\rm l.m)$	log-mean mole fraction of the non-diffusing component
$y_{\rm B}(1.111)$	axial distance variable in cylindrical coordinates
z^*	dimensionless axial distance variable in cylindrical coordinates, z/R
z zi	number of charges on an ionic species
Z	frequency of molecular collisions in Section 1.8.1

xxviii

Notation

Greek letters and other symbols

α	thermal diffusivity of a solid, m ² /s
α	absorptivity of a surface in radiation
$\alpha_{\rm t}$	turbulent heat diffusivity, m^2/s
$\epsilon_{ m H}$	turbulent heat diffusivity, m ² /s
β	bulk modulus of elasticity, N/m ²
$\boldsymbol{\beta}$	angular velocity vector
γ	dimensionless activation energy in Section 13.7 and Example 16.1
γ	ratio of specific-heat values, c_p/c_v
∇	gradient operator
$ abla_*$	gradient operator in dimensionless coordinates
∇^2	Laplacian operator defined by Eqs. (1.56)–(1.58) for scalars
∇^2	Laplacian operator defined in Sections 5.3.1 and 5.3.2 for vectors
∇^4	biharmonic operator defined by Eq. (5.31)
Δ	difference operator, out – in,
Δ	ratio of boundary-layer thickness, heat/mass to momentum
ΔH	heat of reaction, J/mol
$\Delta H_{\rm v}$	heat of vaporization, mole basis, J/mol
$\Delta \pi$	osmotic pressure diffference in Section 10.7, Pa
δ	parameter in Frank-Kamenetskii model
δ	thickness of momentum boundary layer in general
δ_{f}	film thickness for mass transfer,
	abbreviated as δ in Chapter 10
$\delta_{ m m}$	thickness of mass-transfer boundary layer
δ_{t}	thickness of thermal boundary layer
ϵ	dielectric permittivity of a medium in Chapter 22
ϵ	emissivity of the medium
ϵ	energy dissipation rate in turbulent flow analysis
ϵ	a parameter in Lennard-Jones model in Chapter 1
η	effectiveness factor of a porous catalyst in Chapter 10
ζ	dimensionless axial distance, z^*/Pe
η	similarity variable defined by Eq. (11.30) in Chapter 11 for heat conduction
η	similarity variable defined in Chapter 12.2 for convective heat transfer
κ	circulation (line integration of tangential velocity) in Section 15.4.3
κ	conductivity of an ionized liquid in Section 22.1.3
κ	ratio of radius values, R_c/R_o , in Chapter 6
κ	Boltzmann constant, also denoted as $k_{\rm B}$
λ	Debye length in Sections 22.5 and 22.6
λ	mean free path in Section 1.8.1
Λ	consistency index parameter for power law fluids
Δ	angular direction in polar coordinates

 θ angular direction in polar coordinates xxix

Notation

θ	latitude direction in spherical coordinates
θ	dimensionless temperature in heat transfer examples
μ	coefficient of viscosity, $Pa \cdot s$
μ_i	mobility of charged species <i>i</i> in Chapter 22
$\mu_{ m w}$	chemical potential of water in Section 10.7
ν	coefficient of kinematic viscosity, μ/ρ , m ² /s
v_{t}	turbulent kinematic viscosity, μ_t/ρ , m ² /s
$\nu_{\rm T}^+$	dimensionless total (molecular + turbulent) kinematic viscosity
ρ	density of the medium or the fluid, kg/m ³
ρ_c	electric charge density in Chapter 22
ρΑ	density of A in a multicomponent mixture, kg/m^3
σ	surface tension, N/m
σ_{xx}	total stress (viscous and pressure) in the <i>x</i> -direction
σ_{Λ}	Staverman constant in Section 10.7.1
	same as τ_{vx} since shear stress has no pressure contribution
σ_{yx}	Stefan–Boltzmann constant
σ	dimensionless time in Chapter 11, t/t_{ref}
τ	
$ \tau_{\rm W} $	stress exerted by the wall opposite to the flow direction in response to $-\tau_{\rm w}$
$ au_{ m W}$	stress exerted by the solid on the fluid in pipe flow,
	$\mu dv_z/dr$ at $r = R$, usually negative in the flow direction
$ au_{ m f}$	stress exerted by the fluid on the solid, $\mu dv_x/dy$ at $y = 0$
$ au_0$	yield stress for Bingham flow
$ au_{xx}$	viscous stress in the x-direction on a plane whose unit
	normal is in the <i>x</i> -direction
$ au_{yx}$	viscous stress in the x-direction on a plane whose
	unit normal is in the <i>y</i> -direction; other components are defined similarly
ϕ	blowing parameter in Section 13.6.1
ϕ	electric potential in Chapter 22
ϕ	longitude in the spherical coordinate system
ϕ	velocity potential defined by Eq. (3.49) in Section 3.10
ϕ	Thiele parameter for a first-order reaction
ϕ_0	Thiele parameter for a zeroth-order reaction defined by Eq. (10.34)
$\Phi_{\rm v}$	rate of heat production by viscosity per unit volume, Eq. (7.12) , W/m ³
ψ	streamfunction defined by Eq. (3.39) or Eq. (3.40)
ω	frequency of oscillation in periodic flow, s^{-1}
ω^*	dimensionless frequency of oscillation in periodic flow, ωt_{ref}
ω	vorticity for a plane flow defined as ω_z
ω	vorticity vector for a general 3D flow, $\nabla \times V$
ω	specific energy-dissipation rate in turbulent flow
$\omega_{\rm A}$	mass fraction of species indicated by the subscript, kg-A/kg-total
ξ	dimensionless radial position, r/R or x/L
, ,	

- Ω angular velocity, rotational speed
- Ω_i speed of rotation or agitation in Section 14.1.5 and 14.1.6, r.p.s.

ххх

Notation

Common subscripts

- b bulk conditions
- g, G gas-phase properties
- e exit values (Chapter 2)
- i inlet values (Chapter 2)
- i interface conditions (Chapters 9 and 10)
- l, L liquid-phase properties
- s conditions at a surface of a solid or catalyst