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Preface

Classical mechanics, as a subject, is broadly defined. The ultimate goal of mechan-
ics is a complete description of the motion of particles and rigid bodies. To find
x(t) (the position of a particle, say, as a function of time), we use Newton’s laws,
or an updated (special) relativistic form that relates changes in momenta to forces.
Of course, for most interesting problems, it is not possible to solve the resulting
second-order differential equations for x(t). So the content of classical mechanics
is a variety of techniques for describing the motion of particles and systems of
particles in the absence of an explicit solution. We encounter, in a course on classi-
cal mechanics, whatever set of tools an author or teacher has determined are most
useful for a partial description of motion. Because of the wide variety of such tools,
and the constraints of time and space, the particular set that is presented depends
highly on the type of research, and even personality of the presenter.

This book, then, represents a point of view just as much as it contains informa-
tion and techniques appropriate to further study in classical mechanics. It is the
culmination of a set of courses I taught at Reed College, starting in 2005, that
were all meant to provide a second semester of classical mechanics, generally to
physics seniors. One version of the course has the catalog title “Classical Mechan-
ics II”, the other “Classical Field Theory”. I decided, in both instantiations of the
course, to focus on general relativity as a target. The classical mechanical tools,
when turned to focus on problems like geodesic motion, can take a student pretty
far down the road toward motion in arbitrary space-times. There, the Lagrangian
and Hamiltonian are used to expose various constants of the motion, and applying
these to more general space-times can be done easily. In addition, most students
are familiar with the ideas of coordinate transformation and (Cartesian) tensors,
so much of the discussion found in a first semester of classical mechanics can be
modified to introduce the geometric notions of metric and connection, even in flat
space and space-time.

xiii
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xiv Preface

So my first goal was to exploit students’ familiarity with classical mechanics
to provide an introduction to the geometric properties of motion that we find in
general relativity. We begin, in the first chapter, by reviewing Newtonian gravity,
and simultaneously, the role of the Lagrangian and Hamiltonian points of view,
and the variational principles that connect the two. Any topic that benefits from
both approaches would be a fine vehicle for this first chapter, but given the ultimate
goal, Newtonian gravity serves as a nice starting point. Because students have seen
Newtonian gravity many times, this is a comfortable place to begin the shift from
L = 1

2 m v2 − U to an understanding of the Lagrangian as a geometric object. The
metric and its derivatives are introduced in order to make the “length-minimizing”
role of the free Lagrangian clear, and to see how the metric dependence on coordi-
nates can show up in the equations of motion (also a familiar idea).

Once we have the classical, classical mechanics reworked in a geometric fashion,
we are in position to study the simplest modification to the underlying geometry –
moving the study of dynamics from Euclidean flat space (in curvilinear coordinates)
to Minkowski space-time. In the second chapter, we review relativistic dynamics,
and its Lagrange and Hamiltonian formulation, including issues of parametrization
and interpretation that will show up later on. Because of the focus on the role of
forces in determining the dynamical properties of relativistic particles, an adver-
tisement of the “problem” with the Newtonian gravitational force is included in this
chapter. That problem can be seen by analogy with electrodynamics – Newtonian
gravity is not in accord with special relativity, with deficiency similar in character
to Maxwell’s equations with no magnetic field component. So we learn that rel-
ativistic dynamics requires relativistic forces, and note that Newtonian gravity is
not an example of such a force.

Going from Euclidean space in curvilinear coordinates to Minkowski space-
time (in curvilinear coordinates, generally) represents a shift in geometry. In the
third chapter, we return to tensors in the context of these flat spaces, introducing
definitions and examples meant to motivate the covariant derivative and associated
Christoffel connection. These exist in flat space(-time), so there is an opportunity
to form a connection between tensor ideas and more familiar versions found in
vector calculus. To understand general relativity, we need to be able to characterize
space-times that are not flat. So, finally, in the fourth chapter, we leave the physical
arena of most of introductory physics and discuss the idea of curvature, and the
manner in which we will quantify it. This gives us our first introduction to the
Riemann tensor and a bit of Riemannian geometry, just enough, I hope, to keep
you interested, and provide a framework for understanding Einstein’s equation.
At the end of the chapter, we see the usual motivation of Einstein’s equation,
as an attempt to modify Newton’s second law, together with Newtonian gravity,
under the influence of the weak equivalence principle – we are asking: “under
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Preface xv

what conditions can the motion of classical bodies that interact gravitationally, be
viewed as length-minimizing paths in a curved space-time?” This is Einstein’s idea,
if everything undergoes the same motion (meaning acceleration, classically), then
perhaps that motion is a feature of space-time, rather than forces.

At this point in the book, an abrupt shift is made. What happened is that I
was asked to teach “Classical Field Theory”, a different type of second semester
of classical mechanics geared toward senior physics majors. In the back of most
classical mechanics texts, there is a section on field theory, generally focused on
fluid dynamics as its end goal. I again chose general relativity as a target – if
geodesics and geometry can provide an introduction to the motion side of GR in
the context of advanced mechanics, why not use the techniques of classical field
theory to present the field-theoretic (meaning Einstein’s equation again) end of
the same subject? This is done by many authors, notably Thirring and Landau
and Lifschitz. I decided to focus on the idea that, as a point of physical model-
building, if you start off with a second-rank, symmetric tensor field on a Minkowski
background, and require that the resulting theory be self-consistent, you end up,
almost uniquely, with general relativity. I learned this wonderful idea (along with
most of the rest of GR) directly from Stanley Deser, one of its originators and early
proponents. My attempt was to build up enough field theory to make sense of the
statement for upper-level undergraduates with a strong background in E&M and
quantum mechanics.

So there is an interlude, from one point of view, amplification, from another,
that covers an alternate development of Einstein’s equation. The next two chap-
ters detail the logic of constructing relativistic field theories for scalars (massive
Klein–Gordon), vectors (Maxwell and Proca), and second-rank symmetric tensors
(Einstein’s equation). I pay particular attention to the vector case – there, if we
look for a relativistic, linear, vector field equation, we get E&M almost uniquely
(modulo mass term). The coupling of E&M to other field theories also shares sim-
ilarities with the coupling of field theories to GR, and we review that aspect of
model-building as well. As we move, in Chapter 6, to general relativity, I make
heavy use of E&M as a theory with much in common with GR, another favorite
technique of Professor Deser. At the end of the chapter, we recover Einstein’s
equation, and indeed, the geometric interpretation of our second-rank, symmetric,
relativistic field as a metric field. The digression, focused on fields, allows us to
view general relativity, and its interpretation, in another light.

Once we have seen these two developments of the same theory, it is time (late
in the game, from a book point of view) to look at the physical implications of
solutions. In Chapter 7, we use the Weyl method to develop the Schwarzschild
solution, appropriate to the exterior of spherically symmetric static sources, to
Einstein’s equation. This is the GR analogue of the Coulomb field from E&M,
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xvi Preface

and shares some structural similarity with that solution (as it must, in the end,
since far away from sources, we have to recover Newtonian gravity), and we
look at the motion of test particles moving along geodesics in this space-time. In
that setting, we recover perihelion precession (massive test particles), the bending
of light (massless test particles), and gravitational redshift. This first solution also
provides a venue for discussing the role of coordinates in a theory that is coordinate-
invariant, so we look at the various coordinate systems in which the Schwarzschild
space-time can be written and its physical implications uncovered.

Given the role of gravitational waves in current experiments (like LIGO), I
choose radiation as a way of looking at additional solutions to Einstein’s equation
in vacuum. Here, the linearized form of the equations is used, and contact is again
made with radiation in E&M. There are any number of possible topics that could
have gone here – cosmology would be an obvious one, as it allows us to explore
non-vacuum solutions. But, given the field theory section of the book, and the
view that Maxwell’s equations can be used to inform our understanding of GR,
gravitational waves are a natural choice.

I have taken two routes through the material found in this book, and it is the
combination of these two that informs its structure. For students who are interested
in classical mechanical techniques and ideas, I cover the first four chapters, and
then move to the last three – so we see the development of Einstein’s equation,
its role in determining the physical space-time outside a spherically symmetric
massive body, and the implications for particles and light. If the class is focused
on field theory, I take the final six chapters to develop content. Of course, strict
adherence to the chapters will not allow full coverage – for a field theory class,
one must discuss geodesic and geometric notions for the punchline of Chapter 7 to
make sense. Similarly, if one is thinking primarily about classical mechanics, some
work on the Einstein–Hilbert action must be introduced so that the Weyl method
in Chapter 8 can be exploited.

Finally, the controversial ninth chapter – here I take some relevant ideas from
the program of “advanced mechanics” and present them quickly, just enough to
whet the appetite. The Kerr solution for the space-time outside a spinning mas-
sive sphere can be understood, qualitatively and only up to a point, by analogy
with a spinning charged sphere from E&M. The motion of test bodies can be
qualitatively understood from this analogy. In order to think about more exotic
motion, we spend some time discussing numerical solution to ODEs, with an eye
toward the geodesic equation of motion in Kerr space-time. Then, from our work
understanding metrics, and relativistic dynamics, combined with the heavy use of
variational ideas throughout the book, a brief description of the physics of relativis-
tic strings is a natural topic. We work from area-minimization in Euclidean spaces to
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Preface xvii

area-minimization in Minkowski space-times, and end up with the standard equa-
tions of motion for strings.

I have made available, and refer to, a minimal Mathematica package that
is meant to ease some of the computational issues associated with forming the
fundamental tensors of Riemannian geometry. While I do believe students should
compute, by hand, on a large piece of paper, the components of a nontrivial
Riemann tensor, I do not want to let such computations obscure the utility of the
Riemann tensor in geometry or its role for physics. So, when teaching this material,
I typically introduce the package (with supporting examples, many drawn from the
longer homework calculations) midway through the course. Nevertheless, I hope
it proves useful for students learning geometry, and that they do not hesitate to use
the package whenever appropriate.

A note on the problems in this book. There are the usual set of practice problems,
exercises to help learn and work with definitions. But, in addition, I have left
some relatively large areas of study in the problems themselves. For example,
students develop the Weyl metric, appropriate to axially symmetric space-times,
in a problem. The rationale is that the Weyl metric is an interesting solution to
Einstein’s equation in vacuum, and yet, few astrophysical sources exhibit this axial
symmetry. It is an important solution, but exploring the detailed physics of the
solution is, to a certain extent, an aside. In the end, I feel that students learn best
when they develop interesting (if known) ideas on their own. That is certainly the
case for research, and I think problems can provide an introduction to that process.
In addition to practicing the techniques discussed in the text, working out long,
involved, and physically interesting problems gives students a sense of ownership,
and aids retention. Another example is the verification that the Kerr solution to
Einstein’s equation is in fact a vacuum solution. Here, too, a full derivation of
Kerr is beyond the techniques introduced within the book, so I do not consider
the derivation to be a primary goal – verification, however, is a must, and can be
done relatively quickly with the tools provided. I have marked these more involved
problems with a ∗ to indicate that they are important, but may require additional
tools or time.

As appears to be current practice, I am proud to say that there are no new ideas
in this book. General relativity is, by now, almost a century old, and the classical
mechanical techniques brought to its study, much older. I make a blanket citation to
all of the components of the Bibliography (found at the end), and will point readers
to specific works as relevant within the text.
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