Contents

Preface xv
Acknowledgments xvii
A brief historical account xix
About this book xxii

Part I Wireless Communication Theory 1

1 A primer on information theory and MMSE estimation 3

1.1 Introduction 3
1.2 Signal distributions 4
1.3 Information content 6
 1.3.1 Entropy 7
 1.3.2 Differential entropy 9
 1.3.3 Entropy rate 10
1.4 Information dependence 11
 1.4.1 Relative entropy 11
 1.4.2 Mutual information 12
1.5 Reliable communication 17
 1.5.1 Information-theoretic abstraction 17
 1.5.2 Capacity 20
 1.5.3 Coding and decoding 22
 1.5.4 Bit-interleaved coded modulation 30
 1.5.5 Finite-length codewords 35
 1.5.6 Hybrid-ARQ 36
 1.5.7 Extension to MIMO 37
1.6 MMSE estimation 39
 1.6.1 The conditional-mean estimator 40
 1.6.2 MMSE estimation in Gaussian noise 41
 1.6.3 The I-MMSE relationship in Gaussian noise 44
1.7 LMMSE estimation 47
 1.7.1 Random variables 48
 1.7.2 Random processes 50
1.8 Summary 51
Problems 51
2 A signal processing perspective

2.1 Introduction

2.2 Signal, channel, and noise representations

2.2.1 Passband signals and complex baseband equivalents

2.2.2 Complex baseband channel response

2.2.3 Time discretization

2.2.4 Pulse shaping

2.2.5 Additive noise

2.2.6 Energy and power

2.2.7 Channel normalization

2.2.8 Vector representation

2.3 Signal, channel, and noise representations: extension to MIMO

2.3.1 Vector and matrix representations

2.3.2 Channel normalization

2.3.3 Stacked vector representation

2.3.4 Precoding

2.3.5 Signal constraints

2.4 Linear channel equalization

2.4.1 Linear ZF equalization

2.4.2 LMMSE equalization

2.5 Single-carrier frequency-domain equalization

2.5.1 Basic formulation

2.5.2 Extension to MIMO

2.6 OFDM

2.6.1 Basic formulation

2.6.2 Extension to MIMO

2.7 Channel estimation

2.7.1 Single-carrier channel estimation

2.7.2 OFDM channel estimation

2.8 Summary and outlook

Problems

3 Channel modeling

3.1 Introduction

3.2 Preliminaries

3.2.1 Basics of radio propagation

3.2.2 Modeling approaches

3.3 Large-scale phenomena

3.3.1 Pathloss and shadow fading

3.3.2 Free-space model

3.3.3 Macrocell models

3.3.4 Microcell models

3.3.5 Picocell and indoor models

3.4 Small-scale fading
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Multipath propagation</td>
<td>143</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Space selectivity</td>
<td>146</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Time selectivity</td>
<td>151</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Frequency selectivity</td>
<td>158</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Time–frequency double selectivity</td>
<td>166</td>
</tr>
<tr>
<td>3.5</td>
<td>Interlude: essential notions of antenna arrays</td>
<td>170</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Array steering vectors</td>
<td>170</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Array factor and beamforming</td>
<td>173</td>
</tr>
<tr>
<td>3.6</td>
<td>Modeling of MIMO channels</td>
<td>175</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Analytical models</td>
<td>177</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Parametric models</td>
<td>188</td>
</tr>
<tr>
<td>3.7</td>
<td>Channel estimation revisited</td>
<td>192</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Large-scale phenomena</td>
<td>193</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Small-scale fading</td>
<td>195</td>
</tr>
<tr>
<td>3.8</td>
<td>MIMO channel models in standards</td>
<td>199</td>
</tr>
<tr>
<td>3.8.1</td>
<td>3GPP spatial channel model</td>
<td>200</td>
</tr>
<tr>
<td>3.8.2</td>
<td>SUI models for IEEE 802.16</td>
<td>201</td>
</tr>
<tr>
<td>3.8.3</td>
<td>IEEE 802.11 channel model</td>
<td>201</td>
</tr>
<tr>
<td>3.9</td>
<td>Summary and outlook</td>
<td>202</td>
</tr>
</tbody>
</table>

Problems 205

4 Single-user SISO

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>4.2</td>
<td>Interplay of bit rate, power, and bandwidth</td>
<td>209</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Low-SNR regime</td>
<td>215</td>
</tr>
<tr>
<td>4.2.2</td>
<td>High-SNR regime</td>
<td>218</td>
</tr>
<tr>
<td>4.3</td>
<td>AWGN channel</td>
<td>220</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Capacity</td>
<td>220</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Discrete constellations</td>
<td>224</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Sneak preview of link adaptation</td>
<td>225</td>
</tr>
<tr>
<td>4.4</td>
<td>Frequency-selective channel</td>
<td>228</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Partition into parallel subchannels</td>
<td>231</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Waterfilling power allocation</td>
<td>233</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Capacity</td>
<td>235</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Discrete constellations</td>
<td>238</td>
</tr>
<tr>
<td>4.4.5</td>
<td>CESM, MIESM, and EESM mapping methods</td>
<td>241</td>
</tr>
<tr>
<td>4.5</td>
<td>Frequency-flat fading channel</td>
<td>244</td>
</tr>
<tr>
<td>4.5.1</td>
<td>CSIR and CSIT</td>
<td>245</td>
</tr>
<tr>
<td>4.5.2</td>
<td>No CSIT</td>
<td>249</td>
</tr>
<tr>
<td>4.5.3</td>
<td>No CSI</td>
<td>261</td>
</tr>
<tr>
<td>4.6</td>
<td>Frequency-selective fading channel</td>
<td>267</td>
</tr>
<tr>
<td>4.7</td>
<td>Which fading setting applies?</td>
<td>268</td>
</tr>
<tr>
<td>4.8</td>
<td>Pilot-assisted communication</td>
<td>271</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Frequency-flat fading</td>
<td>271</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.2</td>
<td>Pilot power boosting</td>
<td>278</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Frequency-selective fading</td>
<td>278</td>
</tr>
<tr>
<td>4.9</td>
<td>Channels with interference</td>
<td>279</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary and outlook</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>287</td>
</tr>
</tbody>
</table>

Part II Single-user MIMO

5 **SU-MIMO with optimum receivers**
5.1 Introduction 297
5.2 Initial considerations 298
5.3 CSIR and CSIT
5.3.1 Quasi-static setting 301
5.3.2 Ergodic setting 307
5.4 No CSIT
5.4.1 Quasi-static setting 311
5.4.2 Ergodic setting 314
5.5 No CSI 338
5.6 Pilot-assisted communication 341
5.7 Channels with interference 345
5.8 Optimum transmitter and receiver structures 348
5.8.1 Single codeword versus multiple codewords 348
5.8.2 LMMSE-SIC receiver 349
5.8.3 The layered architecture 352
5.8.4 BICM implementations 353
5.9 Link adaptation 358
5.9.1 Single codeword 358
5.9.2 Multiple codewords 359
5.10 Reciprocity and CSI feedback 361
5.10.1 Channel reciprocity 362
5.10.2 Analog feedback 363
5.10.3 Digital feedback 364
5.11 Summary and outlook 374
| Problems | 378 |

6 **SU-MIMO with linear receivers**
6.1 Introduction 386
6.2 General characteristics of linear MIMO receivers 387
6.3 Linear ZF receiver
6.3.1 Receiver structure 388
6.3.2 Output SNR distribution 390
6.3.3 Ergodic spectral efficiency 392
6.4 LMMSE receiver 396
Contents

6.4.1 Receiver structure 396
6.4.2 Output SINR distribution 398
6.4.3 Ergodic spectral efficiency 403
6.5 Relationship between the LMMSE and the optimum receiver 407
6.6 Summary and outlook 408
Problems 410

Part III Multiuser MIMO 413

7 Multiuser communication prelude 415
7.1 Introduction 415
7.2 Spectral efficiency region 416
7.3 Orthogonal channel sharing 418
\hspace{1cm} 7.3.1 Time-division 418
\hspace{1cm} 7.3.2 Frequency-division 419
\hspace{1cm} 7.3.3 OFDMA 420
7.4 Non-orthogonal channel sharing 420
7.5 Scalar metrics 422
\hspace{1cm} 7.5.1 Sum of the spectral efficiencies 422
\hspace{1cm} 7.5.2 Weighted sum of the spectral efficiencies 422
\hspace{1cm} 7.5.3 Equal spectral efficiencies 424
\hspace{1cm} 7.5.4 Minimum of the spectral efficiencies 424
\hspace{1cm} 7.5.5 Proportional fairness 424
\hspace{1cm} 7.5.6 Generalized proportional fairness 425
7.6 User selection and resource allocation 426
\hspace{1cm} 7.6.1 The proportional-fair algorithm 428
7.7 Low-SNR regime 429
7.8 Summary and outlook 431
Problems 433

8 MU-MIMO with optimum transceivers 436
8.1 Introduction 436
8.2 The multiple-access channel 437
8.3 Multiple-access channel with CSIR and CSIT 440
\hspace{1cm} 8.3.1 Quasi-static setting 440
\hspace{1cm} 8.3.2 Optimum receiver structure 444
\hspace{1cm} 8.3.3 Precoder optimization 447
\hspace{1cm} 8.3.4 High-SNR regime 449
\hspace{1cm} 8.3.5 Ergodic setting 454
8.4 Multiple-access channel with no CSIT 457
\hspace{1cm} 8.4.1 Quasi-static setting 457
\hspace{1cm} 8.4.2 Ergodic setting 458
8.5 Multiple-access channel with no CSI 460
Contents

8.6 Pilot-assisted multiple-access channel 461
8.7 Duality between the multiple access and broadcast channels 462
8.7.1 Description and significance 462
8.7.2 Dual versus actual multiple-access channels 467
8.8 The broadcast channel 467
8.9 Broadcast channel with CSIR and CSIT 469
8.9.1 Optimum transmitter structure 469
8.9.2 Quasi-static setting 472
8.9.3 Precoder and power allocation optimization 478
8.9.4 High-SNR regime 480
8.9.5 Ergodic setting 484
8.10 Broadcast channel with no CSIT 487
8.11 Summary and outlook 490
Problems 490

9 MU-MIMO with linear transceivers 497
9.1 Introduction 497
9.2 Linear receivers for the multiple-access channel 498
9.3 Linear ZF receiver for the multiple-access channel 500
9.3.1 Receiver structure 500
9.3.2 Output SNR distribution 501
9.3.3 Ergodic spectral efficiency 501
9.3.4 High-SNR regime 505
9.4 LMMSE receiver for the multiple-access channel 507
9.4.1 Receiver structure 507
9.4.2 Output SINR distribution 509
9.4.3 Ergodic spectral efficiency 509
9.4.4 High-SNR regime 513
9.5 Duality with linear transceivers 514
9.6 Linear transmitters for the broadcast channel 516
9.7 Linear ZF transmitter for the MU-MISO broadcast channel 517
9.7.1 Transmitter structure 517
9.7.2 SNR distribution 518
9.7.3 Power allocation 520
9.7.4 Ergodic spectral efficiency 520
9.7.5 High-SNR regime 524
9.7.6 Pilot-assisted ZF transmission 528
9.8 Block-diagonalization for the broadcast channel 554
9.8.1 Transmitter structure 555
9.8.2 Power allocation 556
9.8.3 Ergodic spectral efficiency 558
9.8.4 High-SNR regime 559
9.9 Regularized ZF transmitter for the broadcast channel 562
9.9.1 Regularizing term 563
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9.2 Power allocation and ergodic spectral efficiency</td>
<td>566</td>
</tr>
<tr>
<td>9.9.3 High-SNR regime</td>
<td>571</td>
</tr>
<tr>
<td>9.10 Summary and outlook</td>
<td>571</td>
</tr>
<tr>
<td>Problems</td>
<td>574</td>
</tr>
</tbody>
</table>

10 Massive MIMO

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>578</td>
</tr>
<tr>
<td>10.2 Going massive</td>
<td>579</td>
</tr>
<tr>
<td>10.2.1 The massive MIMO regime</td>
<td>579</td>
</tr>
<tr>
<td>10.2.2 Excess antennas</td>
<td>581</td>
</tr>
<tr>
<td>10.3 Reverse-link channel estimation</td>
<td>582</td>
</tr>
<tr>
<td>10.3.1 Pilot reuse</td>
<td>582</td>
</tr>
<tr>
<td>10.3.2 Pilot contamination</td>
<td>583</td>
</tr>
<tr>
<td>10.4 Reverse-link data transmission</td>
<td>587</td>
</tr>
<tr>
<td>10.4.1 Channel hardening</td>
<td>590</td>
</tr>
<tr>
<td>10.4.2 Matched-filter receiver</td>
<td>592</td>
</tr>
<tr>
<td>10.4.3 LMMSE receiver</td>
<td>607</td>
</tr>
<tr>
<td>10.5 Forward-link data transmission</td>
<td>615</td>
</tr>
<tr>
<td>10.5.1 Matched-filter transmitter</td>
<td>616</td>
</tr>
<tr>
<td>10.5.2 Regularized ZF transmitter</td>
<td>620</td>
</tr>
<tr>
<td>10.6 Mitigation of pilot contamination</td>
<td>623</td>
</tr>
<tr>
<td>10.6.1 Subspace methods</td>
<td>624</td>
</tr>
<tr>
<td>10.6.2 Coordinated pilot assignment</td>
<td>624</td>
</tr>
<tr>
<td>10.6.3 Reception and precoding with other-cell awareness</td>
<td>625</td>
</tr>
<tr>
<td>10.6.4 Large-scale multicell processing</td>
<td>626</td>
</tr>
<tr>
<td>10.7 Practical considerations</td>
<td>628</td>
</tr>
<tr>
<td>10.8 Summary and outlook</td>
<td>631</td>
</tr>
<tr>
<td>Problems</td>
<td>636</td>
</tr>
</tbody>
</table>

11 Afterword

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Beyond cellular</td>
<td>643</td>
</tr>
<tr>
<td>11.2 Beyond wireless</td>
<td>644</td>
</tr>
</tbody>
</table>

Appendices

Appendix A Transforms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Fourier transforms</td>
<td>649</td>
</tr>
<tr>
<td>A.2 Z-transform</td>
<td>651</td>
</tr>
</tbody>
</table>

Appendix B Matrix algebra

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 Column space, row space, null spaces</td>
<td>653</td>
</tr>
<tr>
<td>B.2 Special matrices</td>
<td>654</td>
</tr>
<tr>
<td>B.3 Matrix decompositions</td>
<td>656</td>
</tr>
</tbody>
</table>
Contents

B.4 Trace and determinant 658
B.5 Frobenius norm 658
B.6 Moore–Penrose pseudoinverse 659
B.7 Matrix inversion lemma 659
B.8 Kronecker product 659

Appendix C Random variables and processes 661
C.1 Random variables 661
C.2 Large random matrices 671
C.3 Random processes 672

Appendix D Gradient operator 674

Appendix E Special functions 676
E.1 Gamma function 676
E.2 Digamma function 677
E.3 Exponential integrals 677
E.4 Bessel functions 678
E.5 Q-function 678
E.6 Hypergeometric functions 679

Appendix F Landau symbols 680

Appendix G Convex optimization 681
G.1 Convex sets 681
G.2 Convex and concave functions 681
G.3 Convex optimization problems 681
G.4 KKT optimality conditions 682
G.5 Lagrange multipliers 683
G.6 Jensen’s inequality 684

References 685
Index 752