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191. Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion.

By H. Osswald

192. Normal Approximations with Malliavin Calculus. By I. Nourdin and G. Peccati

193. Distribution Modulo One and Diophantine Approximation. By Y. Bugeaud

194. Mathematics of Two-Dimensional Turbulence. By S. Kuksin and A. Shirikyan

195. A Universal Construction for R-free Groups. By I. Chiswell and T. Müller

196. The Theory of Hardy’s Z-Function. By A. Ivić
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Preface

Locally compact groups arise in many diverse areas of mathematics, the phys-

ical sciences, and engineering and the presence of the group is usually felt

through unitary representations of the group. This observation underlies the

importance of understanding such representations and how they may be con-

structed, combined, or decomposed. Of particular importance are the irre-

ducible unitary representations. In the middle of the last century, G. W. Mackey

initiated a program to develop a systematic method for identifying all the irre-

ducible unitary representations of a given locally compact group G. We denote

the set of all unitary equivalence classes of irreducible unitary representations

of G by �G. Mackey’s methods are only effective when G has certain restrictive

structural characteristics; nevertheless, time has shown that many of the groups

that arise in important problems are appropriate for Mackey’s approach. The

program Mackey initiated received contributions from many researchers with

some of the most substantial advances made by R. J. Blattner and J. M. G. Fell.

Fell’s work is particularly important in studying �G as a topological space. At the

core of this program is the inducing construction, which is a method of building

a unitary representation of a group from a representation of a subgroup.

The main goal of this book is to make the theory of induced representations

accessible to a wider audience. As the book progresses, we provide a large

number of examples to illustrate the theory. A few particular groups reappear

at various stages in the development of the material as more and more can be

said about them.

We have written the book with the assumption that the reader will be familiar

with the basics of harmonic analysis, the theory of unitary representations, and

C∗-algebras. In the first chapter, we have gathered together the components

most necessary for the main body of the book. We present these basic results,

largely without proof, to orient the reader and establish notation. We recognize

that not all readers will be completely familiar with all that is quickly covered in

ix
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x Preface

Chapter 1, but we believe that the book can still serve as a useful reference for

such readers mainly due to the variety of worked examples. Graduate students

learning about induced representations here will want to have the standard

references we mention in the first chapter at hand as they work through the

later chapters.

If H is a closed subgroup of a locally compact group G and π is a represen-

tation of H , then the induced representation indG
H π is a representation of G.

(Throughout this book, all representations of groups are unitary representations

so we typically drop the word unitary.) In Chapter 2, we first define indG
H π in

the case where H is an open subgroup of G. In that case, the construction of

the Hilbert space on which indG
H π acts is particularly easy and the reader can

concentrate on the algebraic manipulations to develop an intuitive feel for the

inducing construction. Moreover, this enables us to quickly get to results of

substance applicable to discrete groups such as the free group on two generators

where, in Example 2.15, we construct a family of irreducible representations.

After defining the induced representation in general, we provide several of

the commonly used realizations and simplifications that occur in special cases

such as inducing from the normal factor in a semidirect product group. Much

of the rest of Chapter 2 is devoted to establishing the basic computational

properties of the inducing construction, such as the vital induction in stages

theorem.

The pivotal theorem of this book is the imprimitivity theorem, which is

established in Chapter 3. Again, we prove it first in the open subgroup case,

where the analytical details are straightforward, to illustrate the main strategy

of the proof. Our proof in the general case is an elaboration of a proof given by

Ørstedt [120].

With the imprimitivity theorem available, in Chapter 4 we turn to developing

the systematic procedure, known as Mackey analysis, for constructing �G for a

given locally compact group G. In order for this procedure to work, G must

have a closed normal subgroup N such that �N is understood, the orbit structure

under the action of G on �N must be well behaved, and stability subgroups

(considered as subgroups of G/N) arising in this action must have a well-

understood representation theory. The concepts involved simplify when N is

abelian and simplify even more when G is the semidirect product of an abelian

N and a group H acting on N .

We begin Chapter 4 by developing Mackey analysis for groups having an

abelian subgroup of finite index; without loss of generality, we can take the

abelian subgroup to be normal. The value in looking at this elementary case

is that the role of the orbit structure in the dual of N becomes clear. With that

in mind, we turn to the general situation of a closed normal abelian subgroup
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Preface xi

N of G and carefully study the orbit space formed by G acting on �N . There

is a technical concept called Mackey compatibility for the subgroup N within

G. It is actually fairly easy to recognize whether a particular N is a Mackey-

compatible subgroup of a given G. When this happens, Theorem 4.27 provides a

parametrization of �G. The objects appearing in this parametrization are easiest

to deal with when G splits as a semidirect product of the normal abelian

subgroup N and another locally compact group H acting on N . Indeed, we

are now able to provide two sections of examples where the analysis works

perfectly. We believe that these worked out examples will be one of the valuable

aspects for many readers. We also introduce some examples to illustrate the

limitations when the abelian factor is not Mackey compatible in a semidirect

product.

If G has a substantial closed normal abelian subgroup N but does not split

as a semidirect product, then so-called cocycle representations must be used in

the analysis. We briefly present the details and an illustrative example.

The final section of Chapter 4 deals with Mackey analysis in the case that

the relevant closed normal subgroup N is not abelian. The treatment necessar-

ily requires greater sophistication, with C∗-algebraic techniques and the orbit

structure of actions on non-Hausdorff topological spaces. Nevertheless, Theo-

rem 4.65 is established as the generalization of Theorem 4.27 to the case of a

nonabelian N .

Tools for studying the topological structure of the dual space �G, in those

cases where Mackey analysis is successful, are developed in Chapter 5. The

presentation of the main theorems follows the original proofs due to Fell. L. W.

Baggett made significant contributions to understanding the topology of dual

spaces and our treatment of generalized motion groups follows [2]. We hope

that the extensive number of examples in Chapter 5 will contribute to more

researchers taking advantage of the topological tools available in studying dual

spaces.

Chapters 6 and 7 illustrate some of the different ways in which the theory

of induced representations and knowledge of the topology of �G can be used to

investigate other mathematical phenomena. We have included some topics from

areas in which we have been involved personally, so these chapters certainly do

not represent even a major sampling of the varied implications of the content of

the earlier chapters. Chapter 6 is devoted to an exploration of topological ver-

sions of Frobenius properties generalizing the Frobenius reciprocity theorems

of finite and compact groups. Chapter 7 explores the asymptotic behavior of the

coefficient functions of the irreducible representations of motion groups and

methods for constructing projections in the Banach ∗-algebra L1(G). In both

these applications, we exploit the explicit structure of induced representations.
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xii Preface

Chapters 1 to 4 are most useful for the researcher wishing to learn the basic

techniques of induced representations and applying them to construct the duals

of particular groups, while later chapters are intended more for specialists and

to give an indication of the varied applications. For this reason, the exposi-

tion is more expansive in the first part of the book. For a graduate course in

representation theory, a portion dedicated to induced representations could be

supported by Chapters 2, 3, and 4.

Some of the topics in this book have, of course, been covered in other

monographs. For example, Mackey’s [105] provides the core of his theory

while [104] and [106] are overviews which draw deep connections between

the theory of induced representations and other areas of science. The books by

Gaal [57], Barut and Raczka [15], and Fabec [39] each introduce some of the

basic theory of induced representations and each has its own areas of focus.

We have been very much influenced by the well-paced book by Folland [55]

and the monumental volumes of Fell and Doran [53, 54]. In terms of level,

this book lies between [55] and [53, 54]. The reader who is familiar with [55]

can move quickly through our first three chapters, perhaps picking out some

topics of Chapter 2 that are not touched on in [55]. However, much of the rest

of our book is beyond the scope of [55]. Fell and Doran [53, 54] develop the

general theory of Banach ∗-algebraic bundles from which the core theorems of

this book can be extracted, but the task can be daunting for those new to the

area. We have chosen to keep the focus clearly on the representation theory of

locally compact groups and there are significant parts of this book which have

not appeared in any monograph.

There are important classes of locally compact groups where either Mackey

analysis is not effective or other methods provide more detailed information.

Harish-Chandra, working in parallel with Mackey, developed a comprehensive

approach to the representation theory of semisimple Lie groups. An excellent

introduction to this theory is Knapp [93]. Kirillov showed that there is a bijective

correspondence between the coadjoint orbits in the vector space dual of the Lie

algebra of a connected and simply connected nilpotent Lie group G and �G. This

forms the basis for a detailed harmonic analysis on nilpotent Lie groups. Often

the Kirillov construction and Mackey analysis can be used together in the study

of a nilpotent Lie group. Corwin and Greenleaf [33] provides an introduction

to the representation theory of nilpotent Lie groups.

Portions of the material in this book have been used by one or the other

of us in graduate courses or seminars at the University of Paderborn, Tech-

nical University of Munich, the University of Saskatchewan, or Dalhousie

University. We are grateful to those who attended these lectures for their feed-

back. The desire to formulate a more comprehensive manuscript on induced
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Preface xiii

representations grew out of our long-time collaborations. Our visits back and

forth across the Atlantic for research purposes and the writing of this book have

been supported by grants from NSERC Canada, the University of Paderborn,

and Dalhousie University

We thank the staff of Cambridge University Press for their support during

the process of bringing this work to completion.
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