Advanced Quantum Mechanics

An accessible introduction to advanced quantum theory, this graduate-level textbook focuses on its practical applications rather than on mathematical technicalities. It treats real-life examples, from topics ranging from quantum transport to nanotechnology, to equip students with a toolbox of theoretical techniques.

Beginning with second quantization, the authors illustrate its use with different condensed matter physics examples. They then explain how to quantize classical fields, with a focus on the electromagnetic field, taking students from Maxwell's equations to photons, coherent states, and absorption and emission of photons. Following this is a unique masterlevel presentation on dissipative quantum mechanics, before the textbook concludes with a short introduction to relativistic quantum mechanics, covering the Dirac equation and a relativistic second quantization formalism.

The textbook includes 70 end-of-chapter problems. Solutions to some problems are given at the end of the chapter, and full solutions to all problems are available for instructors at www.cambridge.org/9780521761505.

YULI V. NAZAROV is a Professor in the Quantum Nanoscience Department, the Kavli Institute of Nanoscience, Delft University of Technology. He has worked in quantum transport since the emergence of the field in the late 1980s.

JEROEN DANON is a Researcher at the Dahlem Center for Complex Quantum Systems, Free University of Berlin. He works in the fields of quantum transport and mesoscopic physics.

Advanced Quantum Mechanics

A practical guide

YULI V. NAZAROV

Delft University of Technology

JEROEN DANON Free University of Berlin

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521761505

© Y. Nazarov and J. Danon 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Nazarov, Yuli V. Advanced quantum mechanics : A practical guide / YULI V. NAZAROV AND JEROEN DANON. pages cm ISBN 978-0-521-76150-5 (hardback) 1. Quantum theory – Textbooks. I. Danon, Jeroen, 1977– II. Title. QC174.12.N39 2013 530.12–dc23 2012031315

ISBN 978-0-521-76150-5 Hardback

Additional resources for this publication at www.cambridge.org/9780521761505

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents	
Figure Credits Preface	<i>page</i> x xi
PART I SECOND QUANTIZATION	1
 1 Elementary quantum mechanics Classical mechanics Schrödinger equation Dirac formulation Schrödinger and Heisenberg pictures Perturbation theory Time-dependent perturbation theory Time-dependent perturbation theory Fermi's golden rule 1.7 Spin and angular momentum Spin and angular momentum Spin in a magnetic field Two-level system: The qubit Harmonic oscillator The density matrix The tensity matrix Exercises Solutions 	3 3 4 7 11 13 14 18 20 24 25 26 29 31 33 38 41
 2 Identical particles 2.1 Schrödinger equation for identical particles 2.2 The symmetry postulate 2.2.1 Quantum fields 2.3 Solutions of the <i>N</i>-particle Schrödinger equation 2.3.1 Symmetric wave function: Bosons 2.3.2 Antisymmetric wave function: Fermions 2.3.3 Fock space Exercises Solutions 	43 43 47 48 50 52 54 56 59 61
 3 Second quantization 3.1 Second quantization for bosons 3.1.1 Commutation relations 3.1.2 The structure of Fock space 	63 63 64 65

vi		Contents	
		3.2 Field operators for bosons	66
		3.2.1 Operators in terms of field operators	67
		3.2.2 Hamiltonian in terms of field operators	70
		3.2.3 Field operators in the Heisenberg picture	72
		3.3 Why second quantization?	72
		3.4 Second quantization for fermions	74
		3.4.2 Field operators	73
		3.5 Summary of second quantization	78
		Exercises	82
		Solutions	83
		ΔΑΡΤΙΙ ΕΧΑΜΟΙΕς	87
			07
	4	Magnetism	90
		4.1 Non-interacting Fermi gas	90
		4.2 Magnetic ground state	92
		4.2.1 Trial wave function	92
		4.3 Energy	93
		4.3.1 Kinetic energy	93
		4.3.2 Potential energy	94
		4.5.5 Energy balance and phases	97
		4.5 Excitations in ferromagnetic metals	90
		4.5.1 Single-particle excitations	99
		4.5.2 Electron-hole pairs	102
		4.5.3 Magnons	103
		4.5.4 Magnon spectrum	105
		Exercises	109
		Solutions	110
	5	Superconductivity	113
		5.1 Attractive interaction and Cooper pairs	114
		5.1.1 Trial wave function	116
		5.1.2 Nambu boxes	118
		5.2 Energy	119
		5.2.1 Energy minimization	120
		5.5 Particles and quasiparticles	123
		5.4 Broken symmetry	125
		Solutions	128
			102
	6	Superfluidity	135
		6.1 Non-interacting Bose gas	135

vii		Contents	
		6.2 Field theory for interacting Bose gas	136
		6.2.1 Hamiltonian and Heisenberg equation	138
		6.3 The condensate	139
		6.3.1 Broken symmetry	139
		6.4.1 Derticles and questinerticles	140
		6.5 Topological excitations	141
		6.5.1 Vortices	146
		6.5.2 Vortices as quantum states	149
		6.5.3 Vortex lines	151
		Exercises	154
		Solutions	157
		PART III FIELDS AND RADIATION	159
	7	Classical fields	162
		7.1 Chain of coupled oscillators	162
		7.2 Continuous elastic string	163
		7.2.1 Hamiltonian and equation of motion	164
		7.2.2 Solution of the equation of motion	165
		7.2.3 The elastic string as a set of oscillators	166
		7.3 Classical electromagnetic field	167
		7.3.1 Maxwell equations	168
		7.3.3 Vector and scalar potentials	170
		7.3.4 Gauges	170
		7.3.5 Electromagnetic field as a set of oscillators	171
		7.3.6 The <i>LC</i> -oscillator	174
		Exercises	177
		Solutions	181
	8	Quantization of fields	183
		8.1 Quantization of the mechanical oscillator	183
		8.1.1 Oscillator and oscillators	185
		8.2 The elastic string: phonons	187
		8.3 Fluctuations of magnetization: magnons	189
		8.4 Quantization of the electromagnetic field	191
		8.4.1 Photons	191
		8.4.2 Field operators	192
		8.4.3 Zero-point energy, uncertainty relations,	10.1
		and vacuum fluctuations	194
		8.4.4 The simple oscillator	198
		Exercises	201
		Solutions	203

viii	_	Contents	
	- 0	Padiation and matter	205
	,	9.1 Transition rates	205
		9.2 Emission and absorption: General considerations	200
		9.2.1 Master equations	210
		9.2.2 Equilibrium and black-body radiation	211
		9.3 Interaction of matter and radiation	214
		9.4 Spontaneous emission by atoms	218
		9.4.1 Dipole approximation	218
		9.4.2 Transition rates	219
		9.4.3 Selection rules	222
		9.5 Blue glow: Cherenkov radiation	223
		9.5.1 Emission rate and spectrum of Cherenkov	
		radiation	225
		9.6 Bremsstrahlung	227
		9.7 Processes in lasers	229
		9.7.1 Master equation for lasers	231
		9.7.2 Photon number distribution	232
		Exercises	255
		Solutions	238
	10	Coherent states	240
		10.1 Superpositions	240
		10.2 Excitation of an oscillator	241
		10.3 Properties of the coherent state	244
		10.4 Back to the laser	249
		10.4.1 Optical coherence time	250
		10.4.2 Maxwell–Bloch equations	252
		10.5 Concret states of matter	250
		10.5.1 Cooper pair box	257
		Solutions	202
		Solutions	205
		PART IV DISSIPATIVE QUANTUM MECHANICS	267
	11	Dissipative quantum mechanics	269
		11.1 Classical damped oscillator	269
		11.1.1 Dynamical susceptibility	270
		11.1.2 Damped electric oscillator	272
		11.2 Quantum description	273
		11.2.1 Difficulties with the quantum description	273
		11.2.2 Solution: Many degrees of freedom	274
		11.2.3 Boson bath	274
		11.2.4 Quantum equations of motion	275
		11.2.5 Diagonalization	277

ix	Contents	
	11.3 Time-dependent fluctuations	279
	11.3.1 Fluctuation-dissipation theorem	280
	11.3.2 Kubo formula	281
	11.4 Heisenberg uncertainty relation	282
	11.4.1 Density matrix of a damped oscillator	283
	Exercises	286
	Solutions	288
	12 Transitions and dissipation	290
	12.1 Complicating the damped oscillator: Towards a qubit	290
	12.1.1 Delocalization criterion	292
	12.2 Spin–boson model	292
	12.3 Shifted oscillators	294
	12.4 Shake-up and $P(E)$	296
	12.5 Orthogonality catastrophe	297
	12.6 Workout of $P(E)$	298
	12.7 Transition rates and delocalization	301
	12.8 Classification of environments	302
	12.8.1 Subohmic	304
	12.8.2 Ohmic	305
	12.8.3 Superonmic	300
	12.9 vacuum as an environment	307
	Solutions	310
	PART V RELATIVISTIC QUANTUM MECHANICS	315
	13 Relativistic quantum mechanics	317
	13.1 Principles of the theory of relativity	317
	13.1.1 Lorentz transformation	318
	13.1.2 Minkowski spacetime	321
	13.1.3 The Minkowski metric	323
	13.1.4 Four-vectors	324
	13.2 Dirac equation	326
	13.2.1 Solutions of the Dirac equation	330
	13.2.2 Second quantization	333
	13.2.3 Interaction with the electromagnetic field	336
	13.3 Quantum electrodynamics	337
	13.3.1 Hamiltonian	338
	13.3.2 Perturbation theory and divergences	339
	13.4 Renormalization	343
	Exercises	348
	Solutions	351
	Index	352

Figure Credits

Photo of Erwin Schrödinger: Robertson, obtained via Flickr The Commons	
from the Smithsonian Institution, www.si.edu	page 5
Photo of Werner Heisenberg: Bundesarchiv, Bild183-R57262 / CC-BY-SA	12
Photo of Enrico Fermi: courtesy National Archives, photo no. 434-OR-7(24)	55
Photo of Vladimir Fock: AIP Emilio Segrè Visual Archives, gift	
of Tatiana Yudovina	68
Photo of Pascual Jordan: SLUB Dresden/Deutsche Fotothek, Grossmann	73
Photo of Yoichiro Nambu: Betsy Devine	100
Photo of John Bardeen: AIP Emilio Segrè Visual Archives	117
Photo of Leon Cooper: AIP Emilio Segrè Visual Archives, gift of Leon Cooper	117
Photo of John Robert Schrieffer: AIP Emilio Segrè Visual Archives	117
Photo of Richard Feynman: Christopher Sykes, courtesy AIP Emilio Segrè	
Visual Archives	144
Photo of Paul Dirac: Science Service	193
Photo of Max Planck: obtained via Flickr The Commons from the	
Smithsonian Institution, www.si.edu	213
Photo of Roy Glauber: Markus Pössel	250
Photo of Philip Anderson: Kenneth C. Zirkel	299

Х

Preface

Courses on advanced quantum mechanics have a long tradition. The tradition is in fact so long that the word "advanced" in this context does not usually mean "new" or "up-to-date." The basic concepts of quantum mechanics were developed in the twenties of the last century, initially to explain experiments in atomic physics. This was then followed by a fast and great *advance* in the thirties and forties, when a quantum theory for large numbers of identical particles was developed. This advance ultimately led to the modern concepts of elementary particles and quantum fields that concern the underlying structure of our Universe. At a less fundamental and more practical level, it has also laid the basis for our present understanding of solid state and condensed matter physics and, at a later stage, for artificially made quantum systems. The basics of this leap forward of quantum theory are what is usually covered by a course on advanced quantum mechanics.

Most courses and textbooks are designed for a fundamentally oriented education: building on basic quantum theory, they provide an introduction for students who wish to learn the advanced quantum theory of elementary particles and quantum fields. In order to do this in a "right" way, there is usually a strong emphasis on technicalities related to relativity and on the underlying mathematics of the theory. Less frequently, a course serves as a brief introduction to advanced topics in advanced solid state or condensed matter.

Such presentation style does not necessarily reflect the taste and interests of the modern student. The last 20 years brought enormous progress in applying quantum mechanics in a very different context. Nanometer-sized quantum devices of different kinds are being manufactured in research centers around the world, aiming at processing quantum information or making elements of nano-electronic circuits. This development resulted in a fascination of the present generation of students with topics like quantum computing and nanotechnology. Many students would like to put this fascination on more solid grounds, and base their understanding of these topics on scientific fundamentals. These are usually people with a practical attitude, who are not immediately interested in brain-teasing concepts of modern string theory or cosmology. They need fundamental knowledge to work with and to apply to "real-life" quantum mechanical problems arising in an unusual context. This book is mainly aimed at this category of students.

The present book is based on the contents of the course Advanced Quantum Mechanics, a part of the master program of the Applied Physics curriculum of the Delft University of Technology. The DUT is a university for practically inclined people, jokingly called "bike-repairmen" by the students of more traditional universities located in nearby cities. While probably meant to be belittling, the joke does capture the essence of the research in Delft. Indeed, the structure of the Universe is not in the center of the physics curriculum

xi

xii

Preface

in Delft, where both research and education rather concentrate on down-to-earth topics. The DUT is one of the world-leading centers doing research on quantum devices such as semiconductor quantum dots, superconducting qubits, molecular electronics, and many others. The theoretical part of the curriculum is designed to support this research in the most efficient way: after a solid treatment of the basics, the emphasis is quickly shifted to *apply* the theory to understand the essential properties of quantum devices. This book is written with the same philosophy. It presents the fundamentals of advanced quantum theory at an operational level: we have tried to keep the technical and mathematical basis as simple as possible, and as soon as we have enough theoretical tools at hand we move on and give examples how to use them.

The book starts with an introductory chapter on basic quantum mechanics. Since this book is intended for a course on *advanced* quantum mechanics, we assume that the reader is already familiar with all concepts discussed in this chapter. The reason we included it was to make the book more "self-contained," as well as to make sure that we all understand the basics in the same way when we discuss advanced topics. The following two chapters introduce new material: we extend the basic quantum theory to describe many (identical) particles, instead of just one or two, and we show how this description fits conveniently in the framework of second quantization.

We then have all the tools at our disposal to construct simple models for quantum effects in many-particle systems. In the second part of the book (Chapters 4–6), we provide some examples and show how we can understand magnetism, superconductivity, and superfluidity by straightforward use of the theoretical toolbox presented in the previous chapters.

After focusing exclusively on many-*particle* quantum theory in the first parts of the book, we then move on to include *fields* into our theoretical framework. In Chapters 7 and 8, we explain in very general terms how almost any classical field can be "quantized" and how this procedure naturally leads to a very particle-like treatment of the excitations of the fields. We give many examples, but keep an emphasis on the electromagnetic field because of its fundamental importance. In Chapter 9 we then provide the last "missing piece of the puzzle": we explain how to describe the *interaction* between particles and the electromagnetic field. With this knowledge at hand, we construct simple models to describe several phenomena from the field of quantum optics: we discuss the radiative decay of excited atomic states, as well as Cherenkov radiation and Bremsstrahlung, and we give a simplified picture of how a laser works. This third part is concluded with a short introduction on *coherent states*: a very general concept, but in particular very important in the field of quantum optics.

In the fourth part of the book follows a unique master-level introduction to dissipative quantum mechanics. This field developed relatively recently (in the last three decades), and is usually not discussed in textbooks on quantum mechanics. In practice, however, the concept of dissipation is as important in quantum mechanics as it is in classical mechanics. The idea of a quantum system, e.g. a harmonic oscillator, which is brought into a stationary excited eigenstate and will stay there forever, is in reality too idealized: interactions with a (possibly very complicated) environment can dissipate energy from the system and can ultimately bring it to its ground state. Although the problem seems inconceivably hard

xiii

Preface

at first sight (one needs a quantum description of a huge number of degrees of freedom), we show that it can be reduced to a much simpler form, characterizing the environment in terms of its damping coefficient or dynamical susceptibility. After explaining this procedure for the damped oscillator in Chapter 11 and discussing dissipation and fluctuations, in Chapter 12 we extend the picture to a *qubit* (two-level system) in a dissipative environment. We elucidate the role the environment plays in transitions between the two qubit states, and, based on what we find, we provide a very general scheme to classify all possible types of environment.

In the last part (and chapter) of the book, we give a short introduction to relativistic quantum mechanics. We explain how relativity is a fundamental symmetry of our world, and recognize how this leads to the need for a revised "relativistic Schrödinger equation." We follow the search for this equation, which finally leads us to the Dirac equation. Apart from obeying the relativistic symmetry, the Dirac equation predicted revolutionary new concepts, such as the existence of particles and *anti-particles*. Since the existence of antiparticles has been experimentally confirmed, just a few years after Dirac had put forward his theory, we accept their existence and try to include them into our second quantization framework. We then explain how a description of particles, anti-particles, and the electromagnetic field constitutes the basis of *quantum electrodynamics*. We briefly touch on this topic and show how a naive application of perturbation theory in the interaction between radiation and matter leads to divergences of almost all corrections one tries to calculate. The way to handle these divergences is given by the theory of *renormalization*, of which we discuss the basic idea in the last section of the chapter.

The book thus takes examples and applications from many different fields: we discuss the laser, the Cooper pair box, magnetism, positrons, vortices in superfluids, and many more examples. In this way, the book gives a very broad view on advanced quantum theory. It would be very well suited to serve as the principal required text for a master-level course on advanced quantum mechanics which is not exclusively directed toward elementary particle physics. All material in the book could be covered in one or two semesters, depending on the amount of time available per week. The five parts of the book are also relatively self-contained, and could be used separately.

All chapters contain many "control questions," which are meant to slow the pace of the student and make sure that he or she is actively following the thread of the text. These questions could for instance be discussed in class during the lectures. At the end of each chapter there are four to ten larger exercises, some meant to practice technicalities, others presenting more interesting physical problems. We decided to provide in this book the solutions to one or two exercises per chapter, enabling students to independently try to solve a serious problem and check what they may have done wrong. The rest of the solutions are available online for teachers, and the corresponding exercises could be used as homework for the students.

We hope that many students around the world will enjoy this book. We did our absolute best to make sure that no single typo or missing minus sign made it to the printed version, but this is probably an unrealistic endeavor: we apologize beforehand for surviving errors. If you find one, please be so kind to notify us, this would highly improve the quality of a possible next edition of this book.

xiv

Preface

Finally, we would like to thank our colleagues in the Kavli Institute of Nanoscience at the Delft University of Technology and in the Dahlem Center for Complex Quantum Systems at the Free University of Berlin. Especially in the last few months, our work on this book often interfered severely with our regular tasks, and we very much appreciate the understanding of everyone around us for this. J.D. would like to thank in particular Piet Brouwer and Dganit Meidan: they both were always willing to free some time for very helpful discussions about the content and style of the material in preparation.

Yuli V. Nazarov Jeroen Danon