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1 Elementary quantummechanics

We assume that the reader is already acquainted with elementary quantum mechanics. An
introductory course in quantum mechanics usually addresses most if not all concepts dis-
cussed in this chapter. However, there are many ways to teach and learn these subjects. By
including this chapter, we can make sure that we understand the basics in the same way. We
advise students to read the first six sections (those on classical mechanics, the Schrödinger
equation, the Dirac formulation, and perturbation theory) before going on to the advanced
subjects of the next chapters, since these concepts will be needed immediately. While the
other sections of this chapter address fundamentals of quantum mechanics as well, they do
not have to be read right away and are referred to in the corresponding places of the follow-
ing chapters. The text of this chapter is meant to be concise, so we do not supply rigorous
proofs or lengthy explanations. The basics of quantum mechanics should be mastered at an
operational level: please also check Table 1.1 and the exercises at the end of the chapter.

1.1 Classical mechanics

Let us start by considering a single particle of mass m, which is moving in a coordinate-
dependent potential V(r). In classical physics, the state of this particle at a given moment
of time is fully characterized by two vectors, its coordinate r(t) and its momentum p(t).
Since classical mechanics is a completely deterministic theory, the state of the particle
in the future – its position and momentum – can be unambiguously predicted once the
initial state of the particle is known. The time evolution of the state is given by Newton’s
well-known equations

dp
dt
= F = −∂V(r)

∂r
and

dr
dt
= v = p

m
. (1.1)

Here the force F acting on the particle is given by the derivative of the potential V(r), and
momentum and velocity are related by p = mv.

Classical mechanics can be formulated in a variety of equivalent ways. A commonly
used alternative to Newton’s laws are Hamilton’s equations of motion

dp
dt
= −∂H

∂r
and

dr
dt
= ∂H

∂p
, (1.2)
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4 Elementary quantummechanics

where the Hamiltonian function H(r, p) of a particle is defined as the total of its kinetic
and potential energy,

H = p2

2m
+ V(r). (1.3)

One advantage of this formalism is a clear link to the quantum mechanical description of
the particle we present below.

An important property of Hamilton’s equations of motion is that the Hamiltonian H itself
is a constant of motion, i.e. dH/dt = 0 in the course of motion.

Control question. Can you prove that dH/dt = 0 directly follows from the equations
of motion (1.2)?

This is natural since it represents the total energy of the particle, and energy is conserved.
This conservation of energy does not hold for Hamiltonians that explicitly depend on
time. For instance, an external time-dependent force Fext gives an addition −Fext · r to
the Hamiltonian. By changing the force, we can manipulate the particle and change its
energy.

1.2 Schrödinger equation

The quantum mechanical description of the same particle does not include any new param-
eters, except for a universal constant h̄. The dynamics of the particle are still determined
by its mass m and the external potential V(r). The difference is now that the state of the
particle is no longer characterized by just two vectors r(t) and p(t), but rather by a contin-
uous function of coordinate ψ(r, t) which is called the wave function of the particle. The
interpretation of this wave function is probabilistic: its modulus square |ψ(r, t)|2 gives the
probability density to find the particle at time t at the point r. For this interpretation to make
sense, the wave function must obey the normalization condition∫

dr |ψ(r, t)|2 = 1, (1.4)

i.e. the total probability to find the particle anywhere is 1, or in other words, the particle
must be somewhere at any moment of time.

Since this is a probabilistic description, we never know exactly where the particle is. If
the particle is at some time t0 in a definite state ψ(r, t0), then it is generally still impossible
to predict at which point in space we will find the particle if we look for it at another time t.
However, despite its intrinsically probabilistic nature, quantum mechanics is a determinis-
tic theory. Starting from the state ψ(r, t0), the state ψ(r, t) at any future time t is completely
determined by an evolution equation, the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ =

{
− h̄2

2m

∂2

∂r2
+ V(r)

}
ψ . (1.5)
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5 1.2 Schrödinger equation

Erwin Schrödinger (1887–1961)
Shared the Nobel Prize in 1933 with Paul Dirac for “the
discovery of new productive forms of atomic theory.”

Before 1925, quantum mechanics was an inconsistent col-
lection of results describing several otherwise unexplained
observations. In 1925–1926 two different general theories
of quantum mechanics were presented: Heisenberg pro-
posed a matrix mechanics of non-commuting observables,
explaining discrete energy levels and quantum jumps,

while Schrödinger put forward wave mechanics, attributing a function of coordi-
nates to a particle and a wave-like equation governing its evolution. Schrödinger’s
theory seemed (and seems) less abstract. Besides, it provided a clear mathematical
description of the wave–particle duality, a concept actively advocated by Einstein.
Therefore, many people favored his theory over Heisenberg’s. As we explain in this
chapter, both theories are equivalent. However, for many the Schrödinger equation
remains the core of quantum mechanics.

Erwin Schrödinger had a life with several restless periods in it. He was born and
educated in Vienna, where he stayed till 1920, only interrupted by taking up his duty
at the Italian front in the first world war. In the years 1920–1921 he successively
accepted positions in Jena, Stuttgart, Breslau, and finally Zurich, where he remained
for several years. The intense concentration that allowed him to develop his quantum
theory he achieved during a Christmas stay in 1925 in a sanatorium in Arosa. But in
1927 he moved again, this time to Berlin. When the Nazis came to power in 1933
he decided to leave the Reich, and so he became itinerant again: Oxford, Edinburgh,
Graz, Rome, Ghent . . . In 1940 he finally took a position in Dublin where he stayed
till his retirement in 1956.

In this notation, Ĥ is an operator: it acts on the function ψ and it returns another
function, the time derivative of ψ . This operator Ĥ is called the Hamiltonian opera-
tor, since it represents the total energy of the particle. This is best seen if we rewrite
Ĥ in terms of the momentum operator p̂≡ − ih̄∂r and position operator r̂≡ r. We then
see that Ĥ is identical to (1.3) but with the vectors r and p replaced by their operator
analogues.

Not only momentum and position, but any physical property can be expressed in terms of
operators. For an arbitrary observable A, we can find the corresponding quantum mechan-
ical operator Â. The average value of this observable, sometimes called expectation value,
in a given quantum state reads

〈A〉 =
∫

drψ∗(Âψ), (1.6)

ψ∗ being the complex conjugate of ψ .
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6 Elementary quantummechanics

Control question. Can you write the integral in (1.6) for 〈x2〉? And for 〈p2
x〉?

If a state is known to have a definite value of A, let us say A0, then the wave function of
this state must be an eigenfunction of Â, i.e. Âψ = A0ψ . We indeed see from (1.6) that this
would result in 〈A〉 = A0. To prove that not only the expectation value of A is A0, but also
that A0 is actually the only value which can be found for A, we use the definition in (1.6)
and compute the fluctuations in the observable A,

〈A2〉 − 〈A〉2 =
∫

drψ∗(ÂÂψ)−
(∫

drψ∗(Âψ)

)2

. (1.7)

If ψ in the above formula is an eigenfunction of the operator Â, the two terms cancel
each other and the fluctuations in A become zero. This proves the above statement: any
eigenstate of the operator Â has a well-defined value for the observable A.

As we have already mentioned, the Hamiltonian operator represents the total energy of
the particle. Therefore, a state with a definite energy E must obey the eigenvalue equation

Ĥψ = Eψ . (1.8)

We see that the Schrödinger equation predicts a simple time dependence for such a state,

ψ(r, t) = exp{−iEt/h̄}ψ(r). (1.9)

These states are called stationary states, and the eigenvalue equation (1.8) is called the
stationary Schrödinger equation.

Control question. Why are these states called stationary, while they retain time
dependence? Hint. Consider (1.6).

Let us now consider the simple case of a free particle (“free” means here “subject to no
forces”) in an infinite space. This corresponds to setting the potential V(r) to zero or to a
constant value everywhere. In this case the solutions of the Schrödinger equation take the
form of plane waves

ψp(r, t) = 1√
V

exp{−iEt/h̄} exp{ip · r/h̄}, (1.10)

where the energy of the particle is purely kinetic, E = p2/2m. The factor 1/
√
V results

from the normalization condition (1.4), where we assumed that the particle dwells in a
large but finite volume V . For a free particle, this is of course artificial. To describe an
actually infinite space, we have to take the limit V → ∞. The assumption of a finite V ,
however, is extremely constructive and we use it throughout the book.

We see that the plane wave states (1.10) are eigenfunctions of the momentum oper-
ator, p̂ψp = pψp, and therefore all carry a definite momentum p. In a finite volume,
however, only a discrete subset of all momentum states is allowed. To find this set, we
have to take into account the boundary conditions at the edges of the volume. Having the
volume V is artificial anyway, so we can choose these conditions at will. An easy and
straightforward choice is to take a block volume with dimensions Lx×Ly×Lz and assume
periodic boundary conditions over the dimensions of the block. This gives the conditions
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7 1.3 Dirac formulation

ψp(x+ Lx, y, z, t) = ψp(x, y+ Ly, z, t) = ψp(x, y, z+ Lz, t) = ψp(x, y, z, t), resulting in a set
of quantized momentum states

p = 2π h̄

(
nx

Lx
,

ny

Ly
,

nz

Lz

)
, (1.11)

where nx, ny, and nz are integers.

Control question. Can you derive (1.11) from the periodic boundary conditions and
(1.10) yourself?

As we see from (1.11), there is a single allowed value of p per volume (2π h̄)3/V in
momentum space, and therefore the density of momentum states increases with increasing
size of the system, D(p) = V/(2π h̄)3. Going toward the limit V → ∞ makes the spac-
ing between the discrete momentum values smaller and smaller, and finally results in a
continuous spectrum of p.

The above plane wave function is one of the simplest solutions of the Schrödinger
equation and describes a free particle spread over a volume V . In reality, however, wave
functions are usually more complex, and they also can have many components. For exam-
ple, if the plane wave in (1.10) describes a single electron, we have to take the spin degree
of freedom of the electron into account (see Section 1.7). Since an electron can be in a
“spin up” or “spin down” state (or in any superposition of the two), we generally have to
use a two-component wave function

ψp(r, t) =
(
ψp,↑(r, t)
ψp,↓(r, t)

)
, (1.12)

where the moduli squared of the two components give the relative probabilities to find the
electron in the spin up or spin down state as a function of position and time.

1.3 Dirac formulation

In the early days of quantum mechanics, the wave function had been thought of as an actual
function of space and time coordinates. In this form, it looks very similar to a classical
field, i.e. a (multi-component) quantity which is present in every point of coordinate space,
such as an electric field E(r, t) or a pressure field p(r, t). However, it appeared to be very
restrictive to regard a wave function merely as a function of coordinates, as the Schrödinger
formalism implies. In his Ph.D. thesis, Paul Dirac proposed to treat wave functions rather
as elements of a multi-dimensional linear vector space, a Hilbert space. Dirac’s formula-
tion of quantum mechanics enabled a reconciliation of competing approaches to quantum
problems and revolutionized the field.

In Dirac’s approach, every wave function is represented by a vector, which can be put as
a “ket” |ψ〉 or “bra” 〈ψ |. Operators acting on the wave functions, such as the momentum
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8 Elementary quantummechanics

and position operator, make a vector out of a vector and can therefore be seen as matrices
in this vector space. For instance, a Hamiltonian Ĥ in general produces

Ĥ|ψ〉 = |χ〉. (1.13)

An eigenstate of an observable Â in this picture can be seen as an eigenvector of the corre-
sponding matrix. For any real physical quantity, this matrix is Hermitian, that is Â† = Â.
As we know, an eigenstate of the operator Â has a definite value of A, which now simply is
the corresponding eigenvalue of the matrix. By diagonalizing the matrix of an observable
one retrieves all possible values which can be found when measuring this observable, and
the hermiticity of the matrix guarantees that all these eigenvalues are real.

One of the definitions of a Hilbert space is that the inner product of two vectors in the
space, 〈ψ |χ〉 = (〈χ |ψ〉)∗, exists. Let us try to make a connection with the Schrödinger
approach. In the Hilbert space of functions of three coordinates r, the Dirac notation
implies the correspondence |ψ〉↔ψ(r) and 〈ψ |↔ψ∗(r), and the inner product of two
vectors is defined as

〈ψ |χ〉 =
∫

drψ∗(r)χ (r). (1.14)

We see that the normalization condition (1.4) in this notation reads | 〈ψ |ψ〉 |2 = 1, and the
expectation value of an operator Â in a state ψ is given by 〈ψ |Â|ψ〉.

The dimensionality of the Hilbert space is generally infinite. To give a simple exam-
ple, let us consider a single spinless particle trapped in a potential well, meaning that
V(r) →∞ when |r| → ∞. If one solves the Schrödinger equation for this situation, one
finds a set of stationary states, or levels, with a discrete energy spectrum

ψn(r, t) = exp{−iEnt/h̄}ψn(r), (1.15)

where n labels the levels. The wave functions ψn(r) depend on the potential landscape of
the well, and can be quite complicated. This set of eigenstates of the Hamiltonian can be
used as a basis of the infinite dimensional Hilbert space. This means that, if we denote the
basis vectors by |n〉 ≡ ψn(r, t), we can write any arbitrary vector in this Hilbert space as

|ψ〉 =
∑

n

cn|n〉, (1.16)

where the sum in principle runs over all integers.

Control question. Can you write the “bra”-version 〈ψ | of (1.16)?

We note that the basis thus introduced possesses a special handy property: it is orthonor-
mal, that is, any two basis states satisfy

〈m|n〉 = δmn. (1.17)

Conveniently, the normalized eigenfunctions of any Hermitian operator with non-
degenerate (all different) eigenvalues form a proper basis. Making use of orthonormality,
we can write any linear operator as

Â =
∑
nm

anm |n〉〈m| , (1.18)
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9 1.3 Dirac formulation

�Fig. 1.1 Projections of a vector on the orthogonal axes of a coordinate system. The same point in this two-dimensional space is
represented by different vectors in different coordinate systems. The representation (x1, y1) in coordinate system S1
transforms to (x2, y2) in coordinate system S2.

where the complex numbers anm denote the matrix elements of the operator Â, which are
defined as anm = 〈n|Â|m〉.

The convenience of the Dirac formulation is the freedom we have in choosing the basis.
As is the case with “real” vectors, the basis you choose can be seen as a Cartesian coor-
dinate system, but now in Hilbert space. Let us consider the analogy with usual vectors
in two-dimensional space. Any vector then has two components, which are given by the
projections of the vector on the orthogonal axes of the coordinate system chosen. When
this vector is represented in a different coordinate system, the projections are generally
different (see Fig. 1.1). The vector, however, is still the same! Similarly, an arbitrary wave
function is defined by a set of its components cn, which are the projections of the wave
function on a certain set of basis vectors. In the case of a discrete set of basis states |n〉, an
arbitrary quantum state |ψ〉 is written as in (1.16). The projections cn can then be found
from

cn = 〈n|ψ〉 . (1.19)

If we were to choose a different set of basis vectors |n′〉, the components cn′ we would find
would be different, but still represent the same wave function.

The same picture holds for systems with a continuous spectrum, since, as explained
above, a continuous spectrum can be approximated by a discrete spectrum with infinites-
imally small spacing. Wave functions in the Schrödinger equation are written in a
coordinate representation. A wave function ψ(r) can be seen as the projection of the state
|ψ〉 on the continuous set of basis vectors |r〉, which are the eigenfunctions of the coordi-
nate operator r̂. The same wave function can of course also be expressed in the basis of
plane waves given in (1.10). In the space spanned by these plane waves |p〉, we write

|ψ〉 =
∑

p

cp|p〉, (1.20)

where the components cp are given by

cp = 〈p|ψ〉 =
∫

dr√
V

e−
i
h̄ p·r
ψ(r). (1.21)

These components cp can be seen as a different representation of the same wave function,
in this case the momentum representation.
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10 Elementary quantummechanics

Going over to the continuous limit corresponds to letting V →∞. In this limit, the sum
in (1.20) can be replaced by an integral provided that the density of states D(p) is included
in the integrand and that the components cp converge to a smooth function c(p) of p.
This is the case when the wave functions are concentrated in a finite region of coordinate
space. In this case, the artificial large volume V is redundant and to get rid of it, it is
common to rescale cp → c(p)/

√
V such that c(p) does not depend on V . With this rescaling

the relations (1.21) and ψ(r) = 〈r|ψ〉 become the expressions of the standard Fourier
transforms, forward and reverse respectively,

c(p) =
∫

dr e−
i
h̄ p·r
ψ(r) and ψ(r) =

∫
dp

(2π h̄)3
e

i
h̄ p·rc(p). (1.22)

Control question. Do you see how the relations (1.22) follow from (1.20) and (1.21),
using the rescaling cp → c(p)/

√
V?

So, what are the advantages of the Dirac formulation? First, it brings us from separate
quantum particles to the notion of a quantum system. A system can be a single particle,
or 1026 particles interacting with each other, or an electric circuit, or a vacuum – all these
examples are considered in this book. In the Dirac formulation they can be described uni-
formly, since all their quantum states are elements of a Hilbert space. The case of a system
consisting of many particles is considered in detail. In the Schrödinger picture, the wave
function of such a system becomes a function of all coordinates of all, say 1026, particles,
whereas in the Dirac formulation all allowed quantum states are still simply represented by
a vector. Of course, for a many-particle problem more states in the Hilbert space are rele-
vant. However, this does not alter the complexity of the representation: a vector remains a
vector irrespective of the number of its components.

Second, the Dirac formulation establishes a “democracy” in quantum mechanics. Given
a system, it does not matter which basis is used for a description of a wave function. All
bases are equal, and the choice of basis is determined by the personal taste of the descriptor
rather than by any characteristic of the system.

Third, the formulation is practically important. It converts any quantum problem for
any quantum system to a linear algebra exercise. Since wave functions are now repre-
sented by vectors and operators by matrices, finding the eigenstates and eigenvalues of any
observable reduces to diagonalizing the corresponding operator matrix.

Let us finish by considering the Dirac formulation for a complex system which is
obtained by combining two separate systems. Suppose we have systems A and B which
are both described by their own wave functions. We assume that the quantum states of
system A are vectors in an MA-dimensional Hilbert space, spanned by a basis {|nA〉} ≡
{|1A〉, |2A〉, . . . , |MA〉}, while the states of system B are vectors in an MB-dimensional space
with basis {|nB〉} ≡ {|1B〉, |2B〉, . . . , |MB〉}. If we combine the two systems and create one
large system A + B, we find that the states of this combined system can be described in a
Hilbert space spanned by the direct product of the two separate bases, {|nA〉} ⊗ {|nB〉} ≡
{|1A1B〉, |1A2B〉, |2A1B〉, |1A3B〉, . . .}, which forms a (MAMB)-dimensional basis.
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