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Radix polynomial representation

1.1 Introduction
From the earliest cultures humans have used methods of recording numbers (inte-
gers), by notches in wooden sticks or collecting pebbles in piles or rows. Con-
ventions for replacing a larger group or pile, e.g., five, ten, or twelve objects,
by another object or marking, are also found in some early cultures. Number
representations like these are examples of positional number systems, in which
objects have different weight according to their relative positions in the number.
The weights associated with different positions need not be related by a constant
ratio between the weights of neighboring positions. In time, distance, old currency,
and other measuring systems we find varying ratios between the different units of
the same system, e.g., for time 60 minutes to the hour, 24 hours to the day, and
7 days to the week, etc.

Systems with a constant ratio between the position weights are called radix
systems; each position has a weight which is a power of the radix. Such sys-
tems can be traced back to the Babylonians who used radix 60 for astronomical
calculations, however without a specific notation for positioning of the unit, so
it can be considered a kind of floating-point notation. Manipulating numbers in
such a notation is fairly convenient for multiplication and division, as is known
for anyone who has used a slide rule. Our decimal notation with its fixed radix
point seems to have been developed in India about 600 CE, but without decimal
fractions. Decimal notation with fractions appeared later in the Middle East, and
in the fifteenth century a Persian mathematician computed the value of π correctly
to 16 decimal digits. In the seventeenth century the binary system was developed,
and it was realized that any integer greater than 1 could be used as a radix. Knuth
in [Knu98, Chapter 4] gives an account of the development of positional systems,
and provides further references on their history.
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2 Radix polynomial representation

Usually digits used for denoting numbers in a positional system are restricted
by the ratios between weights of neighboring positions, in radix systems by the
value of the radix. If the factor or radix is β, then the digits normally used are
from the set {0, 1, . . . , β − 1}, but other digit sets are possible. If the cardinality
of the set of permissible digits is larger than the radix, then some numbers can be
represented in more than one way and the number system is said to be redundant.
Such redundancy permits some arithmetic operations to be performed faster than
with a “normal” (non-redundant) digit set. For example, as we know, when adding
a number of distances measured in feet and inches, we can add up the feet and the
inches independently, and only at the end convert excess inches into feet. In this
way we avoid converting all the intermediate results, and hence the carry transfers,
during accumulation of the individual measures.

In this chapter we will discuss positional number systems mainly through stan-
dard radix representations, with only a few deviations into other weighted systems.
But we will thoroughly investigate systems where the digits may be drawn from
fairly general sets of integers, and in particular also redundant systems. Although it
is possible to define systems with a non-integral value of the radix, even a complex
value, we shall restrict our treatment to integral values β, |β| ≥ 2.

1.2 Radix polynomials
As a foundation for our development of a theory for the representation of numbers
in positional notation, we will use the algebraic structure of sets of polynomials.
Arithmetic on numbers in positional notation is closely related to arithmetic on
polynomials, so a firm foundation for the former can be based on the theory for the
latter. We will here be concerned with the characterization of systems employing
an integral-valued radix and digits, but our analysis will go beyond the usual radix
2, 8, 10, and 16 systems and the related standard digit sets.

Let Z∗[x] be the set of extended polynomials1

P (x) = amxm + am−1x
m−1 + · · · + a�x

� (1.2.1)

with ai ∈ Z (the set of integers), −∞ < � ≤ i ≤ m < ∞, considered formal
expressions in the indeterminate variable x. The coefficients am and a� may
be zero, but the zero polynomial is also denoted P (x) = 0. However, in general
we will only display non-zero coefficients ai . If m = � we call P (x) an extended
monomial.

It is then possible to define addition and multiplication on polynomials from
Z∗[x], i.e., with P (x),Q(x) ∈ Z∗[x],

P (x) = amxm + am−1x
m−1 + · · · + a�x

�,

Q(x) = bnx
n + bn−1x

n−1 + · · · + bkx
k,

1 The extension here is that, in general, we allow negative powers of x.
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1.2 Radix polynomials 3

and p = max(m, n), q = min(�, k), we may define:

S(x) = P (x)+Q(x) = (ap + bp)xp + (ap−1 + bp−1)xp−1 + · · · + (aq + bq)xq,

(1.2.2)

R(x) = P (x) × Q(x) = cm+nx
m+n + cm+n−1x

m+n−1 + · · · + c�+kx
�+k, (1.2.3)

where

cj = a�bj−� + a�+1bj−�−1 + · · · + aj−kbk. (1.2.4)

Based on the fact that (Z,+,×) is a commutative ring with identity employ-
ing integer addition and multiplication as operators, it may now be seen that
(Z∗[x],+,×) is also a commutative ring with identity satisfying the cancella-
tion law (i.e., an integral domain), when + and × here is taken as addition and
multiplication defined by (1.2.2) respectively (1.2.3) and (1.2.4).

When in (1.2.1) the indeterminate variable x is taken as a real variable, P (x)
is a function whose value can be found at any real value b. We will denote this
evaluation as

P (x)
∣∣
x=b

∈ R

and define the evaluation mapping Eb as

Eb : P (x) → P (x)|x=b. (1.2.5)

Observation 1.2.1 For b �= 0, Eb is a homomorphism of Z∗[x] to the reals:

S(x) = P (x) + Q(x) ⇒ S(x)|x=b = P (x)|x=b + Q(x)|x=b, (1.2.6)

R(x) = P (x) × Q(x) ⇒ R(x)|x=b = P (x)|x=b × Q(x)|x=b. (1.2.7)

Thus for fixed b the extended polynomials P (x) and Q(x) may be used as
representations of the real numbers P (x)|x=b and Q(x)|x=b respectively. Note that
addition of extended polynomials is independent in each position or “carry-free”
since the coefficients are unrestricted integers. Also note that Eb is not one-to-one,
e.g.,

(9x + 3 + 4x−1)|x=8 = (x2 + x + 3 + 4x−1)|x=8 (= 75.5).

For fixed a and b let us define

Vb(a) = {P (x) ∈ Z∗[x]
∣∣ P (x)|x=b = a},

i.e., the set of polynomials whose value at b is a. Or using different terminology,
for fixed b, Vb(a) is the set of redundant representations of a. Also Vb(a) can be
characterized as a residue class in the set of extended polynomials.

Theorem 1.2.2 Given any two extended polynomials P (x), Q(x), then
P (x)|x=b = Q(x)|x=b if and only if P (x) ≡ Q(x) (mod (x − b)).
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4 Radix polynomial representation

Proof For P (x) ≡ Q(x) (mod (x − b)) we have P (x) = Q(x) + R(x) × (x −
b). So then P (x)|x=b = Q(x)|x=b + R(x)|x=b × (x − b)|x=b = Q(x)|x=b since
(x − b)|x=b = 0.

Alternatively, assume P (x)|x=b = Q(x)|x=b. Then the polynomial S(x) =
P (x) − Q(x) satisfies S(x)|x=b = 0, so b is a root of S(x). This means (x − b)
must divide S(x), so we obtain S(x) = R(x) × (x − b) for some R(x). Hence
P (x) = Q(x) + R(x) × (x − b). �

Example 1.2.1 Let b = 8 and consider the extended polynomials

P (x) = x2 − 5x − 6 + 13x−1,

Q(x) = 2x + 4 − 3x−1.

Now P (x) has the same value as Q(x) for x = b = 8, P (x)|x=8 = Q(x)|x=8 =
19 5

8 , so Q(x) and P (x) both belong to V8(19 5
8 ). We further note that

P (x) − Q(x) = x2 − 7x − 10 + 16x−1 = (x + 1 − 2x−1)(x − 8),

so P (x) ≡ Q(x) (mod (x − 8)) as required by Theorem 1.2.2. �

From the proof of Theorem 1.2.2 we note the following.

Observation 1.2.3 If P (x)|x=b = Q(x)|x=b, then there exists a transfer polyno-
mial

R(x) =
m∑

i=�

cix
i

satisfying

P (x) = Q(x) + R(x)(x − b)

= Q(x) +
m∑

i=�

ci(x − b)xi,

where each term cix
i+1 − cibxi performs a transfer (a “carry”) of information

from position i to position i + 1 of the polynomial.

In the rest of this book we will consider various systems characterized by
the value of b chosen. We will use the symbol β for such a value, termed2 the
radix or the base of the system. The radix can be positive or negative, even
non-integral or complex. In the following we will only consider integral values
of the radix β. Since we intend to evaluate extended polynomials at β, but still
retain a distinction between the formal expression P (x) and its value obtained

2 We will, in general, use the term radix rather than base, except where traditionally the latter is used,
such as in base conversion.
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1.2 Radix polynomials 5

by the evaluation mapping Eβ , we will for P (x) ∈ Z∗[x] distinguish between the
extended polynomial

P ([β]) = dm[β]m + dm−1[β]m−1 + · · · + d�[β]�

i.e., an unevaluated expression, and the real value obtained by evaluating

P (β) = dmβm + dm−1β
m−1 + · · · + d�β

�.

Definition 1.2.4 For β such that |β| ≥ 2, the set of radix-β polynomials P[β]
is the set composed of the zero-polynomial and all extended polynomials of the
form

P ([β]) = dm[β]m + dm−1[β]m−1 + · · · + d�[β]�,

where di ∈ Z for −∞ < � ≤ i ≤ m < ∞.

Notation For P ([β]) = ∑m
i=� di[β]i ∈ P[β] we introduce the following

notation:

β: the radix or base;
di : the digit in position i; or
di(P ): the digit in position i of polynomial P ([β]);
m: the most-significant position: msp(P ([β]));
�: the least-significant position: lsp(P ([β]));
dm: the most-significant digit: dm �= 0;
d�: the least-significant digit: d� �= 0.

We assume that dm �= 0 and d� �= 0, except when P = 0, where dm = d� = m =
� = 0. In the following lsp(P [β]) will be called be the last place.

P[β] thus forms a ring with the same additive and multiplicative structure as
the ring Z∗[x]. Particular examples are:

P[16]: the hexadecimal radix polynomials;
P[10]: the decimal radix polynomials;
P[8]: the octal radix polynomials;
P[3]: the ternary radix polynomials;
P[2]: the binary radix polynomials;
P[−2]: the nega-binary radix polynomials.

Our general definition of radix polynomials allows positive and/or negative
digits as well as digit values exceeding the magnitude of the radix.

In arithmetic algorithms there is a need to deal with individual terms of a radix-β
polynomial, corresponding to individual digits, and, in general, in order to have a
kind of “pointer” to a specific position of a radix polynomial. Hence we introduce
the following definition.
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6 Radix polynomial representation

Definition 1.2.5 For β such that |β| ≥ 2, the set of radix-β monomials of order
j , Mj [β], is the set of all extended polynomials of the form

M([β]) = i[β]j ,

where i, j ∈ Z. The exponent j is called the order of the monomial.

Note that i may be any integer, including zero, and may contain β as a factor. The
order j serves to position the digit value i, e.g., for adding into a particular position
using (1.2.2). Multiplying with a unit monomial [β]j using (1.2.3) corresponds
to a “shifting” operation on a number in positional notation. Adding a monomial
[β]� to a radix polynomial P [β] with lsp(P [β]) = � corresponds to adding a unit
in the last place (ulp).

By Theorem 1.2.2, the relation for equality-of-value of extended polynomials
under the evaluation mapping Eβ : P (x) → P (x)|x=β yields the residue classes of
Z∗[x] modulo (x − β) as equivalence classes. The extended monomials provide
for characterizing a useful complete residue system for these equivalence classes.

Theorem 1.2.6 For β with |β| ≥ 2, let3 M′ = {i [β]j | i �= 0, β � | i ∈ Z, j ∈
Z} ∪ {0[β]0}, i.e., M′ is the set of all radix-β monomials with coefficients not
divisible by β, along with the zero polynomial. Then M′ is a complete residue
system for Z∗[x] modulo (x − β).

Proof To show that members of M′ are in distinct residue classes it is sufficient
by Theorem 1.2.2 to show the evaluation mapping maps distinct members of M′

into distinct real values. Suppose i[β]j , k[β]� ∈ M′ are distinct non-zero members
of M′ of the same value. Now i[β]j evaluates to iβj and k[β]� has the value kβ�,
so iβj = kβ�. We may assume � ≥ j , so i = kβ�−j . Then � = j , since β does
not divide i, and i = k, a contradiction, and it follows that members of M′ are
congruent modulo (x − β). Moreover P (x) ∈ Z∗[x] is either the zero polynomial
or has a least-significant digit d� �= 0. Then P (x)|x=β = iβl for integers i, �. If
i = 0, then P (x) is congruent to the zero polynomial modulo (x − β). If i = kβn

for n ≥ 1 and β � | k, then P (x)|x=β = kβ�+n and P (x) ≡ k[β]l+n modulo (x − β)
with k[β]�+n ∈ M′. Thus M′ is a complete residue system for Z∗[x] modulo
(x − β). �

The members of M′ provide convenient unique expressions for the real values
a such that the redundancy classes Vβ(a) are non-vacuous.

Problems and exercises

1.2.1 For P ∈ P[β], P �= 0 show that P × [β]−msp(P )� is a radix polynomial
whose value is the most-significant digit of P (here ·� means truncate

3 The symbol � | means “does not divide.”
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1.3 Radix-β numbers 7

the polynomial to its integer part). Derive a similar formula for the least-
significant digit.

1.2.2 For P and Q given as

P = 5 × [β]6 + 3 × [β]4 + 2 × [β]3 − 2 × [β]2,

Q = 4 × [β]3 + 2 × [β]2 − 6 × [β] − 7 × [β]−3

− 3 × [β]−4 + 5 × [β]−7,

find msp(P + Q), msp(P × P ), lsp(P × Q), lsp(P + Q�), and
dlsp(P×Q�)(P × Q�).

1.3 Radix-β numbers
The radix polynomials introduced in the previous section provide a representation
of numbers in which the evaluation mapping Eβ provides a mapping from extended
polynomials into the reals. Since β is fixed for a radix polynomial P ([β]) ∈ P[β]
we will introduce the operator ‖ · ‖ defined on P[β] as

‖P ([β])‖ = P (x)|x=β = P (β) =
m∑

i=�

diβ
i

for the evaluation mapping.
Restricting β and the digits di to integral values for given β with |β| ≥ 2, the

real value v = ∑m
i=l diβ

i determined by the evaluation operation is a rational
number belonging to a subset of rationals characterized by the radix β. The
set

Qβ = {kβ�
∣∣ k, � ∈ Z} (1.3.1)

is called the radix-β numbers, but could equivalenly be termed the radix-β ratio-
nals. Note that either or both of k and � may be negative in (1.3.1). Observing that
Qβ = Q−β , it is evident that the set of values of the radix polynomials of P[β] is
precisely Q|β|. Also Q|β| inherits the algebraic structure of addition and multipli-
cation as defined on reals. Thus polynomial arithmetic in P[β] corresponds to the
arithmetic of the real numbers in Q|β|.

Observation 1.3.1 For any integer radix β with |β| ≥ 2 the evaluation mapping
‖P ‖ for P ∈ P[β] is a homomorphism of P[β] onto Q|β|; (Q|β|,+,×) is a
commutative ring with identity.

Thus reference to Qβ as the radix-β number system denotes the set Qβ along
with the arithmetic structure provided by the commutative ring (Qβ,+,×).
For the most often used radix values it is customary to employ the following
terminology:
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8 Radix polynomial representation

Q2: binary number system;
Q3: ternary number system;
Q8: octal number system;
Q10: decimal number system;
Q16: hexadecimal number system;

but note v ∈ Q|β| just implies that v is a number which can be represented as a
(finite length) radix-β polynomial.

The factors of a particular radix factorization v = kβ� for v ∈ Qβ identify two
components of the representation of v that are typically handled separately in
implementing radix arithmetic. Specifically

• k is the integer significand, and
• β� is the scale factor with exponent �.

For � > 0, v is an integer tuple factorization. For � ≤ 0, the factorization is
equivalent to the fraction k/β−� with numerator k and denominator β |�|.

Observation 1.3.2 The radix-β numbers Qβ form the subset of rationals given
by fractions with denominators restricted to powers of the radix β.

A radix factorization kβ� is termed reducible when β|k, and is a unique irre-
ducible radix factorization when β � | k, yielding a unique minimum magnitude
significand.

Observation 1.3.3 v = kβ� is an irreducible radix factorization if and only if
k mod β �= 0.

Observation 1.3.4 Let Mβ be a complete residue system for Z∗[x] modulo
(x − β). Then the evaluation mapping ‖ · ‖ is an isomorphism between Mβ and
the irreducible radix factorizations.

The relationship between the “scaled significand” radix factorizations {k × β�}
as tuples, and the set of radix-β numbers Qβ is analogous to the relation between
fractions {i/j} as tuples, and the set of rational numbers Q, as summarized in
Table 1.3.1.

Note that Q|β| is not a field as 1/(|β| + 1) /∈ Q|β|, but
⋃

p Qp is a field,
the rationals Q. It is well known that Q2 = Q8 = Q16, and probably also that

Table 1.3.1. Analogies between the radix-β numbers and the rational numbers

Number characterization Tuple terminology Irreducible form Number system

Radix factorizations Significand × scale factor k × β� Radix-β number
β � | k system Qβ

Rational fractions Numerator / denominator i/j Rational number
gcd(i, j ) = 1 system Q
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1.3 Radix-β numbers 9

Q2 ⊂ Q10, but what is the relation between Q12 and Q18? The following theorem
provides a tool for determining such relations.

Theorem 1.3.5 If the integers p ≥ 2 and q ≥ 2 have prime decompositions
p = �p

ni

i and q = �p
mi

i , where {pi} is the set of all primes, then:

(1) If ∀i : ni �= 0 ⇒ mi �= 0 (the prime factors of p are factors of q), then
Qp ⊆ Qq .

(2) If ∀i : ni �= 0 ⇒ mi �= 0 and ∃j : 0 = nj < mj , then Qp ⊂ Qq .
(3) If ∀i : ni �= 0 ⇔ mi �= 0 (p and q contain the same prime factors), then

Qp = Qq .

Proof To show (1) first note that for v = kpj ∈ Qp, then also v ∈ Qq if j ≥ 0,
so assume j < 0. If t divides u, then for v ∈ Qt , v = ktj = k(u/t)−juj = k′uj

with k′ ∈ Z, so v ∈ Qu and hence Qt ⊆ Qu. Specifically with r = ∏
pi divides p pi

we have Qr ⊆ Qp. Now let n = max{ni |pi
ni divides p} and consider

v ∈ Qp, so

v = kpj = k
(∏

pi
ni

)j

= k
(∏

pi
j (ni−n)

) (∏
pi

)jn

= k′rjn,

where the products are over the pi dividing p. Since j < 0, we have j (ni − n) ≥ 0,
so k′ = k(

∏
pi

j (ni−n)) ∈ Z hence v ∈ Qr and Qp = Qr . But r also divides q by
assumption in (1), so Qp = Qr ⊆ Qq , which proves (1).

To prove (2) assume there exists a j such that 0 = nj < mj , then p−1
j ∈ Qq but

p−1
j /∈ Qp. Finally (3) follows from (1) by symmetry. �

Example 1.3.1 From Theorem 1.3.5 it follows that Q12 = Q18 with Q2 ⊂
Q12 and Q3 ⊂ Q12. However, Q2 �⊆ Q3 and Q3 �⊆ Q2 since 1

2 /∈ Q3 and
1
3 /∈ Q2. �

The radix numbers are effectively represented with two types of redundancy,
both of which are important in efficient implementation of radix arithmetic as
operations on digit strings. The choice of exponent, �, in the factorization implicitly
recognizes any number of low-order zero digits, and the choice of radix polynomial
for the irreducible significand brings flexibility to the choice of coefficients (digits)
of the polynomial.

In general, any number v ∈ Q|β| has an infinity of different representations
as a radix-β or radix-(−β) polynomial. The evaluation mapping ‖ · ‖ : P[β] →
Q|β| partitions the members of P[β] into equivalence classes such that all radix
polynomials of a given class have the same real value.

Definition 1.3.6 For any v ∈ Q|β| let the redundancy class Vβ(v) be the set

Vβ(v) = {P ∈ P[β]
∣∣ ‖P ‖ = v}.
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10 Radix polynomial representation

Example 1.3.2 Let

P ([5]) = 2[5]2 + 3[5] + 1 ∈ V5(66),
Q([5]) = 1[5]3 − 2[5]2 − 2[5] + 1 ∈ V5(66),
R([5]) = 3[5]2 − 1[5] − 4 ∈ V5(66),

so P ([5]),Q([5]), and R([5]) are all in the same redundancy class V5(66), and form
alternative radix-5 representations of the value 66 (which here has been written in
ordinary decimal notation).

If the coefficients (the digits) of the polynomials above had to be chosen from
the set {0, 1, 2, 3, 4}, then it is well known that this particular P is the only radix-5
polynomial evaluating to 66. If the digits are drawn from the set {−2,−1, 0, 1, 2},
then we shall see later that Q is similarly a unique representation. However, if the
digit set is {−4,−3,−2,−1, 0, 1, 2, 3, 4}, then R as well as P and Q are possible
representations. �

Problems and exercises

1.3.1 Show that 1/(n + 1) /∈ Qn for n ≥ 2.
1.3.2 List all the members of the redundancy class V2(5) that can be written with

four digits or fewer, using {−1, 0, 1} as the permissible set of digit values
(for convenience write them in string notation).

1.3.3 For p, q distinct primes, show that Qp ∩ Qq = Z.

1.4 Digit symbols and digit strings
When using radix-β polynomials for the representation of numbers from Q|β|:

P ([β]) =
m∑

i=�

di[β]i ,

the representation might also be denoted as a list:

((dm, dm−1, . . . , d�), �)

explicitly including all zero-valued digits di for � < i < m, or alternatively only
non-zero digits could be listed, e.g., (digit,index)-pairs:

((di1, i1), (di2 , i2), . . . , (dik , ik)).

The convention is to denote a radix polynomial as a string of symbols drawn
from some alphabet, implicitly associated with the chosen radix. We will use
the alphabet in Table 1.4.1 in our examples where we only employ “small”
radices.
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