Crop Ecology

Productivity and Management in Agricultural Systems

Second Edition

Food security and environmental conservation are two of the greatest challenges facing the world today. It is predicted that food production must increase by at least 70% before 2050 to support continued population growth, although the size of the world's agricultural area will remain essentially unchanged.

This updated and thoroughly revised second edition provides in-depth coverage of the impact of environmental conditions and management on crops, resource requirements for productivity, and effects on soil resources. The approach is explanatory and integrative, with a firm basis in environmental physics, soils, physiology, and morphology. System concepts are explored in detail throughout the book, giving emphasis to quantitative approaches, management strategies and tactics employed by farmers, and associated environmental issues.

Drawing on key examples and highlighting the role of science, technology, and economic conditions in determining management strategies, this book is suitable for agriculturalists, ecologists, and environmental scientists.

David J. Connor is Emeritus Professor of Agriculture at the University of Melbourne, Australia. His research programs deal with land and environmental relationships of a range of irrigated and rainfed cropping systems. In 2003 he was awarded the Donald Medal for outstanding contributions by the Australian Society of Agronomy.

Robert S. Loomis is Emeritus Professor in the Department of Plant and Environmental Sciences at the University of California, Davis, USA. His research interests include photosynthetic productivity, nutrient and water management, and integrated simulation models. He holds numerous honors from scientific societies and universities worldwide. Most recently, in 2001, he was awarded Douter honoris causa, Universidade Técnica, Lisboa.

Kenneth G. Cassman is Professor of Agronomy at the University of Nebraska, USA. His research focuses on nutrient cycling and crop nutrient requirements, crop yield potential, and water productivity of irrigated crops. In 2006 he received the Agronomic Research Award from the American Society of Agronomy.

Crop Ecology

Productivity and Management in Agricultural Systems

Second Edition

DAVID J. CONNOR

University of Melbourne, Australia

ROBERT S. LOOMIS

University of California, Davis, USA

KENNETH G. CASSMAN

University of Nebraska, Lincoln, USA

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521761277

© D. J. Connor, R. S. Loomis and K. G. Cassman 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Connor, D. J.
Crop ecology : productivity and management in agricultural systems / David J. Connor, Robert S. Loomis, Kenneth G. Cassman. – 2nd ed.
p. cm.
Rev. ed. of: Crop ecology / R.S. Loomis, D.J. Connor. 1992.
Includes bibliographical references and index.
ISBN 978-0-521-76127-7 (hardback) – ISBN 978-0-521-74403-4 (paperback)
1. Agricultural ecology. 2. Agricultural systems. I. Loomis, R. S. II. Cassman, Kenneth G.
III. Loomis, R. S. Crop ecology. IV. Title.
S589.7.L66 2011
630.2'77 – dc22 2010053580

ISBN 978-0-521-76127-7 Hardback ISBN 978-0-521-74403-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

	-		
Part I I	arming syste	ems and their biological components	1
1	Agricultur	al systems	3
	1.1 On t	he nature of agriculture	3
	1.2 Unif	ying themes	8
	1.3 Main	ntenance of agricultural systems	20
	1.4 Revi	ew of key concepts	21
2	Trophic ch	ains	23
	2.1 Plan	t production	23
	2.2 Trop	hic systems in agriculture	27
	2.3 Anir	nal and human nutrition	30
	2.4 Carr	ying capacity	39
	2.5 Revi	ew of key concepts	42
3	Communit	y concepts	44
	3.1 Com	munity change	44
	3.2 Bior	nass accumulation	45
	3.3 Resp	ponses to crowding in monocultures	53
		petition in polycultures	58
		munity response to limiting factors	66
	3.6 Revi	ew of key concepts	69
4	Genetic resources		71
	4.1 Gen	etic diversity in agriculture	71
		nge in genetic structure	74
		ivar development	81
	4.4 Gen	etic advance and maintenance of diversity	88
	4.5 Revi	ew of key concepts	94

page xi

ambridge University Press
78-0-521-76127-7 - Crop Ecology: Productivity and Management in Agricultural Systems, Second Edition
David J. Connor, Robert S. Loomis and Kenneth G. Cassman
'rontmatter
<u>Iore information</u>

vi	Conte	ents	
5	Development		96
5	Deve	nopment	90
	5.1	Developmental time	96
	5.2	Developmental switches	100
	5.3	Quantifying phenological response	106
	5.4	Seed germination and dormancy	112
	5.5	Crop improvement	118
	5.6	Review of key concepts	121
Part II	Physical	l and chemical environments	123
6	Aerial environment		125
	6.1	Radiation concepts	125
	6.2	The SW source	128
	6.3	Sun–Earth geometry	129
	6.4	SW penetration of the atmosphere	131
	6.5	Radiation balance	134
	6.6	Energy balance	137
	6.7	Turbulent transport	142
	6.8	Advection	146
	6.9	Microclimate	148
	6.10	Climate and weather	150
	6.11	Key concepts	156
7	Soil resources		159
	7.1	Soil chemistry	159
	7.2	Soil formation	162
	7.3	Soil types and uses	171
	7.4	Soil properties	173
	7.5	Water and air components	181
	7.6	Soil temperature relations	187
	7.7	Review of key concepts	190
Part III	Product	tion processes	193
8	Nitro	ogen processes	195
	8.1	The nitrogen cycle	195
	8.2	Decay and immobilization	200
	8.3	Mineralization and nitrification	202
	8.4	Loss of nitrogen	203
	8.5	Assimilation of mineral nitrogen by plants	207
	8.6	Nitrogen fixation	208
	8.7	Example nitrogen cycles	214

Frontmatter More information

			Contents	vi
	8.8	Farming with organic sources of nitrogen		219
		Review of key concepts		226
9	Water	relations		229
	9.1	Flow of water through a crop		229
	9.2	Evapotranspiration		232
	9.3	Collection of water by root systems		237
		A model of crop water balance		24
		Responses of crops to water shortage		243
		Adaptation to drought		244
		Water-use efficiency		257
		Review of key concepts		260
10	Photosynthesis			262
	10.1	Photosynthetic systems		262
		Leaf photosynthesis		26
		Canopy photosynthesis		27
		Modeling canopy photosynthesis		28
		Canopy structure for productivity and competitiveness		28
		Review of key concepts		289
11	Respi	ration and partitioning		292
	11.1	Carbon use in respiration and synthesis		292
		Growth respiration and growth yield		290
		Seasonal patterns of crop respiration		300
		Morphological aspects of partitioning		302
		Ideotype concepts		314
		Review of key concepts		31
Part IV	Resource	e management		32
12	Soil m	nanagement		323
	12.1	Spatial variability		32
		Plant nutrition		32:
		Management of soil fertility		33
		Fertilizer practices		334
		Tillage systems		34
		Drainage		34
		Erosion		34
	1 / /			
		Land value and capability		35-

viii	Conten	ts	
13	Strategies and tactics for rainfed agriculture		358
15			
	13.1	Agriculture in wet regions	358
	13.2	Principles for efficient use of water	360
	13.3	Patterns of water shortage and crop types	360
	13.4 13.5	Optimum patterns of water use	361 365
	13.5	Cultivars and sowing time Crop rotations and fertilizer	363
	13.0	Density and planting arrangement	369
	13.7	Fallow	30)
	13.0	Simulation models and analyses of cropping strategies	374
	13.10	Review of key concepts	382
14	Water management in irrigated agriculture		384
	14.1	Irrigation and world food supply	384
	14.2	Water and salt – an inescapable combination	385
	14.3	Salinity and alkalinity	386
	14.4	Efficiencies of water use in irrigation	391
	14.5	Water use and productivity	391
	14.6	Irrigation methods	393
	14.7	Irrigation scheduling	401
	14.8	Management of water supply and drainage	404
	14.9	Selection of areas for irrigation schemes	408
	14.10	Review of key concepts	409
15	Energy and labor		411
	15.1	Sources and utilization of energy	411
	15.2	Energy in food production	413
	15.3	Improving efficiency of energy use	419
	15.4	Low-input farming	423
	15.5	Crops for energy	425
	15.6	Review of key concepts	433
Part V	Farming p	ast, present, and future	437
16	Evoluti	ion of wheat production systems in southern Australia	439
	16.1	The wheat belt of Northwest Victoria	439
	16.2	Evolving systems	441
	16.3	Initial development (1840 to 1900)	442
	16.4	An early recovery (1900 to 1950)	443
	16.5	Ley-farming (1950 to 1985)	444
	16.6	Intensification and diversification (1985 to present)	446
	16.7	Searching for new designs	451

Cambridge University Press

978-0-521-76127-7 - Crop Ecology: Productivity and Management in Agricultural Systems, Second Edition David J. Connor, Robert S. Loomis and Kenneth G. Cassman Frontmatter

More information

		Contents	i
	16.8	Role of society	455
	16.9	Review of key concepts	456
17	Technological change in high-yield crop agriculture		
	17.1	Common features of high-yield systems	458
	17.2	Maize-soybean cropping systems in the North American Corn Belt	459
	17.3	Intensive rice cropping systems of Asia	470
	17.4	Soybean-based cropping systems in Northern Mato Grosso, Brazil	476
	17.5	The future of high-yield crop agriculture	481
	17.6	Review of key concepts	482
18	The future of agriculture		484
	18.1	Population and need for food	484
	18.2	Food production since 1940	490
	18.3	Immediate challenges	493
	18.4	The importance of a technological agriculture	497
	18.5	Improving technology	501
	18.6	Review of key concepts	508
	Species list		511
	-	ersions and constants useful in crop ecology	514
	Refere	ences	516
	Index		546

Preface

Humans make extensive use of land, water, energy, labor, and other resources in the production of crops and pastures. We do this because it is essential to our survival and well-being. As world population grows, so does demand for continuing success in agriculture. And as more land is used in agriculture, concerns for loss of natural ecosystems and biodiversity increase as well. The conflict between production and conservation can only be resolved with cropping systems that are highly productive, efficient, and sustainable.

Agricultural management involves plant communities and areas of land. It requires knowledge of individual plant behavior under crowded conditions and interactions of plant communities with aerial and soil environments. These organismal and higher levels of biological organization are the subjects of ecology at different spatial scales, but explanation of these behaviors depends upon integration of relevant knowledge spanning lower levels from molecules and cells to organs. Ecology can thus be characterized as an integration of other disciplines. In turn, however, it provides specialist disciplines with context and relevance and, further, explains that in isolation they rarely affect system outcome. Crop ecology has additional dimensions in agricultural technology that interface with engineering, information and social sciences, and perspectives provided through history.

The tools of crop ecology (strong basic physics, chemistry, and mathematics) are not different from those of other biological disciplines. Mathematical models are especially useful in integration and are generally appropriate to crop ecology. In essence, ecological thinking derives from an eagerness to understand the whole and a willingness to maintain a broad appreciation of component disciplines.

We designed this book as a text and reference for advanced undergraduate and postgraduate students and for practicing educators and industry professionals. It derives from our experience in teaching over many years and our frustration with the great breadth and diffuse nature of appropriate readings. We especially want to encourage young scientists to use information in orderly ways to expand our understanding of crop ecology, and to develop new ways in which it can be applied to the changing problems of plant production. We do not, however, see the book limited to agriculturalists. It can also provide ecological context for courses in environmental sciences that would benefit from an agricultural perspective.

Our approach is explanatory and integrative. Although we review many topics, and introduce some new topics slowly, the text generally builds quickly on basic plant

xii Preface

biology, soil science, environmental physics, and chemistry. Integration is apparent in system themes introduced at the outset and brought to a focus in several case studies (Chapters 16 and 17) that can serve as models for analysis of evolution and management in other farming systems. The final chapter seeks a vision and analysis of the challenges facing agriculture to 2050.

We wish to record our appreciation to colleagues and friends who have provided data, figures, or helped in discussion and by critical evaluation of various chapters.

Australia: John Angus and Tony Fischer – CSIRO, Canberra. Rob Norton – The University of Melbourne. Garry O' Leary, Victorian Institute for Dryland Agriculture. Des Whitfield, Mark O'Connell, and Ian Goodwin – Institute for Sustainable Irrigated Agriculture, Tatura. Mark Johns – farmer, Horsham. Victor Sadras – Research and Development Institute, South Australia.

Spain: María Inés-Mínguez, Tudela María Gómez del Campo, Miguel Quemada, Carlos Gregorio Hernández and Margarita Ruiz-Ramos – Universidad Politécnica de Madrid. Santiago Bonachela – Universidad de Almeria. Luciano Mateos – Instituto de Agricultura Sostenible (CSIC), Córdoba.

The Philippines: Achim Dobermann, Shaobing Peng, Grace Centeno, and K. L. Heong – International Rice Research Institute.

The USA: Patricio Grassini, Maribeth Milner, Justin van Wart, Dan Walters, Viacheslav (Slava) Adamuchuk, Don Lee, Dennis McCallister, Tom Hoegemeyer, and Richard Ferguson – University of Nebraska. R. Ford Denison – University of Minnesota. Jerry Hatfield and Daniel Olk – USDA National Laboratory for Agriculture and the Environment. Michele Wander – University of Illinois, and Haishun Yang – Monsanto Company.

Acknowledgments to sources of all figures and tables are given in their legends. Chapter 16 is an extended version of a paper (Connor 2004) included with permission of the publisher.

Finally, we thank the Universities of Melbourne, California, and Nebraska and our wives, Inés, Ann, and Susie, for their support and patience during this project.