FIELD THEORY OF NON-EQUILIBRIUM SYSTEMS

The physics of non-equilibrium many-body systems is one of the most rapidly expanding areas of theoretical physics. Traditionally used in the study of laser physics and superconducting kinetics, these techniques have more recently found applications in the study of dynamics of cold atomic gases, mesoscopic and nano-mechanical systems.

The book gives a self-contained presentation of the modern functional approach to non-equilibrium field-theoretical methods. They are applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. Its step-by-step treatment gives particular emphasis to the pedagogical aspects, making it ideal as a reference for advanced graduate students and researchers in condensed matter physics.

ALEX KAMENEV is a Professor of Theoretical Condensed Matter Physics at the William I. Fine Theoretical Physics Institute (FTPI) and in the Department of Physics, University of Minnesota. Since gaining his Ph.D. at the Weizmann Institute of Science in 1996, he has held a postdoctoral position at the University of California at Santa Barbara and an Assistant Professorship at the Israel Institute of Technology (Technion). His main areas of research include mesoscopic physics, low-dimensional and correlated fermionic and bosonic models as well as stochastic systems and population dynamics. Cambridge University Press 978-0-521-76082-9 - Field Theory of Non-equilibrium Systems Alex Kamenev Frontmatter <u>More information</u>

FIELD THEORY OF NON-EQUILIBRIUM SYSTEMS

ALEX KAMENEV

 $\ensuremath{\mathbb{C}}$ in this web service Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521760829

© A. Kamenev 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Kamenev, Alex, 1964– Field theory of non-equilibrium systems / Alex Kamenev. p. cm. Includes bibliographical references and index. ISBN 978-0-521-76082-9 1. Quantum field theory. 2. Condensef matter. I. Title. QC174.45.K36 2011 530.14'3-dc23 2011023917

ISBN 978-0-521-76082-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-76082-9 - Field Theory of Non-equilibrium Systems Alex Kamenev Frontmatter More information

To Inna, Iris, Alisa and Mark

Contents

	Pref	ace	<i>page</i> xi
1	Introduction		1
	1.1	Closed time contour	1
	1.2	The outline of this book	6
2	Bosons		10
	2.1	Bosonic coherent states	10
	2.2	Partition function	12
	2.3	Bosonic Gaussian integrals	14
	2.4	Normalization and continuum notation	15
	2.5	Green functions	17
	2.6	Keldysh rotation	19
	2.7	Keldysh action and its structure	22
	2.8	External sources	24
3	Single-particle quantum mechanics		29
	3.1	Harmonic oscillator	29
	3.2	Quantum particle in contact with an environment	32
	3.3	From Matsubara to Keldysh	34
	3.4	Quantum tunneling in a time-dependent potential	36
	3.5	Dissipative quantum tunneling	39
4	Classical stochastic systems		44
	4.1	Classical dissipative action	44
	4.2	Langevin equation	45
	4.3	Multiplicative noise and Martin-Siggia-Rose method	46
	4.4	Optimal path approximation	49
	4.5	Fokker–Planck equation	53
	4.6	Ito vs. Stratonovich	57
	4.7	Noise with a finite correlation time	59

vii

viii		Contents	
	4.8	Kramers problem	60
	4.9	Fluctuation relation	62
	4.10	Reaction models	65
	4.11	Time-dependent problems	69
	4.12	Large deviations in multivariable systems	72
5	Boso	nic fields	76
	5.1	Complex bosonic fields	76
	5.2	Interactions	78
	5.3	Dyson equation	80
	5.4	Real bosonic fields	83
	5.5	Self-energy	86
	5.6	Wigner transformation	87
	5.7	Kinetic term	89
	5.8	Collision integral	92
6	Dyna	mics of collisionless plasma	97
	6.1	Plasma action	97
	6.2	Plasmons and Landau damping	101
	6.3	Acoustic modes in plasma	102
	6.4	Random phase approximation	104
	6.5	Beyond linearized dynamics	108
	6.6	Non-linear Landau damping	112
7	Kine	tics of Bose condensates	115
	7.1	Gross-Pitaevskii equation	115
	7.2	Quasiparticles	118
	7.3	Collisionless relaxation of the condensate fluctuations	123
	7.4	Condensate growth and collapse	126
	7.5	Fluctuations	131
	7.6	Semiclassical dynamics of the condensate	135
	7.7	Quasiparticle collision integral	137
	7.8	Dynamics of a quantum impurity in a superfluid	141
8	Dyna	unics of phase transitions	147
	8.1	Dissipative chains and membranes	147
	8.2	Equilibrium statistical mechanics	149
	8.3	Critical nucleation in first order transitions	151
	8.4	Critical dynamics near a classical second order transition	154
	8.5	Hohenberg-Halperin classification	160
	8.6	Quantum phase transitions	163
	8.7	Absorbing state transitions in reaction-diffusion	
		models	166
	8.8	Dynamics of growing surfaces	176

		Contents	ix
9	Fermions		183
	9.1	Grassmann variables, fermionic coherent states and Gaussian	
		integrals	183
	9.2	Partition function	186
	9.3	Green functions and Keldysh rotation	188
	9.4	Free fermionic fields and their action	190
	9.5	External fields and sources	191
	9.6	Free degenerate Fermi gas	196
	9.7	Interactions	197
	9.8	Kinetic equation	201
	9.9	Stoner instability	205
10	Quan	Quantum transport	
	10.1	Landauer formula	210
	10.2	Shot noise	213
	10.3	Counting statistics	215
	10.4	Fluctuation relation	221
	10.5	Adiabatic pumping	222
	10.6	Spin torque	225
11	Disordered fermionic systems		234
	11.1	Kinetic equation approach	234
	11.2	Averaging over the quenched disorder	237
	11.3	Non-linear sigma-model	241
	11.4	Stationary point and fluctuations	245
	11.5	Sources and external fields	248
	11.6	Kubo formula and linear response	250
	11.7	Cooper channel	252
	11.8	Weak localization and scaling	255
12	Mesoscopic effects		260
	12.1	Spectral statistics	260
	12.2	Wigner–Dyson statistics	264
	12.3	Universal conductance fluctuations	267
	12.4	Full counting statistics in a disordered wire	270
	12.5	Tunneling action	274
	12.6	Chaotic cavity	277
13	Electron-electron interactions in disordered metals		280
	13.1	K-gauge	280
	13.2	Non-linear sigma-model for interacting systems	284
	13.3	Zero bias anomaly	286
	13.4	Altshuler–Aronov effect	290
	13.5	Kinetic equation	293

Х	Contents	
14	Dynamics of disordered superconductors	298
	14.1 Cooper channel interactions	298
	14.2 Usadel equation	301
	14.3 Stationary superconductivity	305
	14.4 SNS system	308
	14.5 Collective modes of disordered superconductors	312
	14.6 Time-dependent Ginzburg–Landau theory	319
	14.7 Fluctuating superconductivity	328
	References	331
	Index	339

Preface

The quantum field theory (QFT) is a universal common language of the condensed matter community. As any live language it keeps evolving and changing. The change comes as a response to new problems and developments, trends from other branches of physics and from internal pressure to optimize its own vocabulary to make it more flexible and powerful. There are a number of excellent books which document this evolution and give snapshots of "modern" QFT in condensed matter theory for almost half a century. In the beginning QFT was developed in the second quantization operator language. It brought such monumental books as Kadanoff and Baym [1], Abrikosov, Gor'kov and Dzyaloshinski (AGD) [2], Fetter and Walecka [3] and Mahan [4]. The advent of renormalization group and Grassmann integrals stimulated development of functional methods of QFT. They were reflected in the next generation of books such as Itzykson and Zuber [5], Negele and Orland [6] and Fradkin [7]. The latest generation, e.g. Tsvelik [8], Altland and Simons [9], and Nagaosa [10], is not only fully based on functional methods, but also deeply incorporates ideas of symmetry based on universality, geometry and topology. (I do not mention here some excellent specialized texts devoted to applications of QFT in superconductivity, magnetism, phase transitions, mesoscopics, one-dimensional physics, etc.)

Following AGD authority almost all these books (with the notable exception of Kadanoff and Baym) employ the imaginary time Matsubara formalism [11] of finite temperature equilibrium QFT. The irony is that a much more powerful non-equilibrium QFT pioneered by Schwinger [12], Konstantinov and Perel' [13], Kadanoff and Baym [1] and Keldysh [14] was developed almost at the same time as the Matsubara technique. Being widely scattered across the periodic scientific literature, it has barely broken into the mainstream pedagogical texts. The very few books I am aware of are Kadanoff and Baym [1], Lifshitz and Pitaevskii [15], Smith and Jensen [16], Haug and Jauho [17] and Rammer [18] (there are also a number of useful reviews [19, 20, 21, 22, 23]). The reasons for such a disparity

xi

CAMBRIDGE

Cambridge University Press 978-0-521-76082-9 - Field Theory of Non-equilibrium Systems Alex Kamenev Frontmatter More information

xii

Preface

are hard to explain. In my personal opinion they are two-fold. (i) There may be a perception that all subtle and interesting effects take place only in equilibrium; non-equilibrium systems are too "violent" to be treated by QFT. Instead, the kinetic equation approach is the best one can hope for; the latter may be obtained with the Golden Rule and thus does not need QFT. (ii) The formalism is too involved, too complicated and too non-intuitive to be a part of the "common" knowledge.

As far as the first reason is concerned, it was realized decades ago that even the "simple" kinetic equation may not be actually so simple. Time and again it was shown that the kinetic equation for superfluids, superconductors, fermion-boson mixtures, disordered normal metals, etc. can't be deduced from the Golden Rule and has to be derived using the non-equilibrium QFT methods. Yet, most of the traditional experimental systems, such as liquid helium, bulk magnets, superconductors or disordered normal metals can hardly be driven substantially away from equilibrium. This created a comforting impression that studying the equilibrium plus linear response properties is largely sufficient to describe experiment. The last two decades have changed this perception dramatically. First, mesoscopic normal metals and superconductors have demonstrated that non-equilibrium conditions may be achieved in controlled and reproducible ways and a number of unusual specifically non-equilibrium phenomena do emerge. Then came cold atomic gases in magnetic and optical traps. These systems are rarely truly at equilibrium, yet they exhibit a rich phenomenology, which calls for a theoretical description. Lately the flourishing fields of nano-mechanics and nano-magnetics emerged, which deal with stochastic mechanical and magnetic systems driven far away from equilibrium. All these developments call for the systematic non-equilibrium theory to be a part of the "standard package" of a theoretical physicist.

As for the technical complexity and lack of the "esthetic" appeal, there is some truth to it, especially when the story is told in the old operator formalism (this is exactly how most currently existing books approach the subject). I can see how one can be overwhelmed by a number of different Green functions, rules to follow and by the length of calculations. Fortunately, the structure of the theory becomes much more transparent when it is presented in the functional formalism. Instead of keeping track of matrix Green functions and tensor vertices, one has to follow the scalar action, which is a functional of just two fields. Yes, one still has to double the number of degrees of freedom. However, being taken in appropriate linear combinations (Keldysh rotation), they acquire a transparent physical meaning. Then the causality principle emerges as a simple and natural way to navigate through the calculations. The main goal of this book is to present a thorough and self-contained exposition of the non-equilibrium QFT *entirely in the functional formalism*.

I tried to pay special attention to specific peculiarities of non-equilibrium (i.e. closed time contour) QFT, which do not show up in the imaginary time or T = 0

CAMBRIDGE

Preface

formalism. The presentation starts from the simplest possible systems and develops all minute technical details, exposes pitfalls and explains the internal structure for such "trivial" situations. Then the systems are gradually taken to be more and more complex. I still tried my best to emphasize peculiarities of non-equilibrium calculations in comparison with the probably more familiar equilibrium ones. Although the book is meant to be entirely self-contained, some common subjects between equilibrium and non-equilibrium techniques (e.g. diagrammatic expansion, the Dyson equation, the renormalization group) are introduced in a rather compact way. In such cases I mostly focused on differences between the two approaches, possibly at the expense of the common themes. Therefore some prior familiarity with the imaginary time QFT is probably beneficial (although not compulsory) for a reader.

What are the benefits of learning non-equilibrium QFT? (i) It naturally provides a way to go beyond the linear response and derive consistent kinetic theory (e.g. quasiparticle kinetics coupled to the dynamics of the order parameter). As was mentioned above, there is a rapidly growing list of fields where such an approach is unavoidable. (ii) Even for linear response problems it allows one to circumvent the analytical continuation procedure to real time, which may be quite cumbersome. (iii) In its functional form it provides a natural and seamless connection to the huge field of classical stochastic systems, their universality classes and phase transitions. In fact, roughly a third of this book is devoted to such classical problems. For this reason the word "quantum" does not appear in the title. Yet from the point of view of the formalism, non-equilibrium QFT and the theory of classical stochastic systems are virtually undistinguishable. (iv) Some subjects of great current interest (e.g. full counting statistics, or fluctuation relations) can not even be approached without the formalism presented here. (v) Non-equilibrium QFT (again in its functional form) appears to be extremely effective in dealing with systems with quenched disorder. Even if purely equilibrium, or linear response properties are in question, the closed time contour QFT is much more natural and efficient than the imaginary time one. All these items are the subjects of the present book. I hope you'll find it useful.

The book is directed to advanced graduate students, post-docs and faculty who want to enrich their understanding of non-equilibrium physics. It may be used as a guide for an upper division graduate class on QFT methods in condensed matter physics. Having in mind such a mature and busy audience, I opted to omit exercises. On the other hand, there are plenty of calculations within the book which require "filling in the blanks" and may be suggested as exercises for graduate students. There is practically no discussion of relevant experimental results in the book. This is done intentionally, since the scope is rather broad and inclusion of

xiii

xiv

Preface

experiments could easily increase the volume by a factor. Finally, the bibliography list is not meant to be exhaustive or complete. In most cases the references are given to the original works, where the presented results were obtained, and to their immediate extensions and the review articles. I sincerely apologize to many authors whose works I was not able to cover.

Finally, this is an opportunity to express my deep appreciation to all of my coauthors and colleagues, from whom I learned a great deal about the subjects of this book. During the work on the book I was partially supported by the National Science Foundation grant DMR-0804266. Last but not least, I am indebted to my family, whose love and support made this book possible.