SHIP RESISTANCE AND PROPULSION

Ship Resistance and Propulsion is dedicated to providing a comprehensive and modern scientific approach to evaluating ship resistance and propulsion. The study of propulsive power enables the size and mass of the propulsion engines to be established and estimates made of the fuel consumption and likely operating costs. This book, written by experts in the field, includes the latest developments from applied research, including those in experimental and CFD techniques, and provides guidance for the practical estimation of ship propulsive power for a range of ship types. This text includes sufficient published standard series data for hull resistance and propeller performance to enable practitioners to make ship power predictions based on material and data contained within the book. A large number of fully worked examples are included to illustrate applications of the data and powering methodologies; these include cargo and container ships, tankers and bulk carriers, ferries, warships, patrol craft, work boats, planing craft and yachts. The book is aimed at a broad readership including practising naval architects and marine engineers, sea-going officers, small craft designers and undergraduate and postgraduate degree students. It should also appeal to others involved in transportation, transport efficiency and eco-logistics, who need to carry out reliable estimates of ship power requirements.

Anthony F. Molland is Emeritus Professor of Ship Design at the University of Southampton in the United Kingdom. For many years, Professor Molland has extensively researched and published papers on ship design and ship hydrodynamics including propellers and ship resistance components, ship rudders and control surfaces. He also acts as a consultant to industry in these subject areas and has gained international recognition through presentations at conferences and membership on committees of the International Towing Tank Conference (ITTC). Professor Molland is the co-author of *Marine Rudders and Control Surfaces* (2007) and editor of *The Maritime Engineering Reference Book* (2008).

Stephen R. Turnock is Professor of Maritime Fluid Dynamics at the University of Southampton in the United Kingdom. Professor Turnock lectures on many subjects, including ship resistance and propulsion, powercraft performance, marine renewable energy and applications of CFD. His research encompasses both experimental and theoretical work on energy efficiency of shipping, performance sport, underwater systems and renewable energy devices, together with the application of CFD for the design of propulsion systems and control surfaces. He acts as a consultant to industry in these subject areas, and as a member of the committees of the International Towing Tank Conference (ITTC) and International Ship and Offshore Structures Congress (ISSC). Professor Turnock is the co-author of *Marine Rudders and Control Surfaces* (2007).

Dominic A. Hudson is Senior Lecturer in Ship Science at the University of Southampton in the United Kingdom. Dr. Hudson lectures on ship resistance and propulsion, powercraft performance and design, recreational and high-speed craft and ship design. His research interests are in all areas of ship hydrodynamics, including experimental and theoretical work on ship resistance components, seakeeping and manoeuvring, together with ship design for minimum energy consumption. He is a member of the 26th International Towing Tank Conference (ITTC) specialist committee on high-speed craft and was a member of the 17th International Ship and Offshore Structures Congress (ISSC) committee on sailing yacht design.

Ship Resistance and Propulsion

PRACTICAL ESTIMATION OF SHIP PROPULSIVE POWER

Anthony F. Molland

University of Southampton

Stephen R. Turnock University of Southampton

Dominic A. Hudson University of Southampton

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521760522

© Anthony F. Molland, Stephen R. Turnock, and Dominic A. Hudson 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Molland, Anthony F.
Ship resistance and propulsion : practical estimation of ship propulsive power / Anthony F. Molland, Stephen R. Turnock, Dominic A. Hudson.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-76052-2 (hardback)
1. Ship resistance. 2. Ship resistance – Mathematical models.
3. Ship propulsion. 4. Ship propulsion – Mathematical models.
I. Turnock, Stephen R. II. Hudson, Dominic A. III. Title.
VM751.M65 2011
623.8'12-dc22 2011002620

ISBN 978-0-521-76052-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Pre	face			page xv
Nor	nenc	lature		xvii
Abl	brevi	ations		xxi
Figi	ure A	cknov	vledgements	XXV
1	Inti	oduct	ion	1
	His	tory		1
	Pov	vering	Overall Concept	3
			nents in Efficiency	3
	REF	ERENG	CES (CHAPTER I)	5
2	Pro	pulsiv	e Power	7
	2.1	Com	ponents of Propulsive Power	7
	2.2	Prop	ulsion Systems	7
	2.3	Defin	litions	9
	2.4	Com	ponents of the Ship Power Estimate	10
3	Сог	npone	ents of Hull Resistance	12
	3.1	Physi	cal Components of Main Hull Resistance	12
		3.1.1	Physical Components	12
		3.1.2	Momentum Analysis of Flow Around Hull	17
		3.1.3	Systems of Coefficients Used in Ship Powering	21
		3.1.4	Measurement of Model Total Resistance	23
		3.1.5	Transverse Wave Interference	29
		3.1.6	Dimensional Analysis and Scaling	33
	3.2	Othe	r Drag Components	36
		3.2.1	Appendage Drag	36
		3.2.2	Air Resistance of Hull and Superstructure	45
			Roughness and Fouling	51
			Wind and Waves	57
			Service Power Margins	63
	REF	ERENG	ces (chapter 3)	64

v

vi

4	Model-Ship Extrapolation	69	
	4.1 Practical Scaling Methods	69	
	4.1.1 Traditional Approach: Froude	69	
	4.1.2 Form Factor Approach: Hughes	70	
	4.2 Geosim Series	71	
	4.3 Flat Plate Friction Formulae	72	
	4.3.1 Froude Experiments	72	
	4.3.2 Schoenherr Formula	76	
	4.3.3 The ITTC Formula	78	
	4.3.4 Other Proposals for Friction Lines	79	
	4.4 Derivation of Form Factor $(1 + k)$	79	
	4.4.1 Model Experiments	80	
	4.4.2 CFD Methods	81	
	4.4.3 Empirical Methods	81	
	4.4.4 Effects of Shallow Water	82	
	references (chapter 4)	83	
5	Model-Ship Correlation		
	5.1 Purpose	85	
	5.2 Procedures	85	
	5.2.1 Original Procedure	85	
	5.2.2 ITTC1978 Performance Prediction Method	87	
	5.2.3 Summary5.3 Ship Speed Trials and Analysis	90 90	
	5.3.1 Purpose	90 90	
	5.3.2 Trials Conditions	90	
	5.3.3 Ship Condition	91	
	5.3.4 Trials Procedures and Measurements	91	
	5.3.5 Corrections	92	
	5.3.6 Analysis of Correlation Factors and Wake Fra		
	REFERENCES (CHAPTER 5)	96	
5	Restricted Water Depth and Breadth		
	6.1 Shallow Water Effects	97	
	6.1.1 Deep Water	97	
	6.1.2 Shallow Water	97	
	6.2 Bank Effects	100	
	6.3 Blockage Speed Corrections	100	
	6.4 Squat	103	
	6.5 Wave Wash	103	
	references (chapter 6)	105	
7	Measurement of Resistance Components	108	
	.1 Background		
	2 Need for Physical Measurements 1		
	7.3 Physical Measurements of Resistance Components	110	
	7.3.1 Skin Friction Resistance	110	

		7.3.2 Pressure Resistance	115
		7.3.3 Viscous Resistance	118
		7.3.4 Wave Resistance	123
	7.4	Flow Field Measurement Techniques	136
		7.4.1 Hot-Wire Anemometry	136
		7.4.2 Five-Hole Pitôt Probe	136
		7.4.3 Photogrammetry	137
		7.4.4 Laser-Based Techniques	138
		7.4.5 Summary	140
	DEE	FERENCES (CHAPTER 7)	141
	KEF	erences (charler /)	141
8	Wa	ke and Thrust Deduction	144
	8.1	Introduction	144
		8.1.1 Wake Fraction	144
		8.1.2 Thrust Deduction	145
		8.1.3 Relative Rotative Efficiency η_R	145
	8.2	Origins of Wake	145
		8.2.1 Potential Wake: w_P	146
		8.2.2 Frictional Wake: w_F	146
		8.2.3 Wave Wake: w_W	146
		8.2.4 Summary	146
	83	Nominal and Effective Wake	146
		Wake Distribution	147
	0.7	8.4.1 General Distribution	147
		8.4.2 Circumferential Distribution of Wake	148
		8.4.3 Radial Distribution of Wake	140
			149
	05	8.4.4 Analysis of Detailed Wake Measurements	
	8.5	Detailed Physical Measurements of Wake	150
		8.5.1 Circumferential Average Wake	150
		8.5.2 Detailed Measurements	151
		Computational Fluid Dynamics Predictions of Wake	151
	8.7	Model Self-propulsion Experiments	151
		8.7.1 Introduction	151
		8.7.2 Resistance Tests	152
		8.7.3 Propeller Open Water Tests	152
		8.7.4 Model Self-propulsion Tests	152
		8.7.5 Trials Analysis	155
		8.7.6 Wake Scale Effects	155
	8.8	Empirical Data for Wake Fraction and Thrust Deduction Factor	156
		8.8.1 Introduction	156
		8.8.2 Single Screw	156
		8.8.3 Twin Screw	159
		8.8.4 Effects of Speed and Ballast Condition	161
	8.9	Tangential Wake	162
	0.7	8.9.1 Origins of Tangential Wake	162
		8.9.2 Effects of Tangential Wake	162
	DEE	FERENCES (CHAPTER 8)	164
	ΛEΓ	EREIVES (CHAFTER O)	104

viii

Cambridge University Press 978-0-521-76052-2 - Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power Anthony F. Molland, Stephen R. Turnock and Dominic A. Hudson Frontmatter More information

			Conter
9 Ni	ımerical	Estimation of Ship Resistance	1
	Introd	-	1
		ical Development	1
		ble Techniques	1
9.2	9.3.1	*	1
	9.3.2		1
	9.3.2	equations (RANS)	1
	9.3.3	Potential Flow	1
	9.3.4		1
94		retation of Numerical Methods	1
2.	-	Introduction	1
	9.4.2		1
	9.4.3		1
9.5		hip Theory	1
		Background	1
	9.5.2	6	1
	9.5.3		1
	9.5.4	Example Results	1
9.6		ation of Ship Self-propulsion Using RANS	1
	9.6.1	Background	1
	9.6.2	Mesh Generation	1
	9.6.3	Boundary Conditions	1
	9.6.4	Methodology	1
	9.6.5	Results	1
9.7	Summ	ary	1
RE	FERENCI	es (Chapter 9)	1
10 R e	esistance	Design Data	1
10	.1 Introc	luction	1
10	.2 Data	Sources	1
	10.2.1	Standard Series Data	1
	10.2.2	Other Resistance Data	1
	10.2.3	Regression Analysis of Resistance Data	1
	10.2.4	Numerical Methods	1
10	.3 Select	ed Design Data	1
	10.3.1	Displacement Ships	1
	10.3.2	Semi-displacement Craft	2
	10.3.3	Planing Craft	2
	10.3.4	Small Craft	2
	10.3.5	Multihulls	2
	10.3.6	Yachts	2
10	.4 Wette	ed Surface Area	2
	10.4.1	Background	2
	10.4.2	Displacement Ships	2
	10.4.3	Semi-displacement Ships, Round-Bilge Forms	2
	10.4.4	Semi-displacement Ships, Double-Chine Forms	2

	10.4.5	Planing Hulls, Single Chine	239
		Yacht Forms	239
	REFERENCI	es (chapter 10)	240
11	Propulsor	Гурев	. 246
	11.1 Basic	Requirements: Thrust and Momentum Changes	246
		of Efficiency	246
		ary of Propulsor Types	247
	11.3.1	Marine Propeller	247
	11.3.2	Controllable Pitch Propeller (CP propeller)	248
		Ducted Propellers	248
		Contra-Rotating Propellers	249
		Tandem Propellers	250
		Z-Drive Units	250
		Podded Azimuthing Propellers	251
		Waterjet Propulsion	252
		Cycloidal Propeller	252
		Paddle Wheels	253
	11.3.11		253
	11.3.12		254
		Lateral Thrust Units	254 255
		Other Propulsors Propulsion-Enhancing Devices	255 256
		Auxiliary Propulsion Devices	250 257
		ES (CHAPTER II)	257
	KEFEKENCI	ES (CHAFTER II)	230
12	Propeller (Characteristics	. 261
	-	ller Geometry, Coefficients, Characteristics	261
		Propeller Geometry	261
		Dimensional Analysis and Propeller Coefficients	266
		Presentation of Propeller Data	266
		Measurement of Propeller Characteristics	267
	12.2 Cavita		270
		Background	270
		Cavitation Criterion	272
		Subcavitating Pressure Distributions	273
	12.2.4		275
	12.2.5		275
		Effects of Cavitation on Thrust and Torque Cavitation Tunnels	277 278
		Avoidance of Cavitation	278 281
		Preliminary Blade Area – Cavitation Check	281 282
		Example: Estimate of Blade Area	282 284
		ller Blade Strength Estimates	284 284
	-	Background	284
		Preliminary Estimates of Blade Root Thickness	285
		Methods of Estimating Propeller Stresses	285

x	Contents
12.3.4 Propeller Strength Calculations Using Simple Beam	
Theory	286
REFERENCES (CHAPTER 12)	293
13 Powering Process	
13.1 Selection of Marine Propulsion Machinery	296
13.1.1 Selection of Machinery: Main Factors to Consider	296
13.1.2 Propulsion Plants Available	296
13.1.3 Propulsion Layouts	299
13.2 Propeller–Engine Matching	299
13.2.1 Introduction	299
13.2.2 Controllable Pitch Propeller (CP Propeller)	301 302
13.2.3 The Multi-Engined Plant 13.3 Propeller Off-Design Performance	302 303
13.3.1 Background	303 303
13.3.2 Off-Design Cases: Examples	303 304
13.4 Voyage Analysis and In-service Monitoring	304
13.4.1 Background	306
13.4.2 Data Required and Methods of Obtaining Data	307
13.4.3 Methods of Analysis	307
13.4.4 Limitations in Methods of Logging and Data Available	310
13.4.5 Developments in Voyage Analysis	311
13.4.6 Further Data Monitoring and Logging	311
REFERENCES (CHAPTER 13)	312
14 Hull Form Design	313
14.1 General	313
14.1.1 Introduction	313
14.1.2 Background	313
14.1.3 Choice of Main Hull Parameters	314
14.1.4 Choice of Hull Shape	318
14.2 Fore End	322
14.2.1 Basic Requirements of Fore End Design	322
14.2.2 Bulbous Bows	323
14.2.3 Seakeeping	328
14.2.4 Cavitation	328
14.3 Aft End	328
14.3.1 Basic Requirements of Aft End Design	328
14.3.2 Stern Hull Geometry to Suit Podded Units	331
14.3.3 Shallow Draught Vessels	333
14.4 Computational Fluid Dynamics Methods Applied	22.4
to Hull Form Design	334
REFERENCES (CHAPTER 14)	334
15 Numerical Methods for Propeller Analysis	337
15.1 Introduction	337
15.2 Historical Development of Numerical Methods	337

	15.3 Hierar	chy of Methods	338
	15.4 Guida	nce Notes on the Application of Techniques	339
	15.4.1	Blade Element-Momentum Theory	339
		Lifting Line Theories	340
		Surface Panel Methods	340
		Reynolds Averaged Navier-Stokes	342
		Element-Momentum Theory	343
		Momentum Theory	343
		Goldstein K Factors [15.8]	345
		Blade Element Equations	346
		Inflow Factors Derived from Section Efficiency	349
		Typical Distributions of a , a' and dK_T/dx	350
		Section Design Parameters	350
		Lifting Surface Flow Curvature Effects	352
		Calculations of Curvature Corrections	353
		Algorithm for Blade Element-Momentum Theory	355
	1	ller Wake Adaption	356
		Background	356
		Optimum Spanwise Loading	357
		Optimum Diameters with Wake-Adapted Propellers	359
		of Tangential Wake	359
	-	ples Using Blade Element-Momentum Theory	361
		Approximate Formulae	361
		Example 1	362
		Example 2	363
		Example 3	364
	REFERENCI	es (chapter 15)	366
16	Propulsor 1	Design Data	
	16.1 Introd	uction	369
	16.1.1	General	369
	16.1.2	Number of Propeller Blades	369
	16.2 Propul		371
	16.2.1	Propellers	371
	16.2.2	Controllable Pitch Propellers	385
	16.2.3	Ducted Propellers	385
	16.2.4	Podded Propellers	386
	16.2.5	Cavitating Propellers	391
	16.2.6	Supercavitating Propellers	392
	16.2.7	Surface-Piercing Propellers	395
	16.2.8	High-Speed Propellers, Inclined Shaft	398
	16.2.9	Small Craft Propellers: Locked, Folding and	
		Self-pitching	399
	16.2.10	Waterjets	400
	16.2.11	Vertical Axis Propellers	404
	16.2.12	Paddle Wheels	405
	16.2.13	Lateral Thrust Units	405

		16.2.14	Oars	407
		16.2.15	Sails	408
	16.3	Hull ar	nd Relative Rotative Efficiency Data	411
			Wake Fraction w_T and Thrust Deduction t	411
		16.3.2	Relative Rotative Efficiency, η_R	411
	REF	ERENCE	es (chapter 16)	413
17	Арј	olication	ıs	. 418
	17.1	Backgı	round	418
	17.2	-	le Applications	418
		17.2.1	Example Application 1. Tank Test Data: Estimate of Ship Effective Power	418
		17.2.2	Example Application 2. Model Self-propulsion Test Analysis	420
		17.2.3	Example Application 3. Wake Analysis from Full-Scale Trials Data	421
		17.2.4	Example Application 4. 140 m Cargo Ship: Estimate of Effective Power	422
		1725	Example Application 5. Tanker: Estimates of Effective	722
		17.2.3	Power in Load and Ballast Conditions	423
		17.2.6	Example Application 6. 8000 TEU Container Ship:	
			Estimates of Effective and Delivered Power	424
		17.2.7	Example Application 7. 135 m Twin-Screw Ferry, 18	
			knots: Estimate of Effective Power P_E	429
		17.2.8	Example Application 8. 45.5 m Passenger Ferry, 37 knots,	
			Twin-Screw Monohull: Estimates of Effective and	
			Delivered Power	432
		17.2.9	Example Application 9. 98 m Passenger/Car Ferry, 38	
			knots, Monohull: Estimates of Effective and Delivered	105
		17.0.10	Power	435
		17.2.10	Example Application 10. 82 m Passenger/Car Catamaran	
			Ferry, 36 knots: Estimates of Effective and Delivered Power	437
		17211	Example Application 11. 130 m Twin-Screw Warship, 28	437
		1/.2.11	knots, Monohull: Estimates of Effective and Delivered	
			Power	440
		17.2.12	Example Application 12. 35 m Patrol Boat, Monohull:	
			Estimate of Effective Power	446
		17.2.13	Example Application 13. 37 m Ocean-Going Tug:	
			Estimate of Effective Power	448
		17.2.14	Example Application 14. 14 m Harbour Work Boat,	
			Monohull: Estimate of Effective Power	448
		17.2.15	Example Application 15. 18 m Planing Craft,	
			Single-Chine Hull: Estimates of Effective Power	
			Preplaning and Planing	450
		17.2.16	Example Application 16. 25 m Planing Craft, 35 knots,	1=0
			Single-Chine Hull: Estimate of Effective Power	453

xii

17217 Example Application 17, 10 m Veshty Estimate of	
17.2.17 Example Application 17. 10 m Yacht: Estimate of Performance	454
17.2.18 Example Application 18. Tanker: Propeller Off-Design	434
Calculations	460
17.2.19 Example Application 19. Twin-Screw Ocean-Going Tug:	400
Propeller Off-Design Calculations	462
17.2.20 Example Application 20. Ship Speed Trials: Correction	402
for Natural Wind	464
17.2.21 Example Application 21. Detailed Cavitation Check on	404
Propeller Blade Section	466
17.2.22 Example Application 22. Estimate of Propeller Blade	400
Root Stresses	467
17.2.23 Example Application 23. Propeller Performance	107
Estimates Using Blade Element-Momentum Theory	469
17.2.24 Example Application 24. Wake-Adapted Propeller	471
REFERENCES (CHAPTER 17)	472
APPENDIX A1: Background Physics	473
A1.1 Background	473
A1.2 Basic Fluid Properties and Flow	473
Fluid Properties	473
Steady Flow	474
Uniform Flow	474
Streamline	475
A1.3 Continuity of Flow	475
A1.4 Forces Due to Fluids in Motion	476
A1.5 Pressure and Velocity Changes in a Moving Fluid	476
A1.6 Boundary Layer	477
Origins	477
Outer Flow	478
Flow Within the Boundary Layer	478
Displacement Thickness	479
Laminar Flow	480
A1.7 Flow Separation	480
A1.8 Wave Properties	481
Wave Speed	482
Deep Water	482
Shallow Water	482
REFERENCES (APPENDIX AI)	483
APPENDIX A2: Derivation of Eggers Formula for Wave Resistance	484
APPENDIX A3: Tabulations of Resistance Design Data	487
APPENDIX A4: Tabulations of Propulsor Design Data	522
Index	529

Preface

New ship types and applications continue to be developed in response to economic, societal and technical factors, including changes in operational speeds and fluctuations in fuel costs. These changes in ship design all depend on reliable estimates of ship propulsive power. There is a growing need to minimise power, fuel consumption and operating costs driven by environmental concerns and from an economic perspective. The International Maritime Organisation (IMO) is leading the shipping sector in efforts to reduce emissions such as NOx, SOx and CO_2 through the development of legislation and operational guidelines.

The estimation of ship propulsive power is fundamental to the process of designing and operating a ship. Knowledge of the propulsive power enables the size and mass of the propulsion engines to be established and estimates made of the fuel consumption and likely operating costs. The methods whereby ship resistance and propulsion are evaluated will never be an exact science, but require a combination of analysis, experiments, computations and empiricism. This book provides an up-todate detailed appraisal of the data sources, methods and techniques for establishing propulsive power.

Notwithstanding the quantity of commercial software available for estimating ship resistance and designing propellers, it is our contention that rigorous and robust engineering design requires that engineers have the ability to carry out these calculations from first principles. This provides a transparent view of the calculation process and a deeper understanding as to how the final answer is obtained. An objective of this book is to include enough published standard series data for hull resistance and propeller performance to enable practitioners to make ship power predictions based on material and data contained within the book. A large number of fully worked examples are included to illustrate applications of the data and powering methodologies; these include cargo and container ships, tankers and bulk carriers, ferries, warships, patrol craft, work boats, planing craft and yachts.

The book is aimed at a broad readership, including practising professional naval architects and marine engineers and undergraduate and postgraduate degree students. It should also be of use to other science and engineering students and professionals with interests in the marine field.

The book is arranged in 17 chapters. The first 10 chapters broadly cover resistance, with Chapter 10 providing both sources of resistance data and useable

Preface

data. Chapters 11 to 16 cover propellers and propulsion, with Chapter 16 providing both sources of propeller data and useable data. Chapter 17 includes a number of worked example applications. For the reader requiring more information on basic fluid mechanics, Appendix A1 provides a background to the physics of fluid flow. Appendix A2 derives a wave resistance formula and Appendices A3 and A4 contain tabulated resistance and propeller data. References are provided at the end of each chapter to facilitate readers' access to the original sources of data and information and further depth of study when necessary.

Proceedings, conference reports and standard procedures of the International Towing Tank Conference (ITTC) are referred to frequently. These provide an invaluable source of reviews and developments of ship resistance and propulsion. The proceedings and procedures are freely available through the website of the Society of Naval Architects and Marine Engineers (SNAME), which kindly hosts the ITTC website, http://ittc.sname.org. The University of Southampton Ship Science Reports, referenced in the book, can be obtained free from www.eprints .soton.ac.uk.

The authors acknowledge the help and support of their colleagues at the University of Southampton. Thanks must also be conveyed to national and international colleagues for their continued support over the years. Particular acknowledgement should also be made to the many undergraduate and postgraduate students who, over many years, have contributed to a better understanding of the subject through research and project and assignment work.

Many of the basic sections of the book are based on notes of lectures on ship resistance and propulsion delivered at the University of Southampton. In this context, particular thanks are due to Dr. John Wellicome, who assembled and delivered many of the original versions of the notes from the foundation of the Ship Science degree programme in Southampton in 1968.

Finally, the authors wish especially to thank their respective families for their practical help and support.

Anthony F. Molland Stephen R. Turnock Dominic A. Hudson Southampton 2011

xvi

Nomenclature

A	Wetted surface area, thin ship theory (m^2)
A_0	Propeller disc area $[\pi D^2/4]$
A_D	Propeller developed blade area ratio, or developed blade area
	(m^2)
A_E	Propeller expanded blade area ratio
A_P	Projected bottom planing area of planing hull (m^2) or projected area of propeller blade (m^2)
A_T	Transverse frontal area of hull and superstructure above water (m^2)
A_X	Midship section area (m^2)
b	Breadth of catamaran demihull (m), or mean chine beam of
	planing craft (m)
В	Breadth of monohull or overall breadth of catamaran (m)
B_{pa}	Mean breadth over chines $[=A_P/L_P]$ (m)
B_{px}	Maximum breadth over chines (m)
B_{WL}	Breadth on waterline (m)
с	Section chord (m)
C_A	Model-ship correlation allowance coefficient
C_B	Block coefficient
C_{Dair}	Coefficient of air resistance $[R_{\rm air}/1/2\rho_a A_T V^2]$
C_f	Local coefficient of frictional resistance
C_F	Coefficient of frictional resistance $[R_F/1/2\rho_W SV^2]$
C_L	Lift coefficient
C_M	Midship coefficient $[A_X/(B \times T)]$
C_P	Prismatic coefficient $[\nabla/(L \times A_X)]$ or pressure coefficient
C_R	Coefficient of residuary resistance $[R_R/1/2\rho SV^2]$
C_S	Wetted surface coefficient $[S/\sqrt{\nabla \cdot L}]$
C_T	Coefficient of total resistance $[R_T/1/2\rho SV^2]$
C_V	Coefficient of viscous resistance $[R_V/1/2\rho SV^2]$
C_W	Coefficient of wave resistance $[R_W/1/2\rho SV^2]$
C_{WP}	Coefficient of wave pattern resistance $[R_{WP}/1/2\rho SV^2]$
D	Propeller diameter (m)

xvii

xviii

Nomenclature

D_{air}	Aerodynamic drag, horizontal (planing craft) (N)
$D_{\rm APP}$	Appendage resistance (N)
D_F	Planing hull frictional resistance, parallel to keel (N)
Demihull	One of the hulls which make up the catamaran
Ε	Energy in wave front
\overline{F}_{H}	Hydrostatic pressure acting at centre of pressure of planing hull
	(N)
F_P	Pressure force over wetted surface of planing hull (N)
Fr	Froude number $[V/\sqrt{g \cdot L}]$
Fr_h	Depth Froude number $[V/\sqrt{g \cdot h}]$
Fr_{∇}	Volume Froude number $[V/\sqrt{g \cdot \nabla^{1/3}}]$
Fx	Yacht sail longitudinal force (N)
Fy	Yacht sail transverse force (N)
g	Acceleration due to gravity (m/s^2)
G	Gap between catamaran hulls (m)
GM	Metacentric height (m)
h	Water depth (m)
Н	Wave height (m)
H_T	Transom immersion (m)
i_E	Half angle of entrance of waterline (deg.), see also $\frac{1}{2} \alpha_E$
J	Propeller advance coefficient (V_A/nD)
k	Wave number
K_T	Propeller thrust coefficient $(T/\rho n^2 D^4)$
K_Q	Propeller torque coefficient $Q/\rho n^2 D^5$)
\tilde{L}	Length of ship (m)
L_{air}	Aerodynamic lift, vertically upwards (planing craft) (N)
L_{APP}	Appendage lift (N)
L_{BP}	Length of ship between perpendiculars (m)
l_c	Wetted length of chine, planing craft (m)
LCB	Longitudinal centre of buoyancy (% <i>L</i> forward or aft of amidships)
LCG	Longitudinal centre of gravity (%L forward or aft of amidships)
L_{f}	Length of ship (ft)
l_K	Wetted length of keel, planing craft (m)
l_m	Mean wetted length, planing craft $[= (l_K + l_c)/2]$
L_{OA}	Length of ship overall (m)
lp	Distance of centre of pressure from transom (planing craft)(m)
L_P	Projected chine length of planing hull (m)
L_{PS}	Length between pressure sources
L_{WL}	Length on waterline (m)
$L/\nabla^{1/3}$	Length-displacement ratio
n	Propeller rate of revolution (rps)
N	Propeller rate of revolution (rpm), or normal bottom pressure
	load on planing craft (N)
Р	Propeller pitch (m)
P_{AT}	Atmospheric pressure (N/m ²)
P/D	Propeller pitch ratio

Nomenclature

P_D	Delivered power (kW)
P_E	Effective power (kW)
P_L	Local pressure (N/m ²)
P_S	Installed power (kW)
P_V	Vapour pressure (N/m ²)
Q	Propeller torque (Nm)
$R_{\rm air}$	Air resistance (N)
R_{app}	Appendage resistance (N)
Re	Reynolds Number ($\rho VL/\mu$ or VL/ν)
R_F	Frictional resistance (N)
R_{Fh}	Frictional resistance of yacht hull (N)
$R_{ m Ind}$	Induced resistance of yacht (N)
rps	Revolutions per second
rpm	Revolutions per minute
R_R	Residuary resistance (N)
R_{Rh}	Residuary resistance of yacht hull (N)
R_{RK}	Residuary resistance of yacht keel (N)
R_T	Total hull resistance (N)
R_V	Viscous resistance (N)
R_{VK}	Viscous resistance of yacht keel (N)
R_{VR}	Viscous resistance of yacht rudder (N)
R_W	Wave resistance (N)
R_{WP}	Wave pattern resistance (N)
S	Wetted surface area (m^2)
S_{APP}	Wetted area of appendage (m ²)
S_C	Wetted surface area of yacht canoe body (m ²) or separation
	between catamaran demihull centrelines (m)
sfc	Specific fuel consumption
S_P	Propeller/hull interaction on planing craft (N)
t	Thrust deduction factor, or thickness of section (m)
T	Draught (m), or propeller thrust (N), or wave period (secs)
T_C	Draught of yacht canoe body (m)
$U_{}$	Speed (m/s)
$V_{}$	Speed (m/s)
Va	Wake speed $(V_S(1 - w_T))$ (m/s)
V_A	Relative or apparent wind velocity (m/s)
V_K	Ship speed (knots)
$V_K / \sqrt{L_f}$	Speed length ratio (knots and feet)
V_R	Reference velocity (m/s)
V_S	Ship speed (m/s)
W	Channel width (m)
w_T	Wake fraction
Z	Number of blades of propeller
(1+k)	Form-factor, monohull
$(1+\beta k)$	Form factor, catamaran
$\frac{1}{2} \alpha_E$	Half angle of entrance of waterline (deg.), see also i_E

ХΧ

Nomenclature

β	Viscous resistance interference factor, or appendage scaling
	factor, or deadrise angle of planing hull (deg.) or angle of relative
	or apparent wind (deg.)
δ	Boundary layer thickness (m)
ε	Angle of propeller thrust line to heel (deg.)
η_D	Propulsive coefficient $(\eta_0 \eta_H \eta_R)$
η_O	Open water efficiency $(JK_T/2\pi K_Q)$
η_H	Hull efficiency $(1 - t)/(1 - w_T)$
η_R	Relative rotative efficiency
η_T	Transmission efficiency
γ	Surface tension (N/m), or wave height decay coefficient, or course
	angle of yacht (deg.), or wave number
ϕ	Heel angle (deg.), or hydrodynamic pitch angle (deg.)
λ	Leeway angle (deg.)
μ	Dynamic viscosity (g/ms)
ν	Kinematic viscosity (μ/ρ) (m ² /s)
ρ	Density of water (kg/m ³)
$ ho_a$	Density of air (kg/m ³)
σ	Cavitation number, or source strength, or allowable stress (N/m ²)
τ	Wave resistance interference factor (catamaran
	resistance/monohull resistance), or trim angle of planing hull
	(deg.)
τ_c	Thrust/unit area, cavitation (N/m ²)
$ au_R$	Residuary resistance interference factor (catamaran
	resistance/monohull resistance)
$ au_W$	Surface or wall shear stress (N/m ²)
θ	Wave angle (deg.)
ζ	Wave elevation (m)
∇	Ship displacement volume (m ³)
∇_C	Displacement volume of yacht canoe body (m ³)
Δ	Ship displacement mass $(\nabla \rho)$ (tonnes), or displacement force
	$(\nabla \rho g)$ (N)

Conversion of Units

1 ft = 12 in.
1 km = 1000 m
1 tonne = 1000 kg
1 lb = 4.45 N
$1 \text{ bar} = 14.7 \text{ lbs/in.}^2$
1 nautical mile $(Nm) = 6078$ ft
1 knot = 1 Nm/hr
1 knot = 0.5144 m/s
1 UK gal = 4.546 litres

Abbreviations

ABS	American Bureau of Shipping
AEW	Admiralty Experiment Works (UK)
AFS	Antifouling systems on ships
AHR	Average hull roughness
AP	After perpendicular
ARC	Aeronautical Research Council (UK)
ATTC	American Towing Tank Conference
BDC	Bottom dead centre
BEM	Boundary element method
BEMT	Blade element-momentum theory
BMEP	Brake mean effective pressure
BMT	British Maritime Technology
BN	Beaufort Number
BSRA	British Ship Research Association
BTTP	British Towing Tank Panel
CAD	Computer-aided design
CCD	Charge-coupled device
CFD	Computational fluid dynamics
CG	Centre of gravity
CLR	Centre of lateral resistance
CODAG	Combined diesel and gas
CP	Controllable pitch (propeller)
CSR	Continuous service rating
DES	Detached eddy simulation
DNS	Direct numerical simulation
DNV	Det Norske Veritas
DSYHS	Delft systematic yacht hull series
DTMB	David Taylor Model Basin
EFD	Experimental fluid dynamics
FEA	Finite element analysis
FP	Forward perpendicular, or fixed pitch (propeller)
FRP	Fibre-reinforced plastic
\mathbf{FV}	Finite volume

xxi

xxii

Abbreviations

CT.	
GL	Germanischer Lloyd
GPS	Global Positioning System
HP	Horsepower
HSVA	Hamburg Ship Model Basin
IESS	Institute of Engineers and Shipbuilders in Scotland
IMarE	Institute of Marine Engineers (became IMarEST from 2001)
IMarEST	Institute of Marine Engineering, Science and Technology
IMechE	Institution of Mechanical Engineers
IMO	International Maritime Organisation
INSEAN	Instituto di Architectura Navale (Rome)
ISO	International Standards Organisation
ITTC	International Towing Tank Conference
JASNAOE	Japan Society of Naval Architects and Ocean Engineers
LCG	Longitudinal centre of gravity
LDA	Laser Doppler anemometry
LDV	Laser Doppler velocimetry
LE	Leading edge of foil or fin
LES	Large eddy simulation
LR	Lloyd's Register of Shipping
MAA	Mean apparent amplitude
MARIN	Maritime Research Institute of the Netherlands (formerly NSMB)
MCR	Maximum continuous rating
MEMS	Microelectromechanical systems
NACA	National Advisory Council for Aeronautics (USA)
NECIES	North East Coast Institution of Engineers and Shipbuilders
NPL	National Physical Laboratory (UK)
NSMB	The Netherlands Ship Model Basin (later to become MARIN)
NTUA	National Technical University of Athens
ORC	Offshore Racing Congress
Р	Port
PIV	Particle image velocimetry
QPC	Quasi propulsive coefficient
RANS	Reynolds Averaged Navier–Stokes
RB	Round back (section)
RINA	Royal Institution of Naval Architects
ROF	Rise of floor
rpm	Revolutions per minute
rps	Revolutions per second
S	Starboard
SAC	Sectional area curve
SCF	Ship correlation factor
SG	Specific gravity
SNAJ	Society of Naval Architects of Japan (later to become JASNAOE)
SNAJ	Society of Naval Architects of Japan (later to become JASNAOE) Society of Naval Architects of Korea
SNAK	Society of Naval Architects of Korea Society of Naval Architects and Marine Engineers (USA)
SP	Self-propulsion Statene Skappenrovingenealt, Götaborg, Swadan
SSPA	Statens Skeppsprovingansalt, Götaborg, Sweden

Abbreviations

xxiii

STG	Schiffbautechnische Gesellschaft, Hamburg
TBT	Tributyltin
TDC	Top dead centre
TDW	Tons deadweight
TE	Trailing edge of foil or fin
TEU	Twenty foot equivalent unit [container]
UTS	Ultimate tensile stress
VCB	Vertical centre of buoyancy
VLCC	Very large crude carrier
VPP	Velocity prediction program
VWS	Versuchsanstalt für Wasserbau und Schiffbau Berlin (Berlin
	Model Basin)
WUMTIA	Wolfson Unit for Marine Technology and Industrial
	Aerodynamics, University of Southampton

Figure Acknowledgements

The authors acknowledge with thanks the assistance given by the following companies and publishers in permitting the reproduction of illustrations and tables from their publications:

- Figures 8.5, 10.7, 10.9, 10.10, 10.12, 12.24, 14.17, 14.18, 14.19, 14.20, 14.21, 14.22, 14.23, 14.24, 14.30, 15.4, 15.14, 15.15, 15.17, 16.1, 16.2 and Tables A3.13, A3.14, A3.15, A4.3 reprinted courtesy of The Society of Naval Architects and Marine Engineers (SNAME), New York.
- Figures 3.28, 3.29, 4.4, 4.5, 4.6, 7.6, 7.10, 7.16, 7.28, 8.4, 10.2, 10.3, 10.4, 10.5, 10.13, 10.14, 10.20, 10.21, 12.26, 14.15, 16.7, 16.8, 16.9, 16.10, 16.15, 16.16, 16.17, 16.19, 16.26 and Tables A3.1, A3.6, A3.24, A3.25, A3.26, A4.4, A4.5 reprinted courtesy of The Royal Institution of Naval Architects (RINA), London.
- Figures 10.11, 16.24 and Tables A3.2, A3.3, A3.4, A3.5, A3.12, A3.23, A4.1, A4.2, A4.6 reprinted courtesy of IOS Press BV, Amsterdam.
- Figures 4.8, 8.3, 8.12, 8.13, 16.3, 16.4, 16.5, 16.6, 16.13 reprinted courtesy of MARIN, Wageningen.
- Figure 10.23 and Tables 10.13, 10.14, 10.15, 10.16, 10.17 reprinted courtesy of The HISWA Symposium Foundation, Amsterdam.
- Figures A1.1, A1.7, A1.8 and Sections A1.1–A1.7 reprinted courtesy of Elsevier Ltd., Oxford.
- Figure 10.22 reprinted courtesy of The Japan Society of Naval Architects and Ocean Engineers (JASNAOE), Tokyo (formerly The Society of Naval Architects of Japan (SNAJ), Tokyo).
- Figure 3.10 reprinted courtesy of WUMTIA, University of Southampton and Dubois Naval Architects Ltd., Lymington.
- Figure 7.3 reprinted courtesy of WUMTIA, University of Southampton.
- Figure 12.29 reprinted courtesy of The University of Newcastle upon Tyne.
- Figures 12.31, 13.9, 15.17 reprinted courtesy of The North East Coast Institution of Engineers and Shipbuilders (NECIES), Newcastle upon Tyne.
- Table A3.7 reprinted courtesy of Ship Technology Research, Hamburg.
- Table A3.27 reprinted courtesy of STG, Hamburg.

xxv

xxvi

Figure Acknowledgements

Figure 10.6 reprinted courtesy of BMT Group Ltd., Teddington.

- Figure 12.25 reprinted courtesy of The Institution of Mechanical Engineers (IMechE), London.
- Figures 16.27, 16.28 and Tables 16.8, 16.9 reprinted courtesy of The Offshore Racing Congress (ORC).