David Sang Cambridge IGCSE **Physics** Coursebook

CAMBRIDGE

Cambridge University Press 978-0-521-75773-7 - Cambridge IGCSE Physics Coursebook David Sang Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521757737

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-75773-7 Paperback with CD-ROM for Windows® and Mac®

Cover image: Fingers weave through optical fibres. © Adam Hart-Davis / Science Photo Library

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work are correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

NOTICE TO TEACHERS

The photocopy masters in this publication may be photocopied or distributed electronically free of charge for classroom use within the school or institute which purchases the publication. Worksheets and copies of them remain in the copyright of Cambridge University Press and such copies may not be distributed or used in any way outside the purchasing institution.

References to Activities contained in these resources are provided 'as is' and information provided is on the understanding that teachers and technicians shall undertake a thorough and appropriate risk assessment before undertaking any of the Activities listed. Cambridge University Press makes no warranties, representations or claims of any kind concerning the Activities. To the extent permitted by law, Cambridge University Press will not be liable for any loss, injury, claim, liability or damage of any kind resulting from the use of the Activities. CAMBRIDGE

Cambridge University Press 978-0-521-75773-7 - Cambridge IGCSE Physics Coursebook David Sang Frontmatter More information

Contents

Ac	knowledgements	vi
In	troduction	vii
B	ock 1: General physics	1
1	Making measurements	2
	1.1 Measuring length and volume	3
Ε	1.2 Improving precision in	_
	measurements	5
	1.3 Density	7
	1.4 Measuring time	9
2	Describing motion	13
	2.1 Understanding speed	14
	2.2 Distance against time graphs	16
	2.3 Understanding acceleration	19
E	2.4 Calculating acceleration	21
3	Forces and motion	26
	3.1 We have lift-off	26
E	3.2 Force, mass and acceleration	30
	3.3 Mass, weight and gravity	31
E	3.4 Falling through the air	32
	3.5 More about scalars and vectors	33

4	Turning effects of forces	37
	4.1 The moment of a force	37
E	4.2 Calculating moments	39
	4.3 Stability and centre of mass	41
5	Forces and matter	45
	5.1 Forces acting on solids	45
	5.2 Stretching springs	46
E	5.3 Hooke's law	48
	5.4 Pressure	50
6	Energy transformations	
	and energy transfers	56
	6.1 Forms of energy	57
	6.2 Energy conversions	60
	6.3 Conservation of energy	61
E	6.4 Energy calculations	64
7	Energy resources	69
	7.1 The energy we use	69
E	7.2 Fuel for the Sun	74
8	Work and power	76
	8.1 Doing work	76
E	8.2 Calculating work done	77
	8.3 Power	80
Β	8.4 Calculating power	81

Block 2: Thermal physics		85
9	The kinetic model of	0.4
	matter	86
	9.1 States of matter	87
	9.2 The kinetic model of matter	89
E	9.3 Forces and the kinetic theory	92
	9.4 Gases and the kinetic theory	94
10	Thermal properties of	
	matter	99
	10.1 Temperature and	
	temperature scales	100
	10.2 Thermal expansion	104
	10.3 Thermal capacity	106
Ε	10.4 Specific heat capacity	107
	10.5 Latent heat	109
11	Thermal (heat) energy	
	transfers	112
	11.1 Conduction	113
	11.2 Convection	115
	11.3 Radiation	117
	11.4 Some consequences of thermal	
	(heat) energy transfer	119
B	lock 3: Physics of waves	123

12	Sound		124	
	12.1	Making sounds	125	
	12.2	At the speed of sound	126	
	12.3	Seeing sounds	128	
	12.4	How sounds travel	130	

13	Lig	ht	133
	13.1	Reflecting light	134
	13.2	Refraction of light	137
	13.3	Total internal reflection	141
	13.4	Lenses	143
14	Pro	perties of waves	149
	14.1	Describing waves	150
E	14.2	Speed, frequency and wavelength	153
	14.3	Reflection and refraction of	
		waves	155
	14.4	Diffraction of waves	157
15	Spe	ectra	161
	15.1	Dispersion of light	162
	15.2	The electromagnetic	
		spectrum	163

Block 4: Electricity and magnetism

16 Magnetism	170
16.1 Permanent magnets	171
16.2 Magnetic fields	173
17 Static electricity	178
17.1 Charging and discharging	179
17.2 Explaining static electricity	180
18 Electrical quantities	185
18.1 Current in electric circuits	186
18.2 Electrical resistance	190
E 18.3 Electricity and energy	193

iv Contents

169

19 Electric circuits	197
19.1 Circuit components	198
19.2 Combinations of	
resistors	202
E 19.3 Electronic circuits	207
19.4 Electrical safety	212
20 Electromagnetic	
forces	217
20.1 The magnetic effect of	
a current	218
20.2 How electric motors are	
constructed	219
20.3 Force on a current-carrying	
conductor	221
20.4 Cathode rays	223
21 Electromagnetic induction	227
21.1 Generating electricity	228
21.2 Power lines and transformers	231
E 21.3 How transformers work	234

Block 5: Atomic physics	239	
22 The nuclear atom	240	
22.1 Atomic structure	241	
22.2 Protons, neutrons and electrons	243	
23 Radioactivity	248	
23.1 Radioactivity all around	249	
23.2 The microscopic picture	252	
23.3 Radioactive decay	256	
E 23.4 Using radioisotopes	258	
Glossary 20		
Index		

Contents v

Acknowledgements

The publishers would like to thank the following for permission to reproduce photographs. While every effort has been made, it has not always been possible to identify the sources of all the material used, or to trace all copyright holders. If any omissions are brought to our notice we will be happy to include the appropriate acknowledgement on reprinting.

p. vii(*l*) AJ Photo/SPL; p. vii(*r*), 1.2 Andrew Brookes, National Physical Laboratory/SPL; p. viii(*l*) Mark Garlick/SPL; p. viii(*r*) Volker Steger/SPL; p. 1, 6.11, p. 85, 15.6, p.169 NASA/SPL; 1.1, 5.8, 20.1, 21.4, 23.5 SPL; 1.12 GoGo Images Corporation/Alamy; 2.1 TRL Ltd/SPL; 2.3, 6.7, 13.22, 15.1 Nigel Luckhurst; 2.7 Brian F. Peterson/Corbis; 2.8 Alejandro Ernesto/ EFE/Corbis; 3.1 Nelson Jeans/Corbis; 3.2 Scott Andrews/Science Faction/Corbis; 3.9 Birdlike Images Gregory Bajor/Alamy; 3.10 Eric Schremp/ SPL; 3.12 Stockshot/Alamy; 4.1 Frans Lemmens/ zefa/Corbis; 4.12 NCNA, Camera Press London; 5.2, 6.13 Gustoimages/SPL; 5.3 PhotoStock-Israel/ Alamy; 5.9 Colin Cuthbert/SPL; 5.10 imagebroker/ Alamy; 5.11 Alexis Rosenfeld/SPL; 6.1 Jeff Rotman/ naturepl; 6.5 Visions of America LLC/Alamy; 6.6a European Space Agency/SPL; 6.10a, 9.12, 10.5, 10.8, 10.9a, 10.9b, 13.2, 13.6a, 13.8, 13.9, 13.14, 13.18, 13.20, 14.4a, 14.4b, 14.10a, 14.12a, 14.12b, 18.3a, 18.4, 18.11, 19.4a, 19.5a, 19.6a, 19.17a, 19.26, 20.12, 23.10 Andrew Lambert/SPL; 7.1 Jim Wileman/Alamy; 7.3 Liba Taylor/Corbis; 7.4 Ryan Pyle/Corbis; 7.5 Martin Land/SPL; 7.6 BNFL; 7.7 Worldwide Picture Library/ Alamy; 8.7 Ace Stock Limited/Alamy; 9.1 Caro/ Alamy; 9.9 81A Productions/Corbis; 10.1 Bubbles

Photolibrary/Alamy; 10.2a CC Studio/SPL; 10.2b Paul Whitehall/SPL; 10.12 Matt Meadows/SPL; 11.1 Staffan Widstrand/naturepl; 11.2 Karl Ammann/naturepl; 11.7 Dr Gary Settler/SPL; 11.8, 12.8 sciencephotos/ Alamy; 11.11 Edward Kinsman/SPL; 11.12 Justin Kaze zsixz/Alamy; p. 123 AFP/Getty Images; 12.1 Jill Douglas/Redferns/Getty Images; 12.2 John Eccles/ Alamy; 12.3 Cardiff University; 12.4(*t*) Mode Images Limited/Alamy; 12.4(*b*) Niall McDiarmid/Alamy; 12.5 David Redfern/Redferns/Getty Images; 13.1 Royal Grenwich Observatory/SPL; 13.3 Hank Morgan/SPL; 13.4 Mark Bowler Scientific Images/www.markbowler. com; 13.16a, 23.18 TEK Image/SPL; 13.17 Dr Jeremy Burgess/SPL; 14.1 David Hosking/FLPA; 14.2 Rick Strange/Alamy; 14.11a Berenice Abbott/SPL; 14.14 John Foster/SPL; 15.2, p. 239 David Parker/SPL; 15.4 CCI Archives/SPL; 15.9 David R. Frazier/SPL; 16.1 The London Art Archive/Alamy; 16.7 Cordelia Molloy/ SPL; 16.10 Jeremy Walker/SPL; 17.1 Photo Researchers/ SPL; 18.1 Maximilian Stock Ltd/Alamy; 18.2 Martin Dorhn/SPL; 19.1 Rosenfeld Images Ltd/SPL; 19.3, 19.27a, 23.15a Leslie Garland Picture Library/Alamy; 19.28 Sheila Terry/SPL; 21.1a, 21.1b Adam Hart-Davis/SPL; 21.3 Alex Bartel/SPL; 21.8 Ed Michaels/ SPL; 21.9 D Burke/Alamy; 22.1 David Simson; 22.2 IBM/SPL; 23.1 Radiation Protection Division/ Health Protection Agency/SPL; 23.2 US Air Force/ SPL; 23.3 Yoav Levy/Phototake Science/Photolibrary; 23.6 Pascal Goetgheluck/SPL; 23.16 National Radiation Protection Board; 23.19 P. Deliss/Godong/Corbis

b = bottom, l = left, r = right, t = top, SPL = Science Photo Library CAMBRIDGE

Cambridge University Press 978-0-521-75773-7 - Cambridge IGCSE Physics Coursebook David Sang Frontmatter More information

Introduction

Studying physics

Why study physics? Some people study physics for the simple reason that they find it interesting. Physicists study matter, energy and their interactions. They might be interested in the tiniest sub-atomic particles, or the nature of the Universe itself. (Some even hope to discover whether there are more universes than just the one we live in!)

When they were first discovered, X-rays were sometimes treated as an entertaining novelty. Today, they can give detailed views of a patient's bones and organs.

On a more human scale, physicists study materials to try to predict and control their properties. They study the interactions of radiation with matter, including the biological materials we are made of.

Some people don't want to study physics simply for its own sake. They want to know how it can be used, perhaps in an engineering project, or for medical purposes. Depending on how our knowledge is applied, it can make the world a better place.

Some people study physics as part of their course because they want to become some other type of scientist – perhaps a chemist, biologist or geologist. These branches of science draw a great deal on ideas from physics, and physics may draw on them.

Thinking physics

How do physicists think? One of the characteristics of physicists is that they try to simplify problems – reduce them to their basics – and then solve them by applying

Physicists often work in extreme conditions. Here, physicists at the UK's National Physical Laboratory prepare a dilution refrigerator, capable of cooling materials down almost to absolute zero, the lowest possible temperature.

Introduction vii

The Milky Way, our Galaxy. Although we can never hope to see it from this angle, careful measurements of the positions of millions of stars has allowed astronomers to produce this computer-generated view.

some very fundamental ideas. For example, you will be familiar with the idea that matter is made of tiny particles that attract and repel each other and move about. This is a very powerful idea, which has helped us to understand the behaviour of matter, how sound travels, how electricity flows, and so on.

Once a fundamental idea is established, physicists look around for other areas where it might help to solve problems. One of the surprises of 20th-century physics was that, once physicists had begun to understand the fundamental particles of which atoms are made, they realised that this helped to explain the earliest moments in the history of the Universe, at the time of the Big Bang.

The more you study physics, the more you will come to realise how the ideas join up. Also, physics is still expanding. Many physicists work in economics and

The Internet, used by millions around the world. Originally invented by a physicist, Tim Berners-Lee, the Internet is used by physicists to link thousands of computers in different countries to form supercomputers capable of handling vast amounts of data.

finance, using ideas from physics to predict how markets will change. Others use their understanding of particles in motion to predict how traffic will flow, or how people will move in crowded spaces.

Physics relies on mathematics. Physicists measure quantities and process their data. They invent mathematical models – equations and so on – to explain their findings. (In fact, a great deal of mathematics was invented by physicists, to help them to understand their experimental results.)

Computers have made a big difference in physics. Because a computer can 'crunch' vast quantities of data, whole new fields of physics have opened up. Computers can analyse data from telescopes, control distant spacecraft and predict the behaviour of billions of atoms in a solid material.

Joining in

So, when you study physics, you are doing two things. You are joining in with a big human project – learning more about the world around us, and applying that knowledge. At the same time, you will be learning to think like a physicist – how to apply some basic ideas, how to look critically at data, and how to recognise underlying patterns. Whatever your aim, these ideas can stay with you throughout your life.

viii Introduction