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I

Basic Logic

Logic is the science of reasoning. Mathematical logic applies to mathematical
reasoning – the art and science of writing down deductions. This volume is
about the form, meaning, use, and limitations of logical deductions, also called
proofs. While the user of mathematical logic will practise the various proof
techniques with a view of applying them in everyday mathematical practice,
the student of the subject will also want to know about the power and limitations
of the deductive apparatus. We will find that there are some inherent limitations
in the quest to discover truth by purely formal – that is, syntactic – techniques.
In the process we will also discover a close affinity between formal proofs and
computations that persists all the way up to and including issues of limitations:
Not only is there a remarkable similarity between the types of respective limi-
tations (computations vs. uncomputable functions, and proofs vs. unprovable,
but “true”, sentences), but, in a way, you cannot have one type of limitation
without having the other.

The modern use of the term mathematical logic encompasses (at least) the
areas of proof theory (it studies the structure, properties, and limitations of
proofs), model theory (it studies the interplay between syntax and meaning – or
semantics – by looking at the algebraic structures where formal languages are
interpreted), recursion theory (or computability, which studies the properties
and limitations of algorithmic processes), and set theory. The fact that the last-
mentioned will totally occupy our attention in volume 2 is reflected in the
prominence of the term in the title of these lectures. It also reflects a tendency,
even today, to think of set theory as a branch in its own right, rather than as an
“area” under a wider umbrella.

1
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2 I. Basic Logic

Volume 1 is a brief study of the other three areas of logic† mentioned above.
This is the point where an author usually apologizes for what has been omitted,
blaming space or scope (or competence) limitations. Let me start by outlin-
ing what is included: “Standard” phenomena such as completeness, compact-
ness and its startling application to analysis, incompleteness or unprovabil-
ity (including a complete proof of the second incompleteness theorem), and a
fair amount of recursion theory are thoroughly discussed. Recursion theory,
or computability, is of interest to a wide range of audiences, including stu-
dents with main areas of study such as computer science, philosophy, and, of
course, mathematical logic. It studies among other things the phenomenon of
uncomputability, which is closely related to that of unprovability, as we see in
Section I.9.

Among the topics that I have deliberately left out are certain algebraic tech-
niques in model theory (such as the method of ultrapowers), formal interpre-
tations of one theory into another,‡ the introduction of “other” logics (modal,
higher order, intuitionistic, etc.), and several topics in recursion theory (oracle
computability, Turing reducibility, recursive operators, degrees, Post’s theorem
in the arithmetic hierarchy, the analytic hierarchy, etc.) – but then, the decision
to stop writing within 300 or so pages was firm. On the other hand, the topics
included here form a synergistic whole in that I have (largely) included at every
stage material that is prerequisite to what follows. The absence of a section on
propositional calculus is deliberate, as it does not in my opinion further the
understanding of logic in any substantial way, while it delays one’s plunging
into what really matters. To compensate, I include all tautologies as “proposi-
tional” (or Boolean) logical axioms and present a mini-course on propositional
calculus in the exercises of this chapter (I.26–I.41, pp. 193–195), including the
completeness and compactness of the calculus.

It is inevitable that the language of sets intrudes in this chapter (as it indeed
does in all mathematics) and, more importantly, some of the results of (informal)
set theory are needed here (especially in our proofs of the completeness and
compactness metatheorems). Conversely, formal set theory of volume 2 needs
some of the results developed here. This “chicken or egg” phenomenon is often
called “bootstrapping” (not to be confused with “circularity” – which it is not§),
the term suggesting one pulling oneself up by one’s bootstraps.¶

† I trust that the reader will not object to my dropping the qualifier “mathematical” from now on.
‡ Although this topic is included in volume 2 (Chapter I), since it is employed in the relative

consistency techniques applied there.
§ Only informal, or naı̈ve, set theory notation and results are needed in Chapter I at the meta-level,

i.e, outside the formal system that logic is.
¶ I am told that Baron Münchhausen was the first one to apply this technique, with success.
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This is a good place to outline how our story will unfold: First, our objective is to
formalize the rules of reasoning in general – as these apply to all mathematics –
and develop their properties. In particular, we will study the interaction between
formalized rules and their “intended meaning” (semantics), as well as the limi-
tations of these formalized rules: That is, how good (= potent) are they for
capturing the informal notions of truth?

Secondly, once we have acquired these tools of formalized reasoning, we start
behaving (mostly†) as users of formal logic so that we can discover important
theorems of two important mathematical theories: Peano arithmetic (Chapter II)
and set theory (volume 2).

By formalization (of logic) we understand the faithful representation or
simulation of the “reasoning processes” of mathematics in general (pure logic),
or of a particular mathematical theory (applied logic: e.g., Peano arithmetic),
within an activity that – in principle – is driven exclusively by the form or syntax
of mathematical statements, totally ignoring their meaning.

We build, describe, and study the properties of this artificial replica of the
reasoning processes – the formal theory – within “everyday mathematics” (also
called “informal” or “real” mathematics), using the usual abundance of mathe-
matical symbolism, notions, and techniques available to us, augmented by the
descriptive power of English (or Greek, or French, or German, or Russian,
or . . . , as particular circumstances or geography might dictate). This milieu
within which we build, pursue, and study our theories is often called the meta-
theory, or more generally, metamathematics. The language we speak while at
it, this mélange of mathematics and “natural language”, is the metalanguage.

Formalization turns mathematical theories into mathematical objects that
we can study. For example, such study may include interesting questions such
as “is the continuum hypothesis provable from the axioms of set theory?” or
“can we prove the consistency of (axiomatic) Peano arithmetic within Peano
arithmetic?”‡ This is analogous to building a “model airplane”, a replica of the
real thing, with a view of studying through the replica the properties, power,
and limitations of the real thing.

But one can also use the formal theory to generate theorems, i.e., discover
“truths” in the real domain by simply “running” the simulation that this theory-
replica is.§ Running the simulation “by hand” (rather than using the program

† Some tasks in Chapter II of this volume, and some others in volume 2, will be to treat the “theory”
at hand as an object of study rather than using it, as a machine, to crank out theorems.

‡ By the way, the answer to both these questions is “no” (Cohen (1963) for the first, Gödel (1938)
for the second).

§ The analogy implied in the terminology “running the simulation” is apt. For formal theories such
as set theory and Peano arithmetic we can build within real mathematics a so-called “provability
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of the previous footnote) means that you are acting as a “user” of the formal
system, a formalist, proving theorems through it. It turns out that once you get
the hang of it, it is easier and safer to reason formally than to do so informally.
The latter mode often mixes syntax and semantics (meaning), and there is
always the danger that the “user” may assign incorrect (i.e., convenient, but not
general ) meanings to the symbols that he† manipulates, a phenomenon that has
distressed many a mathematics or computer science instructor.

“Formalism for the user” is hardly a revolutionary slogan. It was advocated
by Hilbert, the founder of formalism, partly as a means of – as he believed‡ –
formulating mathematical theories in a manner that allows one to check them
(i.e., run “diagnostic tests” on them) for freedom from contradiction,§ but also
as the right way to “do” mathematics. By this proposal he hoped to salvage
mathematics itself, which, Hilbert felt, was about to be destroyed by the Brouwer
school of intuitionist thought. In a way, his program could bridge the gap
between the classical and the intuitionist camps, and there is some evidence
that Heyting (an influential intuitionist and contemporary of Hilbert) thought
that such a rapprochement was possible. After all, since meaning is irrelevant to
a formalist, then all that he is doing (in a proof) is shuffling finite sequences of
symbols, never having to handle or argue about infinite objects – a good thing,
as far as an intuitionist is concerned.¶

predicate”, that is, a relationP(y, x) which is true of two natural numbers y and x just in case y
codes a proof of the formula coded by x . It turns out that P(y, x) has so simple a structure that it
is programmable, say in the C programming language. But then we can write a program (also in
C) as follows: “Systematically generate all the pairs of numbers (y, x). For each pair generated,
if P(y, x) holds, then print the formula coded by x”. Letting this process run for ever, we obtain
a listing of all the theorems of Peano arithmetic or set theory! This fact does not induce any
insomnia in mathematicians, since this is an extremely impractical way to obtain theorems. By
the way, we will see in Chapter II that either set theory or Peano arithmetic is sufficiently strong
to formally express a provability predicate, and this leads to the incompletableness phenomenon.

† In this volume, the terms “he”, “his”, “him”, and their derivatives are by definition gender-neutral.
‡ This belief was unfounded, as Gödel’s incompleteness theorems showed.
§ Hilbert’s metatheory – that is, the “world” or “lab” outside the theory, where the replica is

actually manufactured – was finitary. Thus – Hilbert advocated – all this theory building and
theory checking ought to be effected by finitary means. This ingredient of his “program” was
consistent with peaceful coexistence with the intuitionists. And, alas, this ingredient was the one
that – as some writers put it – destroyed Hilbert’s program to found mathematics on his version
of formalism. Gödel’s incompleteness theorems showed that a finitary metatheory is not up to
the task.

¶ True, a formalist applies classical logic, while an intuitionist applies a different logic where, for
example, double negation is not removable. Yet, unlike a Platonist, a Hilbert-style formalist does
not believe – or he does not have to disclose to his intuitionist friends that he might believe – that
infinite sets exist in the metatheory, as his tools are just finite symbol sequences. To appreciate the
tension here, consider this anecdote: It is said that when Kronecker – the father of intuitionism –
was informed of Lindemann’s proof (1882) that π is transcendental, while he granted that this was
an interesting result, he also dismissed it, suggesting that “π” – whose decimal expansion is, of
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In support of the “formalism for the user” position we must definitely men-
tion the premier paradigm, Bourbaki’s monumental work (1966a), which is a
formalization of a huge chunk of mathematics, including set theory, algebra,
topology, and theory of integration. This work is strictly for the user of mathe-
matics, not for the metamathematician who studies formal theories. Yet, it is
fully formalized, true to the spirit of Hilbert, and it comes in a self-contained
package, including a “Chapter 0” on formal logic.

More recently, the proposal to employ formal reasoning as a tool has been
gaining support in a number of computer science undergraduate curricula, where
logic and discrete mathematics are taught in a formalized setting, starting with
a rigorous course in the two logical calculi (propositional and predicate), em-
phasizing the point of view of the user of logic (and mathematics) – hence with
an attendant emphasis on “calculating” (i.e., writing and annotating formal)
proofs. Pioneering works in this domain are the undergraduate text (1994) and
the paper (1995) of Gries and Schneider.

I.1. First Order Languages

In the most abstract (therefore simplest) manner of describing it, a formalized
mathematical theory consists of the following sets of things: A set of basic
or primitive symbols, V , used to build symbol sequences (also called strings,
or expressions, or words) “over V ”. A set of strings, Wff, over V , called the
formulas of the theory. Finally, a subset of Wff, called Thm, the set of theorems
of the theory.†

Well, this is the extension of a theory, that is, the explicit set of objects in it.
How is a theory “given”?

In most cases of interest to the mathematician it is given by V and two
sets of simple rules: formula-building rules and theorem-building rules. Rules
from the first set allow us to build, or generate, Wff from V . The rules of the
second set generate Thm from Wff. In short (e.g., Bourbaki (1966b)), a theory
consists of an alphabet of primitive symbols, some rules used to generate the
“language of the theory” (meaning, essentially, Wff) from these symbols, and
some additional rules used to generate the theorems. We expand on this below:

course, infinite but not periodic – “does not exist” (see Wilder (1963, p. 193)). We are not to pro-
pound the tenets of intuitionism here, but it is fair to state that infinite sets are possible in intuition-
istic mathematics as this has later evolved in the hands of Brouwer and his Amsterdam “school”.
However, such sets must be (like all sets of intuitionistic mathematics) finitely generated – just
as our formal languages and the set of theorems are (the latter provided our axioms are too) – in
a sense that may be familiar to some readers who have had a course in “automata and language
theory”. See Wilder (1963, p. 234)

† For a less abstract, but more detailed view of theories see p. 38.
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I.1.1 Remark . What is a “rule”? We run the danger of becoming circular or too
pedantic if we overdefine this notion. Intuitively, the rules we have in mind are
string manipulation rules, that is, “black boxes” (or functions) that receive string
inputs and respond with string outputs. For example, a well-known theorem-
building rule receives as input a formula and a variable, and returns (essentially)
the string composed of the symbol ∀, immediately followed by the variable and,
in turn, immediately followed by the formula.† �

(1) First off, the ( first order) formal language, L , where the theory is “spoken”,‡

is a triple (V , Term, Wff), that is, it has three important components, each
of them a set.

V is the alphabet or vocabulary of the language. It is the collection of the
basic syntactic “bricks” (symbols) that we use to form expressions that
are terms (members of Term) or formulas (members of Wff). We will
ensure that the processes that build terms or formulas, using the basic
building blocks in V , are intuitively algorithmic or “mechanical”.

Terms will formally codify “objects”, while formulas will formally
codify “statements” about objects.

(2) Reasoning in the theory will be the process of discovering true statements
about objects – that is, theorems. This discovery journey begins with certain
formulas which codify statements that we take for granted (i.e., we accept
without “proof” as “basic truths”). Such formulas are the axioms. There are
two types of axioms:

Special or nonlogical axioms are to describe specific aspects of any
specific theory that we might be building. For example, “x + 1 �= 0”
is a special axiom that contributes towards the characterization of
number theory over the natural numbers, N.

The other kind of axiom will be found in all theories. It is the kind that is
“universally valid”, that is, not theory-specific (for example, “x = x”
is such a “universal truth”). For that reason this type of axiom will be
called logical.

(3) Finally, we will need rules for reasoning, actually called rules of inference.
These are rules that allow us to deduce, or derive, a true statement from
other statements that we have already established as being true.§ These
rules will be chosen to be oblivious to meaning, being only concerned with

† This rule is usually called “generalization”.
‡ We will soon say what makes a language “first order”.
§ The generous use of the term “true” here is only meant for motivation. “Provable” or “deducible”

(formula), or “theorem”, will be the technically precise terminology that we will soon define to
replace the term “true statement”.
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form. They will apply to statement “configurations” of certain recognizable
forms and will produce (derive) new statements of some corresponding
recognizable forms (See Remark I.1.1).

I.1.2 Remark. We may think of axioms of either logical or nonlogical type as
special cases of rules, that is, rules that receive no input in order to produce an
output. In this manner item (2) above is subsumed by item (3), and thus we are
faithful to our abstract definition of theory where axioms were not mentioned.

An example, outside mathematics, of an inputless rule is the rule invoked
when you type date on your computer keyboard. This rule receives no input,
and outputs on your screen the current date. �

We next look carefully into (first order) formal languages.
There are two parts in each first order alphabet. The first, the collection of

the logical symbols, is common to all first order languages regardless of which
theory is “spoken” in them. We describe this part immediately below.

Logical Symbols

LS.1. Object or individual variables. An object variable is any one symbol
out of the non-ending sequence v0, v1, v2, . . . . In practice – whether
we are using logic as a tool or as an object of study – we agree to be
sloppy with notation and use, generically, x, y, z, u, v, w with or without
subscripts or primes as names of object variables.† This is just a matter
of notational convenience. We allow ourselves to write, say, z instead of,
say, v1200000000560000009. Object variables (intuitively) “vary over” (i.e.,
are allowed to take values that are) the objects that the theory studies
(numbers, sets, atoms, lines, points, etc., as the case may be).

LS.2. The Boolean or propositional connectives. These are the symbols “¬”
and “∨”.‡ They are pronounced not and or respectively.

LS.3. The existential quantifier, that is, the symbol “∃”, pronounced exists or
for some.

LS.4. Brackets, that is, “(” and “)”.
LS.5. The equality predicate. This is the symbol “=”, which we use to indicate

that objects are “equal”. It is pronounced equals.

† Conventions such as this one are essentially agreements – effected in the metatheory – on how
to be sloppy and get away with it. They are offered in the interest of user-friendliness.

‡ The quotes are not part of the symbol. They serve to indicate clearly here, in particular in the
case of “∨”, what is part of the symbol and what is not (the following period).
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The logical symbols will have a fixed interpretation. In particular, “=” will
always be expected to mean equals.

The theory-specific part of the alphabet is not fixed, but varies from theory
to theory. For example, in set theory we just add the nonlogical (or special)
symbols, ∈ and U . The first is a special predicate symbol (or just predicate) of
arity 2, the second is a predicate symbol of arity 1.†

In number theory we adopt instead the special symbols S (intended meaning:
successor, or “ + 1” function), +, ×, 0, <, and (sometimes) a symbol for the
exponentiation operation (function) ab. The first three are function symbols of
arities 1, 2, and 2 respectively. 0 is a constant symbol, < a predicate of arity 2,
and whatever symbol we might introduce to denote ab would have arity 2.

The following list gives the general picture.

Nonlogical Symbols

NLS.1. A (possibly empty) set of symbols for constants. We normally use
the metasymbols‡ a, b, c, d, e, with or without subscripts or primes, to
stand for constants unless we have in mind some alternative “standard”
formal notation in specific theories (e.g., ∅, 0, ω).

NLS.2. A (possibly empty) set of symbols for predicate symbols or relation
symbols for each possible “arity” n > 0. We normally use P, Q, R
generically, with or without primes or subscripts, to stand for predicate
symbols. Note that = is in the logical camp. Also note that theory-
specific formal symbols are possible for predicates, e.g., <, ∈.

NLS.3. Finally, a (possibly empty) set of symbols for functions for each possi-
ble “arity” n > 0. We normally use f, g, h, generically, with or without
primes or subscripts, to stand for function symbols. Note that theory-
specific formal symbols are possible for functions, e.g., +, ×.

I.1.3 Remark. (1) We have the option of assuming that each of the logical
symbols that we named in LS.1–LS.5 have no further “structure” and that the
symbols are, ontologically, identical to their names, that is, they are just these
exact signs drawn on paper (or on any equivalent display medium).

In this case, changing the symbols, say, ¬ and ∃ to ∼ and E respectively
results in a “different” logic, but one that is, trivially, “isomorphic” to the one

† “Arity” is a term mathematicians have made up. It is derived from “ary” of “unary”, “binary”,
etc. It denotes the number of arguments needed by a symbol according to the dictates of correct
syntax. Function and predicate symbols need arguments.

‡ Metasymbols are informal (i.e., outside the formal language) symbols that we use within
“everyday” or “real” mathematics – the metatheory – in order to describe, as we are doing here,
the formal language.
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we are describing: Anything that we may do in, or say about, one logic trivially
translates to an equivalent activity in, or utterance about, the other as long as
we systematically carry out the translations of all occurrences of ¬ and ∃ to ∼
and E respectively (or vice versa).

An alternative point of view is that the symbol names are not the same as
(identical with) the symbols they are naming. Thus, for example, “¬” names
the connective we pronounce not, but we do not know (or care) exactly what
the nature of this connective is (we only care about how it behaves). Thus, the
name “¬” becomes just a typographical expedient and may be replaced by other
names that name the same object, not.

This point of view gives one flexibility in, for example, deciding how the
variable symbols are “implemented”. It often is convenient to think that the
entire sequence of variable symbols was built from just two symbols, say, “v”
and “|”.† One way to do this is by saying that vi is a name for the symbol
sequence‡

“v | . . . |
︸︷︷︸

i |’s

”

Or, preferably – see (2) below – vi might be a name for the symbol sequence

“v | . . . |
︸︷︷︸

i |’s

v”

Regardless of option, vi and v j will name distinct objects if i �= j .
This is not the case for the metavariables (“abbreviated informal names”)

x, y, z, u, v, w. Unless we say so explicitly otherwise, x and y may name the
same formal variable, say, v131.

We will mostly abuse language and deliberately confuse names with the
symbols they name. For example, we will say, e.g., “let v1007 be an object
variable . . . ” rather than “let v1007 name an object variable . . . ”, thus appearing
to favour option one.

(2) Any two symbols included in the alphabet are distinct. Moreover, if any of
them are built from simpler “sub-symbols” – e.g., v0, v1, v2, . . . might really
name the strings vv, v|v, v||v, . . . – then none of them is a substring (or subex-
pression) of any other.§

† We intend these two symbols to be identical to their names. No philosophical or other purpose
will be served by allowing “more indirection” here (such as “v names u, which actually names
w, which actually is . . . ”).

‡ Not including the quotes.
§ What we have stated under (2) are requirements, not metatheorems! That is, they are nothing of

the sort that we can prove about our formal language within everyday mathematics.
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(3) A formal language, just like a “natural” language (such as English or
Greek), is “alive” and evolving. The particular type of evolution we have in
mind is the one effected by formal definitions. Such definitions continually add
nonlogical symbols to the language.†

Thus, when we say that, e.g., “∈ and U are the only nonlogical symbols of
set theory”, we are telling a small white lie. More accurately, we ought to have
said that “∈ and U are the only ‘primitive’ nonlogical symbols of set theory”,
for we will add loads of other symbols such as ∪, ω, ∅, ⊂, ⊆.

This evolution affects the (formal) language of any theory, not just set
theory. �

Wait a minute! If formal set theory is “the foundation of all mathematics”, and
if, ostensibly, this chapter on logic assists us to found set theory itself, then
how come we are employing natural numbers like 1200000000560000009 as
subscripts in the names of object variables? How is it permissible to already talk
about “sets of symbols” when we are about to found a theory of sets formally?
Surely we do not “have”‡ any of these “items” yet, do we?

First off, the presence of subscripts such as 1200000000560000009 in

v1200000000560000009

is a non-issue. One way to interpret what has been said in the definition is
to view the various vi as abbreviated names of the real thing, the latter being
strings that employ the symbols v and | as in Remark I.1.3. In this connection
saying that vi is “implemented” as

v | . . . |
︸︷︷︸

i |’s

v (1)

especially the use of “i” above, is only illustrative, thus totally superfluous. We
can say instead that strings of type (1) are the variables which we define as
follows without the help of the “natural number i” (this is a variation of how
this is done in Bourbaki (1966b) and Hermes (1973)):

An “|-calculation” forms a string like this: Write a “|”.§ This is the “current
string”. Repeat a finite number of times: Add (i.e., concatenate) one | imme-
diately to the right of the current string. Write this new string (it is now the
current string).

† This phenomenon will be studied in some detail in what follows. By the way, any additions are
made to the nonlogical side of the alphabet. All the logical symbols have been given, once and
for all.

‡ “Do not have” in the sense of having not formally defined – or proved to exist – or both.
§ Without the quotes. These were placed to exclude the punctuation following.
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I.1. First Order Languages 11

Let us call any string that figures in some |-calculation a “|-string”. A variable
either is the string vv, or is obtained as the concatenation from left to right of
v followed by an |-string, followed by v.

All we now need is the ability to generate as many as necessary distinct
variables (this is the “non-ending sequence” part of the definition, p. 7): For
any two variables we get a new one that is different from either one by forming
the string “v, followed by the concatenation of the two |-parts, followed by v”.
Similarly if we had three, four, . . . variables. By the way, two strings of | are
distinct iff† both occur in the same |-calculation, one, but not both, as the last
string.

Another, more direct way to interpret what was said about object variables
on p. 7 is to take the definition literally, i.e., to suppose that it speaks about the
ontology of the variables.‡ Namely, the subscript is just a a string of meaningless
symbols taken from the list below:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Again we can pretend that we know nothing about natural numbers, and when-
ever, e.g., we want a variable other than either of v123 or v321, we may offer
either of v123321 or v321123 as such a new variable.

O.K., so we have not used natural numbers in the definition. But we did say
“sets” and also “non-ending sequence”, implying the presence of infinite sets!

As we have already noted, on one hand we have “real mathematics”, and on
the other hand we have syntactic replicas of theories – the formal theories –
that we built within real mathematics. Having built a formal theory, we can then
choose to use it (acting like formalists) to generate theorems, the latter being
codified as symbol sequences (formulas). Thus, the assertion “axiomatic set
theory is the foundation of all mathematics” is just a colloquialism proffered
in the metatheory that means that “within axiomatic set theory we can construct
the known sets of mathematics, such as the reals R and the complex numbers
C, and moreover we can simulate what we informally do whenever we are
working in real or complex analysis, algebra, topology, theory of measure and
integration, functional analysis, etc., etc.”

There is no circularity here, but simply an empirical boastful observation in
the metatheory of what our simulator can do. Moreover, our metatheory does

† If and only if.
‡ Why not just say exactly what a definition is meant to say rather than leave it up to interpretation?

One certainly could, as in Bourbaki (1966b), make the ontology of variables crystal-clear right in
the definition. Instead, we have followed the custom of more recent writings and given the defi-
nition in a quasi-sloppy manner that leaves the ontology of variables as a matter for speculation.
This gives one the excuse to write footnotes like this one and remarks like I.1.3.
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have sets and all sorts of other mathematical objects. In principle we can use any
among those towards building or discussing the simulator, the formal theory.

Thus, the question is not whether we can use sets, or natural numbers, in
our definitions, but whether restrictions apply. For example, can we use infinite
sets?

If we are Platonists, then we have available in the metatheory all sorts of sets,
including infinite sets, in particular the set of all natural numbers. We can use
any of these items, speak about them, etc., as we please, when we are describing
or building the formal theory within our metatheory.

Now, if we are not Platonists, then our “real” mathematical world is much
more restricted. In one extreme, we have no infinite sets.†

We can still manage to define our formal language! After all, the “non-
ending” sequence of object variables v0, v1, v2, . . . can be finitely generated in
at least two different ways, as we have already seen. Thus we can explain (to
a true formalist or finitist) that “non-ending sequence” was an unfortunate slip
of the tongue, and that we really meant to give a procedure of how to generate
on demand a new object variable, different from whatever ones we may already
have.

Two parting comments are in order: One, we have been somewhat selective
in the use of the term “metavariable”. We have called x, x ′, y metavariables,
but have implied that the vi are formal variables, even if they are just names
of formal objects such that we do not know or do not care what they look like.
Well, strictly speaking the abbreviations vi are also metavariables, but they are
endowed with a property that the “generic” metavariables like x, y, z′ do not
have: Distinct vi names denote distinct object variables (cf. I.1.3).

Two, we should clarify that a formal theory, when used (i.e., the simulator
is being “run”) is a generator of strings, not a decider or “parser”. Thus, it
can generate any of the following: variables (if these are given by procedures),
formulas and terms (to be defined), or theorems (to be defined). Decision issues,
no matter how trivial, the system is not built to handle. These belong to the
metatheory. In particular, the theory does not see whatever numbers or strings
(like 12005) may be hidden in a variable name (such as v12005).

Examples of decision questions: Is this string a term or a formula or a variable
(finitely generated as above)? All these questions are “easy”. They are algo-
rithmically decidable in the metatheory. Or, is this formula a theorem? This is

† A finitist – and don’t forget that Hilbert-style metatheory was finitary, ostensibly for political
reasons – will let you have as many integers as you like in one serving, as long as the serving
is finite. If you ask for more, you can have more, but never the set of all integers or an infinite
subset thereof.
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algorithmically undecidable in the metatheory if it is a question about Peano
arithmetic or set theory.

I.1.4 Definition (Terminology about Strings). A symbol sequence or expres-
sion (or string) that is formed by using symbols exclusively out of a given set†

M is called a string over the set, or alphabet, M .
If A and B denote strings (say, over M), then the symbol A ∗ B, or more

simply AB, denotes the symbol sequence obtained by listing first the symbols
of A in the given left to right sequence, immediately followed by the symbols of
B in the given left to right sequence. We say that AB is (more properly, denotes
or names) the concatenation of the strings A and B in that order.

We denote the fact that the strings (named) C and D are identical sequences
(but we just say that they are equal) by writing C ≡ D. The symbol �≡ denotes
the negation of the string equality symbol ≡. Thus, if # and ? are (we do mean
“are”) symbols from an alphabet, then

#?? ≡ #?? but #? �≡ #??

We can also employ ≡ in contexts such as “let A ≡ ##?”, where we give the
name A to the string ##?.‡

In this book the symbol ≡ will be exclusively used in the metatheory for equality
of strings over some set M .

The symbol λ normally denotes the empty string, and we postulate for it the
following behaviour:

A ≡ Aλ ≡ λA for all strings A

We say that A occurs in B, or is a substring of B, iff there are strings C and D
such that B ≡ CAD.

For example, “(” occurs four times in the (explicit) string “¬(()∨)((”, at
positions 2, 3, 7, 8. Each time this happens we have an occurrence of “(” in
“¬(()∨)((”.

If C ≡ λ, we say that A is a prefix of B. If moreover D �≡ λ, then we say
that A is a proper prefix of B. �

† A set that supplies symbols to be used in building strings is not special. It is just a set. However,
it often has a special name: “alphabet”.

‡ Punctuation such as “.” is not part of the string. One often avoids such footnotes by enclosing
strings that are explicitly written as symbol sequences inside quotes. For example, if A stands
for the string #, one writes A ≡ “#”. Note that we must not write “A”, unless we mean a string
whose only symbol is A.
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I.1.5 Definition (Terms). The set of terms, Term, is the smallest set of strings
over the alphabet V with the following two properties:

(1) All of the items in LS.1 or NLS.1 (x , y, z, a, b, c, etc.) are included.
(2) If f is a function† of arity n and t1, t2, . . . , tn are included, then so is the

string “ f t1t2 . . . tn”.

The symbols t , s, and u, with or without subscripts or primes, will denote
arbitrary terms. Since we are using them in the metalanguage to “vary over”
terms, we naturally call them metavariables. They also serve – as variables –
towards the definition (this one) of the syntax of terms. For this reason they are
also called syntactic variables. �

I.1.6 Remark. (1) We often abuse notation and write f (t1, . . . , tn) instead of
f t1 . . . tn .

(2) Definition I.1.5 is an inductive definition.‡ It defines a more or less
“complicated” term by assuming that we already know what “simpler” terms
look like. This is a standard technique employed in real mathematics. We will
have the opportunity to say more about such inductive definitions – and their
appropriateness – in a -comment later on.

(3) We relate this particular manner of defining terms to our working def-
inition of a theory (given on p. 6 immediately before Remark I.1.1 in terms
of “rules” of formation). Item (2) in I.1.5 essentially says that we build new
terms (from old ones) by applying the following general rule: Pick an arbitrary
function symbol, say f . This has a specific formation rule associated with it
that, for the appropriate number, n, of an already existing ordered list of terms,
t1, . . . , tn , will build the new term consisting of f , immediately followed by
the ordered list of the given terms.

To be specific, suppose we are working in the language of number theory.
There is a function symbol + available there. The rule associated with + builds
the new term +ts for any prior obtained terms t and s. For example, +v1v13

and +v121 + v1v13 are well-formed terms. We normally write terms of number
theory in “infix” notation,§ i.e., t + s, v1 + v13 and v121 + (v1 + v13) (note the
intrusion of brackets, to indicate sequencing in the application of +).

† We will omit from now on the qualification “symbol” from terminology such as “function sym-
bol”, “constant symbol”, “predicate symbol”.

‡ Some mathematicians will absolutely insist that we call this a recursive definition and reserve
the term “induction” for “induction proofs”. This is seen to be unwarranted hair splitting if we
consider that Bourbaki (1966b) calls induction proofs “démonstrations par récurrence”. We will
be less dogmatic: Either name is all right.

§ Function symbol placed between the arguments.
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A by-product of what we have just described is that the arity of a function
symbol f is whatever number of terms the associated rule will require as input.

(4) A crucial word used in I.1.5 (which recurs in all inductive definitions) is
“smallest”. It means “least inclusive” (set). For example, we may easily think of
a set of strings that satisfies both conditions of the above definition, but which is
not “smallest” by virtue of having additional elements, such as the string “¬¬(”.

Pause. Why is “¬¬(” not in the smallest set as defined above, and therefore
not a term?

The reader may wish to ponder further on the import of the qualification
“smallest” by considering the familiar (similar) example of N, the set of natural
numbers. The principle of induction in N ensures that this set is the smallest
with the properties:

(i) 0 is included, and
(ii) if n is included, then so is n + 1.

By contrast, all of Z (set of integers), Q (set of rational numbers), R (set of real
numbers) satisfy (i) and (ii), but they are clearly not the “smallest” such. �

I.1.7 Definition (Atomic Formulas). The set of atomic formulas, Af, contains
precisely:

(1) The strings t = s for every possible choice of terms t, s.
(2) The strings Pt1t2 . . . tn for every possible choice of n-ary predicates P (for

all choices of n > 0) and all possible choices of terms t1, t2, . . . , tn . �

We often abuse notation and write P(t1, . . . , tn) instead of Pt1 . . . tn .

I.1.8 Definition (Well-Formed Formulas). The set of well-formed formulas,
Wff, is the smallest set of strings or expressions over the alphabet V with the
following properties:

(a) All the members of Af are included.
(b) If A and B denote strings (over V ) that are included, then (A ∨ B ) and

(¬A) are also included.
(c) If A is† a string that is included and x is any object variable (which may or

may not occur (as a substring) in the string A), then the string ((∃x)A) is
also included. We say that A is the scope of (∃x). �

† Denotes!



P1: FOM

CB481-Tourlakis CB481-1Drv August 29, 2002 9:51 Char Count= 0

16 I. Basic Logic

I.1.9 Remark.

(1) The above is yet another inductive definition. Its statement (in the metalan-
guage) is facilitated by the use of so-called syntactic, or meta, variables –
A and B – used as names for arbitrary (indeterminate) formulas. In gen-
eral, we will let calligraphic capital letters A, B , C , D , E , F , G (with or
without primes or subscripts) be names for well-formed formulas, or just
formulas, as we often say. The definition of Wff given above is standard.
In particular, it permits well-formed formulas such as ((∃x)((∃x)x = 0)) in
the interest of making the formation rules “context-free”.†

(2) The rules of syntax just given do not allow us to write things such as ∃ f or
∃P where f and P are function and predicate symbols respectively. That
quantification is deliberately restricted to act solely on object variables
makes the language first order.

(3) We have already indicated in Remark I.1.6 where the arities (of function and
predicate symbols) come from (Definitions I.1.5 and I.1.7 referred to them).
These are numbers that are implicit (“hardwired”) with the formation rules
for terms and atomic formulas. Each function and each predicate symbol
(e.g., +, ×, ∈, <) has its own unique formation rule. This rule “knows” how
many terms are needed (on the input side) in order to form a term or atomic
formula. Therefore, since the theory, in use, applies rather than studies its
formation rules, it is, in particular, ignorant of arities of symbols.

Now that this jurisdictional point has been made (cf. the concluding
remarks about decision questions, on p. 12), we can consider an alternative
way of making arities of symbols known (in the metatheory): Rather than
embedding arities in the formation rules, we can hide them in the ontology
of the symbols, not making them explicit in the name.

For example, a new symbol, say ∗, can be used to record arity. That
is, we can think of a predicate (or function) symbol as consisting of two
parts: an arity part and an “all the rest” part, the latter needed to render the
symbol unique.‡ For example, ∈ may be actually the name for the symbol
“∈∗∗”, where this latter name is identical to the symbol it denotes, or “what
you see is what you get” – see Remark I.1.3(1) and (2), p. 8. The presence
of the two asterisks declares the arity. Some people say this differently:
They make available to the metatheory a “function”, ar , from “the set of

† In some presentations, the formation rule in I.1.8(c) is “context-sensitive”: It requires that x be
not already quantified in A.

‡ The reader may want to glimpse ahead, on p. 166, to see a possible implementation in the case
of number theory.
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all predicate symbols and functions” (of a given language) to the natural
numbers, so that for any function symbol f or predicate symbol P , ar( f )
and ar(P) yield the arities of f and P respectively.†

(4) Abbreviations
Abr1. The string ((∀x)A) abbreviates the string “(¬((∃x)(¬A)))”. Thus,

for any explicitly written formula A, the former notation is infor-
mal (metamathematical), while the latter is formal (within the formal
language). In particular,∀ is a metalinguistic symbol. “∀x” is the uni-
versal quantifier. A is its scope. The symbol ∀ is pronounced for all.

We also introduce – in the metalanguage – a number of additional Boolean
connectives in order to abbreviate certain strings:
Abr2. (Conjunction, ∧) (A ∧ B ) stands for (¬((¬A) ∨ (¬B ))). The

symbol ∧ is pronounced and.
Abr3. (Classical or material implication, →) (A → B ) stands for

((¬A) ∨B ). (A → B ) is pronounced if A, then B .
Abr4. (Equivalence, ↔ ) (A ↔ B ) stands for ((A → B ) ∧ (B → A)).
Abr5. To minimize the use of brackets in the metanotation we adopt stan-

dard priorities of connectives: ∀, ∃, and ¬ have the highest, and then
we have (in decreasing order of priority) ∧, ∨, →, ↔, and we agree
not to use outermost brackets. All associativities are right – that is,
if we write A → B → C , then this is a (sloppy) counterpart for
(A → (B → C )).

(5) The language just defined, L , is one-sorted, that is, it has a single sort or
type of object variable. Is this not inconvenient? After all, our set theory
(volume 2 of these lectures) will have both atoms and sets. In other theories,
e.g., geometry, one has points, lines, and planes. One would have hoped to
have different “types” of variables, one for each.

Actually, to do this would amount to a totally unnecessary complication
of syntax. We can (and will) get away with just one sort of object variable.
For example, in set theory we will also introduce a 1-ary‡ predicate, U ,
whose job is to “test” an object for “sethood”.§ Similar remedies are avail-
able to other theories. For example, geometry will manage with one sort of
variable and unary predicates “Point”, “Line”, and “Plane”.

† In mathematics we understand a function as a set of input–output pairs. One can “glue” the two
parts of such pairs together, as in “∈∗ ∗” – where “∈” is the input part and “∗∗” is the output part,
the latter denoting “2” – etc. Thus, the two approaches are equivalent.

‡ More commonly called unary.
§ People writing about, or teaching, set theory have made this word up. Of course, one means by

it the property of being a set.


