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Introduction

1. Overview of this book

In real Euclidean space a reflection is an orthogonal transformation which fixes every

vector of some hyperplane, i.e. a subspace of codimension one. Thus a real reflection

necessarily has order two. Finite groups generated by reflections in a real vector

space have been studied in great depth and they play a central rôle in many branches

of mathematics, particularly in the theory of Lie groups and Lie algebras, where

many of them appear as ‘Weyl groups’. They might be thought of as linking the

discrete and continuous strands of Felix Klein’s Erlangen programme, according to

which geometry is studied through the group of symmetries of the space concerned.

The standard work on these groups is Bourbaki’s treatise [33] of 1968 and there is a

more recent account in the monograph of Humphreys [119]. See [110] for a survey

of the breadth of applications up to 1977.

In 1951 Shephard (see [191] and [192]) extended the concept of reflection to

a complex vector space with an hermitian inner product. A reflection (sometimes

called a pseudo-reflection) is a linear transformation of finite order, which fixes a

hyperplane pointwise. Almost immediately, Shephard and Todd [193], building on

the work of many authors over the preceding century, obtained the complete classi-

fication of finite groups generated by (unitary) reflections. These groups include the

Euclidean reflection groups, and arise naturally from them when one considers cer-

tain subgroups and subquotients which act on subspaces of the complexification of

the real space with which one begins. These more general ‘unitary reflection groups’

have a wide range of applications, including

(i) the structure and representation theory of reductive algebraic groups;

(ii) Hecke algebras;

(iii) knot theory;

(iv) moduli spaces;

(v) algebraic topology, particularly in low dimensions;

(vi) invariant theory and algebraic geometry;

(vii) differential equations;

(viii) mathematical physics.
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2 Introduction

In writing this book we have had four principal objectives in mind. Firstly, al-

though it is now more than half a century since the Shephard–Todd classification,

there is still no complete and coherent account of this classification in book form in

the literature, although there have been some research articles, e.g. [54, 55], which

have addressed the subject. This is in sharp contrast to the situation for the real re-

flection groups, which are precisely the finite Coxeter groups (see [209, Appendix,

Theorem 38] and [33, Chap. V, Th. 1 et 2]), and whose classification generally pro-

ceeds through the classification of root systems, which is readily available in the

literature. Taking into account that the original Shephard–Todd classification itself

depends on a significant body of earlier literature, and that the classification is much

used and referred to, we thought it useful to provide a complete treatment of the

classification of the unitary reflection groups.

For any unitary reflection group G, there is a corresponding collection of lines

in the ambient complex space V , obtained by taking the lines orthogonal to the re-

flecting hyperplanes of G. We call this collection a ‘line system’; our treatment of

the classification of the unitary reflection groups comes down to a classification of

line systems. There are interrelationships among the various irreducible reflection

groups, which may be studied through the relationships among their line systems.

A consequence of our approach to the classification is that we are able to elucidate

these systematically. In particular we indicate all the maximal reflection subgroups

of any irreducible group, which of course essentially provides a complete list of re-

flection subgroups of each irreducible group. For analogous information concerning

the real groups the classical references are [31, 92, 90]. More generally, we have

sought to provide a good deal of detail concerning individual groups. We have also

provided identifications of the irreducible groups with linear groups over finite fields

where appropriate.

Our second objective relates to the invariant theory of unitary reflection groups.

It is a beautiful result of Shephard and Todd that the unitary reflection groups are

characterised among all complex linear groups as those whose algebra of invariants

is free, or equivalently those which have a smooth variety of orbits on the vector

space V in which they act. This is the merest hint that the invariant theory of uni-

tary reflection groups is a rich vein for study. In this book we develop this theory in

several directions. We give a complete treatment of the M -exponents of G, for any

G-module M ; this includes the usual exponents and the more recent ‘coexponents’,

which are closely related to the topology of the complement MG of the reflecting hy-

perplanes of G. These ideas are used to study parabolic subgroups, i.e. the stabilisers

of points (or subspaces) of V ; in particular, we give a simple proof of Steinberg’s

Theorem that the parabolic subgroups are reflection groups.

We give a comprehensive account of the application of invariant theoretic methods

to the eigenspace theory of Springer and Lehrer–Springer. This has obviated the need
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1. Overview of this book 3

for intersection theory, and requires only elementary concepts from affine algebraic

geometry, which we provide in Appendix A. Our account includes material concern-

ing centralisers of elements of reflection groups, which we regard as an integral part

of the theory. In a related circle of ideas, we study harmonic polynomial functions

on V through duality between the polynomial functions and differential operators.

These two themes are united in applications to the structure of the coinvariant alge-

bra. In particular, we prove results relating its module structure to that of parabolic

subgroups of G.

Thirdly, in the study of reflection groups, it becomes apparent early, even if one

confines attention to real groups, that it is important to consider situations where

there is a linear transformation γ of the ambient space V which normalises the re-

flection group G. Examples include normalisers of parabolic subgroups, the ramifi-

cation groups occurring in the representation theory of reductive groups, and many

of the applications in the areas outlined in Appendix C. In view of this, we define

‘reflection cosets’ γG, and provide a chapter (12) on the ‘twisted invariant theory’ of

such cosets. This theory is very close to the untwisted case, with only a certain set of

roots of unity, the ‘M -factors’ for each 〈γ,G〉-module M entering the picture. The

study of these fits well with the eigenspace theory alluded to above.

Finally, although the purpose of this book is to provide background in the core ma-

terial on reflection groups, we are very conscious that current interest in this subject

arises from its application to many and varied branches of mathematics, including

those listed above. We have therefore provided, in Appendix C, a brief outline of

how the subject matter in this book applies to various areas. We have attempted to

write our development in such a way as to be accessible to people working in the

diverse areas in which it may be applied. This appendix also contains a number of

questions and open problems, which are suitable as research topics.

The reader is referred to the appendix for details, and we confine ourselves here

to the following remark as to how these applications arise. A key observation which

leads to links between the theory of reflection groups and other areas is that there is an

important topological space associated with any unitary reflection group G, namely

its associated hyperplane complement MG , which is defined as the set of points of

V which lie on no reflecting hyperplane of G. In the case where G is the symmetric

group Sym(n), MG is the space of ordered configurations (z1 , z2 , . . . , zn ) of distinct

points z ∈ C. Now MG , and its quotient XG by G, have the structure of complex

analytic manifolds, but may also be regarded as the varieties of complex points of

algebraic schemes over a number field. Moreover XG has an interesting fundamental

group, which in the example of Sym(n) is the classical Artin braid group. One may

therefore consider differential equations for functions on XG , or the geometry of

its points over various rings; moreover the group algebra of its fundamental group

has quotients which arise in various ways in the representation theory of reductive
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4 Introduction

groups. It is these various ways of regarding MG , XG and associated spaces which

lead to applications in many and varied areas of mathematics.

2. Some detail concerning the content

In this section we provide a brief description of the material in this book, chapter

by chapter. In the next section we indicate the logical interdependencies among the

chapters, and make some suggestions as to how the book may be used as a text for

courses.

In Chapter 1, we introduce the elementary notions which underlie the subject,

and define, for any unitary reflection group, the basic concepts of root, root sys-

tem, and Cartan matrix. These are used later in the classification. In Chapter 2, we

make a fairly detailed study of the imprimitive groups G(m, p, n). The Shephard–

Todd classification shows that any irreducible unitary reflection group is either one

of these groups, or one of the 34 ‘exceptional groups’, which were denoted in [193]

as G4 , G5 , . . . , G37 , a notation which is still commonly used today. Of these, 19
are two-dimensional, and Chapters 5 and 6 are devoted to their description and

classification.

Chapters 3 and 4 provide the characterisation of reflection groups as precisely

those groups with a free algebra of invariants. The former gives a general intro-

duction to invariant theory and multilinear algebra, and introduces the coinvariant

algebra for the first time; this is used to define the χ-exponents of G and the fake

degree of any character χ of G. Chapter 4 uses Poincaré series to complete the proof

of the Shephard–Todd characterisation.

In Chapters 7 and 8 the classification of the irreducible unitary reflection groups

is completed. First, in Chapter 7, line systems are defined and studied in detail. It

is explained how they may be extended, and what restrictions there are on them.

In Chapter 8, a complete classification is given of all permissable line systems, and

interrelationships among them. This is used to complete the classification. An in-

teresting by-product of our development is the fact that any reflection group may

be written over the ring of integers in the field generated by the character values

of its defining representation. We call this the ring of definition of G, and show

that it plays an important role in the description of reflection subgroups, and line

subsystems.

The next two chapters, 9 and 10, provide a deeper study of the relationship be-

tween the structure and representations of G and its invariant theory. The orbit map

V → V/G is studied in Chapter 9, and used to prove Steinberg’s fixed point the-

orem and to study the semi-invariants of G. The space of G-harmonic functions is

introduced here via duality and differential operators. The structure of the spaces

of G-covariants for various representations M of G is studied in Chapter 10, and
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4. Leitfaden 5

the M -exponents are defined. The usual exponents and coexponents are treated as

special cases, and the structure theorems are translated here into statements concern-

ing two-variable Poincaré series. In Chapter 11, all this is applied to give a com-

plete treatment of the eigenspace theory of Springer and Lehrer–Springer, including

related material on centralisers of elements of G.

Chapter 12 presents the twisted theory for reflection cosets which was mentioned

above.

This book is intended to be suitable for a graduate student with a good background

in undergraduate algebra. The books of Lang [142] and Atiyah–Macdonald [8] are

more than adequate for our purpose, but we do not assume their content. On the few

occasions where a little more background is required, we generally refer to these

sources. The first two appendices, A and B contain background material necessary

for some of the proofs in the text. The first contains some elementary affine algebraic

geometry, which is needed in the exposition of the material on eigenspace theory. The

second contains some material on the spinor norm which is used in the identification

of some reflection groups as linear groups over finite fields.

Appendix C provides an introduction to some of the applications of the theory ex-

pounded in this book to various areas of algebra, topology and mathematical physics,

and contains some suggestions for further reading. It also contains suggested re-

search projects. Finally, Appendix D contains tables of various properties and invari-

ants associated with irreducible finite unitary reflection groups.
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4. Leitfaden

The logical interdependencies among the chapters are indicated in the diagram

below. From this diagram, it is clear that there are two main lines of development,

one for the classification and specific properties of the various groups, and the other

for the invariant theoretic ideas and their application to eigenspace theory. Either of
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6 Introduction

these would be suitable for a one-semester course for graduate students; alternatively

one could treat a subset of the chapters at the top of the diagram below, ensuring

only that if a course includes a chapter, it should also include those above it in the

diagram.

1

2 5 3

6 4

9

7 10

8 11

12

Appendix C
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CHAPTER 1

Preliminaries

In this chapter we define unitary reflections and prove some elementary facts about

them. We then introduce the important concepts of root, Cartan matrix and root sys-

tem, which are used extensively in our development of the classification. The notion

of the Weyl group of a Cartan matrix is discussed in the context of unitary reflection

groups, and some elementary properties of root systems are pointed out. We also

review the basic facts and terminology of group theory and representation theory

needed throughout the book.

1. Hermitian forms

Definition 1.1. Given a vector space V of dimension n over the complex field C, an

hermitian form on V is a mapping

(−,−) : V × V → C

such that

(v1 + v2 , w) = (v1 , w) + (v2 , w)

(av,w) = a(v, w)

(v, w) = (w, v)

for all v, w, v1 , v2 ∈ V and a ∈ C. The hermitian form is positive definite if

(v, v) ≥ 0 and

(v, v) = 0 if and only if v = 0.

A positive definite hermitian form is also known as an inner product. For example,

if V has a basis e1 , e2 , . . . , en , we may define a positive definite hermitian form on

V by

(1.2) (u, v) := a1b1 + a2b2 + · · · + anbn ,

where u := a1e1 + a2e2 + · · · + anen and v := b1e1 + b2e2 + · · · + bnen . It is

an easy exercise to show that every positive definite hermitian form on V can be

described in this fashion with respect to a suitable basis. In other words, if (−,−)
and [−,−] are two positive definite hermitian forms on V , then they are equivalent
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8 1. Preliminaries

in the sense that there is an invertible linear transformation ϕ : V → V such that

(u, v) = [ϕ(u), ϕ(v)] for all u, v ∈ V .

Let GL(V ) be the group of all invertible linear transformations of V . A subgroup

G of GL(V ) is said to leave the form (−,−) invariant if

(gv, gw) = (v, w) for all g ∈ G and for all v, w ∈ V .

We also say that (−,−) is a G-invariant form.

Lemma 1.3. If G is a finite subgroup of GL(V ), there exists a G-invariant positive

definite hermitian form on V .

Proof. Choose a positive definite hermitian form [−,−] on V and define a new form

by

(v, w) :=
∑

g∈G

[gv, gw].

Then (−,−) is easily seen to be hermitian and we have

(v, v) =
∑

g∈G

[gv, gv] ≥ 0.

This expression is 0 if and only if all [gv, gv] are 0. Thus (−,−) is positive definite.

Finally, if h ∈ G, then as g runs through G, so does gh and therefore

(hv, hw) =
∑

g∈G

[ghv, ghw] =
∑

g∈G

[gv, gw] = (v, w).

Thus (−,−) is G-invariant.

If (−,−) is any positive definite hermitian form on V , we say that x ∈ GL(V )
is unitary (or an isometry) if (xv, xw) = (v, w) for all v, w ∈ V ; that is, (−,−) is

〈x〉-invariant, where 〈x〉 is the cyclic group generated by x.

A basis e1 , e2 , . . . , en for V is orthogonal if (ei , ej ) = 0 for all i �= j; it is

orthonormal if in addition (ei , ei) = 1 for all i.
Let M be the matrix of x ∈ GL(V ) with respect to an orthonormal basis of V .

Then x is unitary if and only if M is a unitary matrix; i.e. MM
t

= I , where M
t

denotes the transpose of the complex conjugate of M and I is the identity matrix.

The group of all isometries of V is denoted by U(V ) and called the unitary group

of the form. Its subgroup of transformations of determinant 1 is called the special

unitary group. The corresponding groups of unitary matrices will be denoted by

Un (C) and SUn (C), where n := dimV . The group U(V ) depends on the form but

as any two positive definite hermitian forms on V are equivalent, U(V ) is unique up

to conjugacy in GL(V ). With this notation Lemma 1.3 says that any finite subgroup

of GL(V ) is a subgroup of U(V ) for an appropriate hermitian form.
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2. Reflections

Throughout this section V denotes a vector space of dimension n with a positive

definite hermitian form (−,−).

Definition 1.4. If U is a subset of V we define the orthogonal complement of U to

be the subspace U⊥ := { v ∈ V | (u, v) = 0 for all u ∈ U }.

If U and W are subspaces of V , we write V = U ⊥ W to indicate that V = U⊕W
and (u,w) = 0 for all u ∈ U and w ∈ W . It is an easy exercise to check that V =
U ⊥ W if and only if W = U⊥. Further, U⊥⊥ = U and dimU +dimU⊥ = dimV
for any subspace U ⊆ V .

Definition 1.5. Let 1 be the identity element of GL(V ). For g ∈ GL(V ) and H ⊆
GL(V ), put

(i) Fix g := Ker(1 − g) = { v ∈ V | gv = v },

(ii) V H := FixV (H) := { v ∈ V | hv = v for all h ∈ H }, and

(iii) [V, g] := Im(1 − g).

Lemma 1.6. If g ∈ U(V ), then [V, g] = (Fix g)⊥.

Proof. Suppose that u := (1 − g)w and that v ∈ Fix g. Then

(u, v) = (w − gw, v) = (w, v) − (gw, v)

= (gw, gv) − (gw, v) = (gw, gv − v) = 0.

Thus [V, g] ⊆ (Fix g)⊥ and on comparing dimensions we see that equality holds.

Definition 1.7. A linear transformation g is a reflection if the order of g is finite and

if dim[V, g] = 1. (In some references, such as Bourbaki [33], such a transformation

is called a pseudo-reflection.)

If g is a reflection, the subspace Fix g is a hyperplane, called the reflecting hyper-

plane of g.

If a spans [V, g], then for all v ∈ V , there exists ϕ(v) ∈ C such that v − gv =
ϕ(v)a. It is clear that ϕ : V → C is a linear functional such that Fix g = Kerϕ.

We call g a unitary reflection if it preserves the hermitian form (−,−). In this case

Fix g is orthogonal to [V, g] and V = [V, g] ⊥ Fix g.

Suppose g ∈ GL(V ) is a reflection of order m. Then the cyclic group 〈g 〉 has

order m and hence, by Lemma 1.3, it leaves invariant a positive definite hermitian

form. Thus every reflection g is a unitary reflection with respect to some form. If

H = Fix g, then g leaves invariant the line (one-dimensional subspace) H⊥. Hence

with respect to a basis adapted to the decomposition V = H⊥ ⊥ H , g has matrix

diag[ζ, 1, . . . , 1], where ζ is a primitive mth root of unity.
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10 1. Preliminaries

Definition 1.8. A root of a line ℓ of V is any non-zero vector of ℓ. If g is a unitary

reflection, a root of g is a root of the line [V, g]. A root a is short, long or tall if (a, a)
is 1, 2 or 3, respectively. For the most part we consider only short roots. However, in

Chapters 2, 7 and 8 it will be useful to use roots of other lengths.

Any line in C
n contains long, short and tall roots, each of which is unique up to

multiplication by an element of S1 := { z ∈ C | |z| = 1 }.

Lemma 1.9. If g, h ∈ GL(V ), then Fix(ghg−1) = g Fixh. In particular, if r is

a reflection with reflecting hyperplane H := Fix r, then grg−1 is a reflection with

reflecting hyperplane gH = Fix(grg−1).

Definition 1.10. A unitary reflection group is a finite subgroup of U(V ) that is gen-

erated by reflections. These groups are also referred to by several authors as complex

reflection groups.

Because of Lemma 1.3, every finite subgroup of GL(V ) that is generated by re-

flections is a unitary reflection group with respect to some positive definite hermitian

form on V .

It is important to note that the concept ‘unitary reflection group’ includes the rep-

resentation as well as the group. A given group may act as a reflection group or

otherwise. For example, for ζ := exp(2πi/m), the element diag[ζ, 1, . . . , 1] gener-

ates a cyclic reflection group of order m, but the (isomorphic) group generated by

diag[ζ, ζ, 1, . . . , 1] is not a reflection group.

Remark 1.11. The sentence ‘G is a unitary reflection group in V ’ will indicate that

G is a finite group, generated by reflections in V . By Lemma 1.3, there is then a

positive definite G-invariant hermitian form on V , and by Corollary 1.26, this form

is unique up to a non-zero positive multiple if G acts irreducibly on V .

Example 1.12. If ω is a cube root of unity, the matrices

r :=

[

ω 0
−ω2 1

]

and s :=

[

1 ω2

0 ω

]

are reflections of order 3 and they generate a group of order 24. This is the group G4

in the list of Shephard and Todd [193]. See the exercises at the end of the chapter for

further details.

Definition 1.13. The dual space of V is the vector space V ∗ of all linear maps

ϕ : V → C with addition and multiplication by scalars given by

(ϕ + ψ)(v) := ϕ(v) + ψ(v)

(αϕ)(v) := αϕ(v).

The elements of V ∗ are sometimes referred to as (linear) functionals.
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