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Cantor’s Paradise

Cantor’s quarry was the infinite. The mathematics of number had 
always been about objects of which there are infinitely many, like natu-
ral numbers, or objects of which not only are there infinitely many but 
each is also itself infinite, like real numbers with endless decimal expan-
sions. The infinities of geometry, like the infinity of points on a line or 
triangles in a plane, had always been there, but the applications of the 
calculus in geometry made its infinities more salient. The recognition of 
the infinity of its subject matter was always a reason not to test the con-
jectures of mathematics by checking the examples but rather to prefer 
proof. Aristotle urged that the infinite could only ever be potential, like 
a process with no fixed end, but that completed actual infinite wholes 
were ruled out. Such views look to countenance possibilities that could 
not be actual, which sounds contradictory, but even Gauss, the prince of 
mathematicians, had a horror infiniti. Cantor swam against the tide.

To work out a theory of the infinite per se, Cantor needed to figure 
out which things are classified as finite or infinite. That is one source 
of his interest in sets. For this purpose sets should be any old collec-
tions, whether unified by having something in common or not, like 
the Walrus’s shoes and ships and cabbages and kings. Sets should be 
an utterly general sort, so whether there are infinitely many such and 
suches can always be re-asked as whether the set of such and suches is 
infinite. As horses are the kind that divides into stallions and mares, so 
sets are the kind that divides into finite and infinite.

Cantor distinguished between two sorts of infinity, one where order is 
front and center, and another where it is less obvious. (Order can often 
be taken as process finished and complete.) Since order is an extra, let 
us first put it aside. We want to articulate what it is for two sets to be 
the same in size. There are as many digits on your left hand as on your 
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The Evolution of Logic2

right. One way to check this is to count each and get the same answer, 
five, in both cases, but that procedure assumes number, something we 
also want to articulate. Another way is to match your digits one-to-one, 
so that each is matched with just one partner. This you can do without 
counting or numerical claims. Order does not matter. Palm to palm, 
you can match thumb to thumb, index finger to index finger, and so on. 
But you can also invert one hand and match thumb to pinkie, index to 
ring finger, and so on. And there are obviously many (120, in fact) ways 
to tie each digit to a unique digit on the other hand.

The general idea is that a set A has as many members as a set B 
exactly in case there is a way to match the members of A with the mem-
bers of B one-to-one. The phrase “one-to-one” may make you worry 
that numbers like one are being smuggled in surreptitiously. The honest 
way to allay this worry is to lay out the set theoretic nuts and bolts of 
matching one-to-one so it is clear no numbers have snuck in. Laying out 
these nuts and bolts is also a way of illustrating how sets have become 
the arena in which logic, mathematics, and more are conducted. Sets 
are not just the natural kind of infinity; they are also a natural kind 
across logic, mathematics, and beyond. Frege’s aim was to reduce the 
mathematics of number to logic. To do so, he treated extensions (of 
predicates, properties, or concepts) considerably more systematically 
than the comparatively casual use traditional logic had made of exten-
sions for centuries before Frege. His treatment of extensions got into 
enough trouble that it is at least doubtful whether the mathematics of 
number is reducible to logic. But Frege’s systematic treatment of exten-
sions is an important stage in sets becoming the arena of mathematics 
and logic.

There are two primitive predicates in our exposition of basic naïve 
set theory. (We’ll see later what the naïveté is.) We want a predicate for 
the relation of, say, a senator to the set of senators. This is called the 
membership, or elementhood, relation, and is usually written for short 
as similar to the small Greek letter epsilon, or .  So if S is the set of 
states and A is the state of Alabama, then A  S says that Alabama is a 
member of the set of states. If our theory were to be a theory of noth-
ing but sets,  could be our only primitive, and in that way set theory 
is the laws of the membership relation. But if we want to allow room 
for application to things like people and rocks that we don’t think of as 
sets, so that we can have the set of people and the set of rocks, then we 
should also take identity as a primitive. We write this, as usual, as the 
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Cantor’s Paradise 3

double bar, =. To say that 7 + 5 = 12 means that the number 12 is the 
same thing as the sum of 7 and 5.

It is central to sets that they are identical when they have the same 
members. There aren’t two totalities of all and only the shoes. The 
principle that sets with the same members are identical is called exten-
sionality. Were we discussing nothing but sets, we could take mem-
bership as our only primitive predicate and use extensionality to 
introduce identity. But if we include things like the Rock of Gibraltar 
and Peter Abelard that presumably are not sets, then since only sets 
have members, Gibraltar and Abelard will have the same members, 
namely none, and yet not be identical. So when sets are applied, it 
is natural to assume identity as well as membership. Extensionality 
distinguishes sets from predicates and properties. Two predicates like 
“is directly over Big Ben” and “is directly above Big Ben” are true of 
all and only the same things, and yet are different predicates. Being 
spelled the same suffices for predicates to be identical. Properties can 
be had by the same things and yet differ. Easy instances are empty 
properties like being a centaur and being a griffin. But instantiated 
properties, like having a heart and having a liver, also seem to differ 
even if all and only the animals with hearts have livers. Some say that 
necessary coextensiveness suffices for property identity; others reply 
that necessity is unclear (without making it clear what clarity requires). 
Whatever the rights and wrongs of that dispute, there is more worked-
out and settled lore about sets than about properties, so logicians and 
mathematicians favor sets over properties.

There are two systematic ways to name sets. If a set is finite and we 
have names for its members, then curly brackets enclosing a list of those 
names separated by commas is a name for that set. So

{Mercury, Venus, Earth}

is the set of the three inmost planets of our solar system. Since Cantor’s 
quarry was the infinite, such names would not have satisfied him. 
Suppose we have a predicate like “Ralph gave x a present.” Here the 
variable “x” marks a blank that may be filled by singular terms (proper 
names, definite descriptions, demonstratives) denoting things that are 
or are not targets of Ralph’s generosity. Abbreviate this predicate as 
“Px.” Then

{x | Px}
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The Evolution of Logic4

is read “the set of all things, say x is one, such that Px” and in our case 
would be the set of all and only the recipients of Ralph’s generosity. 
This set is called the extension of the predicate “Px,” uniqueness here 
being justified by extensionality. The assumption that every predicate 
has a set that is its extension is called comprehension. Naïve set theory 
is the theory whose axioms are extensionality and comprehension, and 
as we shall see, comprehension is thought to be its naïveté.

The notation {x | Px} is called set abstraction. List terms can be 
replaced by abstracts on the model of

{x | x = Mercury or x = Venus or x = Earth},

so we can make do with abstraction if we wish to be economical. The 
abstraction notation was introduced by Giuseppe Peano. Like the defi-
nite description operator, it applies to predicates and yields singular 
terms. Such terms may occur in yet further predicates, whence intricate 
nesting may ensue. Abstraction and membership are like inverses of 
each other. When Pa, the predication factors into a being a member of 
the set of Ps; Quine calls this the principle of abstraction. When a is a 
member of the set of Ps, membership and abstraction cancel out, and so 
Pa; this Quine calls concretion.

Comprehension says there is a set of all those things not identical 
with themselves (or a set of all unicorns), and extensionality says it is 
unique. This set is called the empty set, and it is denoted by , which 
is not the Greek letter phi, but similar to the Danish and Norwegian 
slashed O. Some people who think of sets as somehow constituted out 
of, or dependent for their existence on, their elements have metaphysi-
cal qualms about the empty set. But an empty set need be no more 
troubling than an empty glass. Extensionality says that a set’s  members 
suffice to fix its identity, but this is neither to say the set is constituted 
from its members nor to say it depends for its existence on them. 
Besides, the hypothesis that there is an empty set has proved its utility 
time and again, and confirmation need not be cowed by metaphysical 
intuitions.

For any objects a and b, there is a unique set {a, b} whose members 
are a and b. Since {a, b} and {b, a} have the same members, extension-
ality says they are identical. So {a, b} is called the unordered pair of a 
and b. When a is b, their unordered pair is the set whose sole member 
is a; this is written {a} and is called the unit set or singleton of a. If a is 
itself a set with none or many members, it will not have the same mem-
bers as its singleton, so in general a should be distinguished from its 
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Cantor’s Paradise 5

singleton. (But in what might seem an excess of economic zeal, Quine 
favored identifying a non-set with its unit set, as he showed how to do 
consistently.)

The empty set and unordered pairs assure us some sets outright. 
There are also operations on sets that assure us their values given their 
arguments. The Boolean operations, named for George Boole, corre-
spond to truth functions. Thus the union of a and b, written a  b, is 
the set of all x such that x  a or x  b. (The notation “ ” is Peano’s.) 
With  and unit sets, repeated union gives us all finite sets. The inter-
section of a and b, written a  b, is the set of all x such that x  a and 
x  b. (The notation “ ” is also Peano’s.) The intersection of the set of 
all odd numbers and the set of all even numbers is the empty set. Such 
sets are called disjoint. Without the empty set, disjoint sets would have 
no intersection, and we could not form a  b without checking that a 
and b meet; the convenience of always being able to form a  b is an 
example of the utility of . The complement of a, written variously 
whence we pick ā, is the set of all things not in a. Complements, as we 
shall see, are a mark of naïveté, and sophistication sometimes favors 
differences, written a − b and explained as the set of all x such that  
x  a but x  b. (The  with a stroke is denial of membership.)

In addition to Boolean operations, we also have the subset, or inclu-
sion, relation. A set a is a subset of a set b, written a  b (like a softened 
less-or-equal sign), just in case all members of a are members of b. If b 
is also a subset of a, then they have the same members and so are identi-
cal. Note that when a  b, then every member of {a} is a member of b, 
so {a}  b. Thereby may, but need not, hang a tale. Some people picture 
a layered world. On the ground floor, or layer 0, are the non-sets, the 
shoes and ships and so on. On layer 1 are the sets of things on layer 0. 
On layer 2 are either the sets of things on layer 1 (if, like Russell, you 
like your layers exclusive) or the things on layer 0 or layer 1 (if you like 
your layers cumulative). And so on for longer than you might expect. 
On this picture, Plato and everybody else is on layer 0, while the set of 
people and Plato’s unit set are on layer 1. Then  relates across layers 
(Plato is a member of his unit set and the set of people), while  relates 
within layers (the singleton of Plato is a subset of the set of people). It 
took a long, long time for us to learn to distinguish between  and . 
The distinction was drawn clearly and driven home only in the nine-
teenth century. The premisses and conclusions of traditional syllogisms 
were either universal (All men are mortal) or particular (Some dogs are 
terriers). Singular premisses (Socrates is a man) were recognized, as in 
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The Evolution of Logic6

the old textbook inference from our universal and singular premisses 
to a singular conclusion (Socrates is mortal), but the effort to assimi-
late the singular to the universal or particular encouraged a confusion 
between  and , as if Socrates were a tiny species.

The picture of layers helps distinguish between  and , which is a 
virtue of it. Some people think it is the only right, or possible or coher-
ent, way to picture the world. Maybe, but that view carries substantial 
commitments, so be wary of buying into it thoughtlessly. We will see 
larger issues later, but here is a smaller one. Consider propositions and 
self-reference. Russell (and probably Leibniz) thought of propositions 
as extensions of sentences as sets are extensions of predicates and as its 
denotation is the extension of a name. For example, the proposition that 
Socrates is bald would be the ordered pair s, B  whose first member, s, 
is Socrates and whose second member, B, is the set of bald people. (We 
will get to ordered pairs very soon, but for now the important thing is 
that when a is different from b, the ordered pair a, b  with a first and 
b second is a different thing from b, a  with b first and a second.) This 
proposition s, B  is true just in case s  B, which opens a natural story 
about truth. Now consider a self-referential proposition like

This proposition can be expressed in eight words.

Let E be the set of propositions expressible in eight words, and let p 
be the proposition we are now considering. On Russell’s conception, p 
is p, E , the doubling being the self-reference. We will soon construe 
ordered pairs as sets, and on the layered picture, an ordered pair will lie 
two layers above its members. On a layered picture, a set lies on a layer 
higher than its members, which would forbid self-referential proposi-
tions. But proposition p seems in order, indeed true, and we will later 
see more systematic reasons for reluctance to give up self-reference. It 
would not be shrewd to commit fully to the layered picture unreflec-
tively, even if it is the conventional wisdom.

The set of tigers is the extension of the predicate “is a tiger.” This 
predicate is unary (Latin) or monadic (Greek), both of which mean that 
it has one blank or empty space that on being filled with a singular term 
(like “Tony”) yields a sentence. Each predicate has a number of blanks, 
filling all of which with singular terms yields a sentence. This number 
is called the predicate’s polyadicity (Greek) or, much more rarely, its 
arity (Latin). The predicate “love” is binary (or dyadic) since it has two 
blanks for names, as in “Regina loved Søren,” and “give” is ternary (or 
triadic) since it has three blanks, as in “The president gave the contract 
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Cantor’s Paradise 7

to his brother-in-law.” The Greek and Latin of logicians give out and 
they speak instead of 5-adic (or 5-ary) predicates. (Some predicates, as 
in “Andrew united Bob, Curt, David, and Ed in a conspiracy,” seem to 
lack a unique polyadicity, but they are rare.) In reckoning the polyadic-
ity of a predicate in a sentence, one may count as many of the occur-
rences of singular terms as one wishes. For example, in

Richard gave the diamond to Elizabeth

one may count three singular terms filling the blanks in a ternary pred-
icate, but one may count any two filling blanks in a more complex 
binary predicate, and one may count any one filling the blank in a yet 
more complex unary predicate. The logician is prescinding from gram-
matical roles (like direct or indirect object) and, as it were, counting 
several singular terms all as several subjects of a polyadic predicate.

The set of tigers is the extension of the monadic predicate “is a tiger.” 
We would also like extensions for polyadic predicates. As tigers one by 
one fill out the extension of “is a tiger,” we expect pairs to fill out the 
extension of a dynadic predicate like “loves.” But we notice immediately 
that order matters. Regina seems to have been a normal person and to 
have loved Søren, but we owe Kierkegaard’s works at least in part to 
his inability to make up his mind that he loved Regina. Unrequited love 
shows that the members of the extension of “loves” cannot be unordered 
pairs. We write ordered pairs with angle brackets, so the ordered pair 
whose first member is Regina and whose second is Søren is r, s . This 
pair is in the extension of “loves,” but s, r  is not, so it had better turn 
out that s, r  ≠ r, s . This illustrates a central aspect of order: when 
a ≠ b, a, b  ≠ b, a ; order alone suffices to distinguish ordered pairs. 
More generally, a, b  = c, d  if and only if a = c and b = d (while, by 
contrast, if a = d and b = c, then {a, b} = {c, d}). This principle articulates 
what Tarski in the 1920s will call a material adequacy condition, that 
is, a condition an account of something (in Tarski’s case truth, in ours, 
order) should meet to be adequate. In the 1910s, Norbert Wiener and 
Kazimierz Kuratowski each showed a way to explain the ordered pair 
in the primitive terms of set theory so as to satisfy the adequacy condi-
tion. (Quine said this work is a philosophical paradigm.)

We mostly follow Kuratowski, whose later account explains a, b  
as {{a}, {a, b}}. It would be a mistake to stare at this hoping for insight 
into order. Such insight as there is to be had was already articulated 
in the adequacy condition. Kuratowski’s account is adequate (as is 
Wiener’s different one) if it proves to satisfy the adequacy condition. 
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The Evolution of Logic8

There is no enlightenment to be found in the proof that Kuratowski’s 
account works, but students always ask to see a proof, so here goes. 
Suppose a, b  = c, d . Then, by Kuratowski’s account, {{a}, {a, b}} = 
{{c}, {c, d}}. Since {a} is a member of the set on the left, it is in the one on 
the right, so it is {c} or {c, d}. In the first case, a is c, while in the second 
both c and d are a. So in any case, a = c. Next we distinguish two cases. 
For the first, suppose a = b. Since {c, d} is in the second set, it is in the 
first, so it is {a} or {a, b}; if it is {a}, then d is a, which is b; while if it is 
{a, b}, then d is a or b, which are identical, so d is again b. Hence if a = b,  
b = d. So for our second case, suppose a ≠ b. If b = c, then since a = c,  
a = b, so since we’re supposing a ≠ b, b ≠ c. Then b  {c, d}, so since b ≠ c,  
b = d. Hence, in any case, b = d, as we were to show. This argument is 
a welter of unmemorable cases, so don’t worry if your attention glazed 
over; what matters is that it works. Russell called Kuratowski’s (and 
Wiener’s) construction a trick.

Once we have ordered pairs, we may take an ordered triple a, b, c  
as a, b , c , an ordered pair whose first member is an ordered pair. 
An ordered quadruple a, b, c, d  is a, b, c , d , and so on through 
all the ordered n-tuples. Then we may take the extension of an n-adic 
predicate to be a set of ordered n-tuples. We should work an example 
to fix ideas. The extension of the binary predicate “a is n years old at 
noon today” (where the blanks in the predicate are marked with the 
variables “a” and “n”) is the set of ordered pairs a, n  such that a is 
n years old at noon today. This one could also think of as (the noon 
today time slice of) the age relation. Let us focus on people: let P be the 
set of people (alive at noon today) and let N = {0, 1,. . .} be the set of 
all natural (i.e., non-negative, whole) numbers. The set of all ordered 
pairs a, b  whose first member a is an element of P and whose second 
member b is an element of N is called the Cartesian or cross product 
of P and N. It is written P × N. It is called Cartesian in memory of rect-
angular Cartesian coordinates for the points on a Euclidian plane; it is 
called cross because if A has n members and B has k members, then A 
× B has n times k members (which hints at reconstructing arithmetic 
in set theory). A binary relation between people (alive at noon today) 
and natural numbers is any old subset of P × N. A relation between 
members of A and members of B is a subset of A × B. Age is a relation 
between people and numbers; age (at noon today) is

{ p, n  | p  P and n  N and p is n years old at noon today},
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Cantor’s Paradise 9

which is a subset of P × N. An n-ary relation among members of n sets 
A1, A2,. . ., An is a subset of A1 × A2 × . . . × An, the set of ordered n-tuples 
whose first member is in A1, whose second is in A2,. . ., and whose nth is 
in An.

Of course, a relation may hold between some members of a set like 
P and others. Such a relation is a subset of P × P. For example, parent-
hood (at noon today) is a subset of the set of all ordered pairs a, b  
of people (alive at noon today). We use exponential notation for cross 
products whose factors are identical: P2 is P × P; P3 is P × P × P; and so 
on. Let R be the parenthood relation just mentioned. Let W be the set 
of all women (alive at noon today). We might want to restrict the first 
members of a relation S to elements of a set A; we would write S  A 
for the set of pairs x, y  in S such that x  A. Then the motherhood 
relation is R  W. To restrict the second members of pairs in S to A, we 
write S  A. Then the daughterhood relation is R  W. To restrict both to 
A, we write S  A, so R  W is the mother–daughter relation.

Aristotle’s syllogistic logic is geared for unary predicates. It had long 
been recognized that there are arguments whose conclusions clearly 
follow from their premisses but where syllogistic cannot certify these 
arguments because the arguments’ success turns on polyadic predi-
cates. Here is an example from Augustus De Morgan in the nineteenth 
century:

All horses are animals.
Hence, all heads of horses are heads of animals,

where the dyadic predicate “x is a head of y” is crucial. It was not until 
the nineteenth century that a systematic account of relations began.

In addition to De Morgan, Charles Sanders Peirce and Ernst Schröder 
were central in the articulation of relations. Notation like R  W is just 
one fruit of their work. The fact that ordered pairs were worked out 
set theoretically pretty much at the end of the articulation of relations 
shows how hard it was to command a clear view of relations.

In the seventeenth century, Newton and Leibniz focused our attention 
on functions. The path of a particle in, for simplicity, the plane rather 
than space is a continuous curve, and using Cartesian coordinates the 
ordinates of points along the curve can often be given as mathematical 
functions of the abscissae. The speed of this particle at a point along its 
path will be given by the derivative of such a function, and conversely, 
the path is given by the integral of the particle’s velocity; anyone who 
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The Evolution of Logic10

has done some calculus knows that differentiation and integration are 
the meat and potatoes of Newton’s and Leibniz’s calculus. At school 
we were all programmed in algorithms for computing the sums and 
products of natural numbers, and addition and multiplication are also 
functions. Such education inclines us to think of functions in terms of 
ways of calculating the output, or value, of a function at its inputs, or 
arguments. A somewhat less intentional image of a function pictures it 
as a bunch of arrows, one from each argument to the value of the func-
tion for that argument; the collection of its arguments is called the func-
tion’s domain, while the collection in which its values lie is called the 
function’s range, so on this picture a function is a collection of arrows 
arcing from its domain into its range.

As late as Kant at the end of the eighteenth century, curves were 
the leading image of functions. Through the nineteenth century, people 
worked out an extensional conception of a function. The calculus is 
infinitary, and the geometrical imagination trusted since Euclid began 
to go awry in the infinities of the calculus. Much of nineteenth-century 
mathematics was given over to a process called the arithmetization of 
analysis, which is what calculus grows up into. The aim of this process 
is to replace geometry, especially in analysis, with the mathematics of 
number, or later, set theory. An extensional conception of a function 
arises by starting from the picture of a bunch of arrows arcing from its 
domain to its range, and then discarding everything except the ordered 
pairs whose first members are the arguments and whose second are the 
values; only input and output remain, and we don’t worry about how 
what goes in becomes what comes out.

We write f : A  B to mean that f is a function whose domain is 
a set A and whose range is a set B. But we have just seen that on the 
extensional conception this means that f is a set of ordered pairs whose 
first members lie in A and whose second lie in B; that is, it is a relation 
between members of A and B. There are two special conditions that such 
a relation must meet in order to be a function. First, for every member a 
of A, there is at least one member b of B such that a, b  is in f, that is, 
f relates a to b. Second, for each a in A, there is at most one b in B such 
that a, b  is in f. In the crochets of logic, the first condition is that

( a)(a  A  ( b)(b  B  < a, b   f)),

while the second is that

( a)(a  A  ( b)( c)((b  B  c  B 
a, b   f  a, c   f)  a = c)),
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