Contents

Introduction v

Acknowledgements vi

Unit F324: Rings, Polymers and Analysis

1. **AS level organic chemistry revisited** 1
 - Some revision 1
 - Naming organic compounds 3
 - Isomerism 5
 - Summaries of reactions from AS Chemistry 5

2. **Arenes** 9
 - Benzene 9
 - Energetic stability of benzene 12
 - Substitution reactions 12
 - Addition of halogens to benzene 14
 - Phenols and their properties 15

3. **Carbonyl compounds** 20
 - Aldehydes and ketones 20
 - Physical properties of the carbonyl group 21
 - Preparation: oxidation of alcohols 21
 - Reduction 22
 - Characteristic tests 23

4. **Carboxylic acids and esters** 27
 - Carboxylic acids 28
 - Esters 29

5. **Amines** 39
 - Primary amines 39
 - The preparation of amines 40
 - Amines as bases 41
 - Making salts with amines 41
 - Reactions specific to phenylamine 42

6. **Amino acids and chirality** 46
 - Amino acids 46
 - Proteins and polypeptides 47
 - Stereoisomerism 48

7. **Polymers and polyamides** 53
 - The formation of polymers 53
 - Degradable plastics 58

8. **Synthesis** 63
 - How do we design molecules? 63
 - Routes to new molecules 64
 - Chirality in pharmaceutical synthesis 66

9. **Chromatography** 71
 - Mechanisms of chromatographic separation 72
 - Paper chromatography 73
 - Thin-layer chromatography 74
 - Gas chromatography (GC) 75
 - Gas chromatography–mass spectrometry (GC-MS) 78

10. **Spectroscopy** 82
 - Nuclear magnetic resonance spectroscopy 82
 - Combined techniques 90

Unit F325: Equilibria, energetics and elements

11. **How fast?** 96
 - The rate equation 97
 - Order of reaction 100
 - Concentration against time graphs 101
 - Half-life and reaction rates 102
 - Finding the order of reaction using raw data 103
 - Rate constants and temperature changes 106
 - Rate equations and mechanisms 107
Contents

12 How far? 118

- Equilibria in organic reactions 118
- The amounts of substances present at equilibrium 119
- K_c and Le Chatelier’s principle 123

13 Acids, bases and buffers 130

- Definitions of acids and bases 130
- The role of water 133
- Base behaviour and neutralisation 133
- Introducing K_{w}, the ionic product of water 135
- Introducing pH 137
- Ionic equilibria: the definition of K_a and pK_a 138
- Calculating the pH of a weak acid 139
- Calculating $[\text{H}^+]$ from a pH value 140
- Calculating the K_a of a weak acid 141
- Measuring pH 141
- Acids with alkalis: monitoring change 143
- Buffer solutions 146
- Calculating the pH of a buffer solution 148

14 Lattice enthalpy 154

- The Born–Haber cycle 154
- Trends in the lattice enthalpy 157
- Enthalpy change of solution 158
- Enthalpy change of hydration 159
- Using enthalpies of solution and hydration 159

15 Entropy 165

- Entropy changes 166
- Free energy 167

16 Electrode potentials and fuel cells 171

- Oxidation and reduction 171
- Electrode potentials 173
- Standard electrode potentials 174
- Measuring a standard electrode potential 176
- The meaning of E^* values 179
- Using E^* values to predict cell voltages 180
- Using E^* values to predict whether or not a reaction will occur 181

Using cell voltage to predict whether or not a reaction will occur 184

Limitations of the standard electrode potential approach 186

Reaction rate has a role to play too 187

Storage cells 187

Fuel cells 188

The hydrogen economy 191

17 Transition elements 196

- Electronic structures 197
- Properties of transition elements and their compounds 198
- Complexes 199
- Redox behaviour 208

Appendix A 214

Appendix B 215

Answers to self-assessment questions 216

Glossary 232

Index 236
Introduction

Cambridge OCR Advanced Sciences

The new Cambridge OCR Advanced Sciences course provides complete coverage of the revised OCR AS and A2 Level science specifications (Biology, Chemistry A and Physics A) for teaching from September 2008. There are two books for each subject – one covering AS and one covering A2. Some material has been drawn from the existing Cambridge Advanced Sciences books; however the majority is new.

The course has been developed in an innovative format, featuring Cambridge's new interactive PDFs on CD-ROM in the back of the books, and free access to a dedicated website. The CD-ROM provides additional material, including detailed objectives, hints on answering questions, and extension material. It also provides access to web-based e-learning activities to help students visualise abstract concepts, processes.

The books contain all the material required for teaching the specifications, and can be used either on their own or in conjunction with the interactive PDFs and the website.

In addition, Teacher Resource CD-ROMs with book PDFs plus extra material such as worksheets, practical activities and tests, are available for each book. These CD-ROMs also provide access to the new Cambridge OCR Advanced Sciences Planner website with a week-by-week adaptable teaching schedule.

Introduction to Chemistry 2 for OCR – the chemistry A2 text

This book covers the entire OCR A2 Chemistry A specification for first examination in 2010. Chapter 1 revisits AS Level organic chemistry. Chapters 2 to 10 correspond to Unit F324, Rings, Polymers and Analysis. Chapters 11 to 17 correspond to Unit F325, Equilibria, Energetics and Elements. Each chapter covers one of the numbered sections within the three Modules in Unit F324, and within the three Modules in Unit F325. The content of the chapters is generally arranged in the same sequence as in the specification.

The book builds on the material covered in Chemistry 1 for OCR. The language is kept simple, to improve accessibility for all students, while still maintaining scientific rigour throughout. Care is taken to introduce and use all the specialist terms that students need to gain a complete understanding of the chemical concepts introduced. In the text, key terms are highlighted in bold.

The depth and breadth of treatment of each topic is pitched at the appropriate level for OCR A2 students. The accompanying CD-ROM also contains some extension material that goes a little beyond the requirements of the specification, which should interest and stretch more able students.

Some of the text and illustrations are based on material from the endorsed text Chemistry 2, which covered the earlier OCR specification, while some is completely new. All of it has been reviewed and revised, ensuring that the new specification is fully covered. In addition to the main content in each chapter, there are also How Science Works boxes, describing issues, applications or events, which put the chemical content introduced into a social context.

Self-assessment questions (SAQs) in each chapter provide opportunities to check understanding. They often address misunderstandings that commonly appear in examination answers, and will help students to avoid such errors. Some SAQs are marked, with a vertical red bar, as ‘stretch and challenge’ questions. These ask students to draw together their ideas about a topic, and to organise and discuss these in a well-structured and broad-ranging answer. These questions give students the opportunity to demonstrate their potential, and may help them to recognise areas of weakness in which further work is needed. Past examination questions at the end of each chapter allow students to practise answering exam-style questions. The answers to these, along with exam-style mark schemes and hints on answering questions, are found on the accompanying CD-ROM.
Acknowledgements

We would like to thank the following for permission to reproduce images:

Cover Magrath Photography/Science Photo Library; pp. 9t, 9c, 16, 17t, 21, 23, 24, 30, 31l, 40, 41, 42, 43, 53, 130, 142, 174, 175, 182, 184, 196r, 198, 199, 203, 205, 206, 210 Andrew Lambert Photography/Science Photo Library; p. 9t Tick Ahearn; p. 11 © The Print Collector/Alamy; p. 13 © Imagestate; p. 15t © B. Kuiter/Fipa-images.co.uk; p. 15r Dan Sams/A-Z Botanical Ltd; pp. 17b, 20t, 27, 31r, 63 © Michael Brooke; p. 34 © Powered by Light/Alan Spencer/Alamy; p. 35l Garden Matters/Wildlife Matters; p. 35r Martin Bond/Science Photo Library; p. 47 Damien Lovegrove/Science Photo Library; p. 50 Courtesy of Aventis Pasteur; pp. 54, extension ch. 7 polythene film © Imperial Chemical Industries Limited; p. 56 courtesy of James Evans; p. 57 Cordelia Molloy/Science Photo Library; p. 58 Britstock-IFA/Amadeus; p. 75 © Reuters/Corbis; p. 77l © speedpix/Alamy; p. 77r Hank Morgan/Science Photo Library; p. 82 Colin Cuthbert/Science Photo Library; p. 89t Paul Shambroom/Science Photo Library; p. 89r Mehau Kulyk/Science Photo Library; p. 96 Jack Finch/Science Photo Library; p. 97 George Porter; p. 107 Elen Port/ASF; p. 125 David Frazier/Science Photo Library; p. 147 Barry Slaven, Peter Arnold inc./Science Photo Library; p. 148 Gary Parker/Science Photo Library; p. 158 © Robert Harding World Imagery; p. 189 Reuters/Corbis; p. 191 Alfred Pasieka/Science Photo Library; p. 192 BP Photographic Services; p. 196 Peter Ryan/Science Photo Library; p. 207 © Corbis; extension ch. 5 springbok Rafi Ben-Shahar/OSF; extension ch. 5 Watson and Crick A. Barrington Brown/SPL; extension ch. 10 mobile mass spectrometer © Bruker Daltonik GmbH, Leipzig, Germany; extension ch. 10 infrared spectrometer Geoff Lane/CSIRO/Science Photo Library; extension ch. 12 crocodile Mark Deeble & Victoria Stone/OSF; extension ch. 12 purifying haemoglobin Baxter Haemoglobin Therapeutics, USA; extension ch. 13 baby La Belle Aurore.

We would like to thank OCR for permission to reproduce exam questions from past examination papers.