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Introduction

A recurrent problem arising in mathematics is to decide if two given

mathematical structures defined over a field k are isomorphic. Quite

often, it is easier to deal with this problem after scalar extension to a

bigger field Ω containing k, for example an algebraic closure of k, or

a finite Galois extension. In the case where the two structures happen

to be isomorphic over Ω, this leads to the natural descent problem: if

two k-structures are isomorphic over Ω, are they isomorphic over k? Of

course, the answer is no in general. For example, consider the following

matrices M,M0 ∈ M2(R) :

M0 =

(

0 −2

1 0

)

,M =

(

0 2

−1 0

)

.

It is easy to see that they are conjugate by an element of GL2(C), since

they have same eigenvalues ±i
√

2, and therefore are both similar to
(

i
√

2 0

0 −i
√

2

)

. In fact we have

(

i 0

0 −i

)

M

(

i 0

0 −i

)−1

= M0,

so M and M0 are even conjugate by an element of SL2(C).

A classical result in linear algebra says that M and M0 are already

conjugate by an element of GL2(R), but this is quite obvious here since
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2 Introduction

the equality above rewrites

(

1 0

0 −1

)

M

(

1 0

0 −1

)−1

= M0.

However, they are not conjugate by an element of SL2(R). Indeed, it is

easy to check that a matrix P ∈ GL2(R) such that PM = M0P has the

form

P =

(

a 2c

c −a

)

.

Since det(P ) = −(a2 +2c2) < 0, P cannot belong to SL2(R). Therefore,

M and M0 are conjugate by an element of SL2(C) but not by an element

of SL2(R).

Hence, the descent problem for conjugacy classes of matrices has a pos-

itive answer when we conjugate by elements of the general linear group,

but has a negative one when we conjugate by elements of the special

linear group. So, how could we explain the difference between these two

cases? This is where Galois cohomology comes into play, and we would

like now to give an insight of how this could be used to measure the

obstruction to descent problems on the previous example. If k is a field,

let us denote by G(k) the group GL2(k) or SL2(k) indifferently.

Assume that QMQ−1 = M0 for some Q ∈ G(C). The idea is to measure

how far is Q to have real coefficients, so it is natural to consider the

difference QQ
−1

, where Q is the matrix obtained from Q by letting the

complex conjugation act coefficientwise. Indeed, we will have Q ∈ G(R)

if and only if Q = Q, that is if and only if QQ
−1

= I2. Of course,

if QQ
−1

= I2, then M and M0 are conjugate by an element of G(R),

but this is not the only case when this happens to be true. Indeed,

if we assume that PMP−1 = M0 for some P ∈ G(R), then we easily

get that QP−1 ∈ G(C) commutes with M0. Therefore, there exists

C ∈ ZG(M0)(C) = {C ∈ G(C) | CM0 = M0C} such that Q = CP . We

then easily have Q = C P = CP , and therefore

QQ
−1

= CC
−1

for some C ∈ ZG(M0)(C).

Conversely, if the equality above holds then P = C−1Q is an element of

G(R) satisfying PMP−1 = M0 . Indeed, we have

P = C
−1

Q = C−1Q = P,
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Introduction 3

so P ∈ G(R), and

PMP−1 = C−1QMQ−1C = C−1M0C = M0C
−1C = M0.

Thus, M and M0 will be congugate by an element of G(R) if and only if

QQ
−1

= CC
−1

for some C ∈ ZG(M0)(C).

Notice also for later use that QQ
−1 ∈ G(C) commutes with M0, as we

may check by applying complex conjugation on both sides of the equality

QMQ−1 = M0.

If we go back to our previous example, we have Q =

(

i 0

0 −i

)

, and

therefore QQ
−1

= −I2. Easy computations show that we have

ZG(M0)(C) =

{

C ∈ G(C) | C =

(

z −2z′

z′ z

)

for some z, z′ ∈ C

}

.

Therefore, we will have C ∈ ZG(M0)(C) and CC
−1

= QQ
−1

= −I2 if

and only if

C =

(

iu −2iv

iv iu

)

for some u, v ∈ R, (u, v) �= (0, 0).

Notice that the determinant of the matrix above is −(u2 + 2v2) < 0.

Thus, if G(C) = GL2(C), one may take u = 1 and v = 0, but if

G(C) = SL2(C), the equation CC
−1

= −I2 = QQ
−1

has no solution

in ZG(M0)(C). This explains a bit more conceptually the difference

between the two descent problems. In some sense, if QMQ−1 = M0

for some Q ∈ G(C), the matrix QQ
−1

measures how far is M to be

conjugate to M0 over R.

Of course, all the results above remain valid if M and M0 are square

matrices of size n, and if G(k) = GLn(k),SLn(k),On(k) or even Sp2n(k).

If we have a closer look to the previous computations, we see that the

reason why all this works is that C/R is a Galois extension, whose Galois

group is generated by complex conjugation.

Let us consider now a more general problem: let Ω/k be a finite Galois

extension, and let M,M0 ∈ Mn(k) be two matrices such that

QMQ−1 = M0 for some Q ∈ G(Ω).
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4 Introduction

Does there exist P ∈ G(k) such that PMP−1 = M0 ?

Since Ω/k is a finite Galois extension, then for all x ∈ Ω, we have x ∈ k

if and only if σ(x) = x for all σ ∈ Gal(Ω/k). If now Q ∈ G(Ω), then let

us denote by σ ·Q ∈ G(Ω) the matrix obtained from Q by letting σ act

coefficientwise. Then we have

Q ∈ G(k) ⇐⇒ σ ·Q = Q for all σ ∈ Gal(Ω/k)

⇐⇒ Q(σ ·Q)−1 = I2 for all σ ∈ Gal(Ω/k).

As before, applying σ ∈ Gal(Ω/k) to the equality QMQ−1 = M0, we

see that Q(σ ·Q)−1 ∈ ZG(M0)(Ω). We therefore get a map

αQ :
Gal(Ω/k) −→ ZG(M0)(Ω)

σ �−→ Q(σ ·Q)−1.

Arguing as at the beginning of this introduction, one can show that M

and M0 will be conjugate by an element of G(k) if and only if there

exists C ∈ ZG(M0)(Ω) such that αQ = αC , that is if and only if there

exists C ∈ ZG(M0)(Ω) such that

Q(σ ·Q)−1 = C(σ ·C)−1 for all σ ∈ Gal(Ω/k).

To summarize, to any matrix M ∈ Mn(k) which is conjugate to M0

by an element of G(Ω), we may associate a map αQ : Gal(Ω/k) −→
ZG(M0)(Ω), which measures how far is M to be conjugate to M0 by an

element of G(k).

This has a kind of a converse: for any map

α :
Gal(Ω/k) −→ ZG(M0)(Ω)

σ �−→ ασ

such that α = αQ for some Q ∈ G(Ω), one may associate a matrix

of Mn(k) which is conjugate to M0 by an element of G(k) by setting

Mα = Q−1M0Q. To see that Mα is indeed an element of Mn(k), notice

first that we have

σ ·(CM ′C−1) = (σ ·C)(σ ·M ′)(σ ·C)−1

for all C ∈ G(Ω),M ′ ∈ Mn(Ω), σ ∈ Gal(Ω/k). Thus, for all σ ∈
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Introduction 5

Gal(Ω/k), we have

σ ·Mα = (σ ·Q)−1M0(σ ·Q)

= Q−1Q(σ ·Q)−1M0(σ ·Q)

= Q−1M0Q(σ ·Q)−1(σ ·Q)

= Q−1M0Q

= Mα,

the third equality coming from the fact that ασ = Q(σ ·Q)−1 lies in

ZG(M0)(Ω).

Not all the maps α : Gal(Ω/k) −→ ZG(M0)(Ω) may be written αQ for

some Q ∈ G(Ω). In fact, easy computations show that a necessary

condition for this to hold is that α is a cocycle, that is

αστ = ασ σ ·ατ for all σ, τ ∈ Gal(Ω/k).

This condition is not sufficient in general. However, it happens to be

the case if G(Ω) = GLn(Ω) or SLn(Ω) (this will follow from Hilbert 90).

Notice that until now we picked a matrix Q ∈ G(Ω) which conjugates

M into M0, but this matrix Q is certainly not unique. We could there-

fore wonder what happens if we take another matrix Q′ ∈ G(Ω) which

conjugates M into M0. Computations show that we have Q′Q−1 ∈
ZG(M0)(Ω). Therefore, there exists C ∈ ZG(M0)(Ω) such that Q′ =

CQ, and we easily get that

αQ′

σ = CαQ
σ (σ ·C)−1 for all σ ∈ Gal(Ω/k).

Two cocycles α, α′ : Gal(Ω/k) −→ ZG(M0)(Ω) such that

α′

σ = Cασ(σ ·C)−1 for all σ ∈ Gal(Ω/k)

for some C ∈ ZG(M0)(Ω) will be called cohomologous. Being coho-

mologous is an equivalence relation on the set of cocycles, and the set

of equivalence classes is denoted by H1(Gal(Ω/k), ZG(M0)(Ω)). If α

is a cocycle, we will denote by [α] the corresponding equivalence class.

Therefore, to any matrix M ∈ Mn(k) which is conjugate to M0 by an el-

ement of G(Ω), one may associate a well-defined cohomology class [αQ],

where Q ∈ G(Ω) is any matrix satisfying QMQ−1 = M0.

It is important to notice that the class [αQ] does not characterize M

completely. Indeed, for every P ∈ G(k), it is easy to check that αQP−1

=
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6 Introduction

αQ. In particular, the cohomology classes associated to the matrices M

and PMP−1 are equal, for all P ∈ G(k).

Conversely, if α = αQ and α′ = αQ′

are cohomologous, it is not too

difficult to see that P = Q−1C−1Q′ ∈ G(k), and that the corresponding

matrices Mα and Mα′ satisfy PMα′P−1 = Mα.

Thus the previous considerations show that, in the case where every

cocycle α : Gal(Ω/k) −→ ZG(M0)(Ω) may be written α = αQ for some

Q ∈ G(Ω), the set H1(Gal(Ω/k), ZG(M0)(Ω)) is in one-to-one correspon-

dence with the set of G(k)-conjugacy classes of matrices M ∈ Mn(k)

which are conjugate to M0 by an element of G(Ω).

Many situations can be dealt with in a similar way. For example, rea-

soning as above and using Hilbert 90, one can show that the set of

isomorphism classes of quadratic forms q which are isomorphic to the

quadratic form x2
1 + . . .+x2

n over Ω is in one-to-one correspondence with

H1(Gal(Ω/k),On(Ω)).The case of k-algebras is a little bit more subtle,

but one can show that the set of isomorphism classes of k-algebras which

are isomorphic to a given k-algebra A over Ω is in one-to-one correspon-

dence with H1(Gal(Ω/k),AutΩ−alg(A ⊗k Ω)).

Quite often, algebraic structures can be well understood over a separable

closure ks of k. In the best cases, they even become isomorphic over

ks. Therefore, it is useful to extend this setting to the case of infinite

Galois field extensions. To do this, we will introduce the notion of a

profinite group in Chapter 1, and recollect some facts on infinite Galois

theory. Then in Chapter 2 we define the cohomology sets Hi(Γ, A) for

any profinite group Γ and any Γ-group A, and study their functorial

properties and their behavior with respect to short exact sequences.

We also introduce the cup-product, which is useful to construct higher

cohomology classes. Chapter 3 deals with Galois cohomology and the

central part of this chapter is devoted to formalize Galois descent and

to give applications. We then come back to the conjugacy problem for

matrices and compute the total obstruction in an example. In Chapter 4,

we study Galois cohomology of quadratic forms and give a cohomological

interpretation of some classical invariants attached to quadratic forms,

such as the determinant or the Hasse invariant. In Chapter 5, we obtain

an algebraic interpretation of Galois field extensions with Galois group

G in terms of H1(Gal(ks/k), G). In Chapter 6, we give a cohomological
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Introduction 7

obstruction of the following Galois embedding problem: given a group

extension 1 −→ A −→ G̃ −→ G −→ 1, where A is a central subgroup

of G̃, and given a Galois field extension E/k with Galois group G, does

there exists a Galois field extension Ẽ/k with Galois group G̃ such that

ẼA = E?

The next chapters describe various applications of Galois cohomology.

Chapter 7 is devoted to the study of a certain Galois embedding prob-

lem with kernel A = Z/2Z. In this particular case we prove a formula of

Serre which computes the obstruction in terms of the classical invariant

of the trace form of E, and we give simple applications. We then study

Galois cohomology of central simple algebras with or without involutions

in Chapter 8. As an application of Galois cohomology techniques, we

compute the Hasse invariant of certain quadratic forms attached to these

algebras. In Chapter 9, we briefly introduce the notion of a G-torsor,

which gives a geometric interpretation of Galois cohomology. We apply

this point of view to derive some results on cohomological invariants

of algebraic groups. In Chapter 10, we describe applications of Galois

cohomology to the so-called Noether’s problem: given a field k and a

finite group G, is there a linear faithful representation V of G such that

the field extension k(V )G/k is purely transcendental ? This is known

to be true when G is abelian and k ⊃ µn, but false for G = Z/8Z and

k = Q. We will introduce the residue maps in Galois cohomology and

use their properties to prove that Noether’s problem has a negative so-

lution when G = Z/2mZ,m ≥ 3 and k = Q. To do so, we attach to each

Galois extension of group G over a field K ⊃ k a non-vanishing cohomo-

logical obstruction. In Chapter 11, we study another kind of rationality

problem: given a linear algebraic group G over k, is the underlying va-

riety rational? This is known to be true for classical groups when k is

algebraically closed. We will show that the answer is negative in gen-

eral when k is an arbitrary field. We will focus on the case where G is

an automorphism group of some algebra with a symplectic involution.

Once again, the answer will come from the existence of a non-zero coho-

mological obstruction. Finally in Chapter 12, we introduce the notion

of essential dimension of a functor, which is an active research topic, for

which substantial progress has been made recently. If G is a finite group,

the essential dimension of the Galois cohomology functor H1(−, G) will

be the number of independent parameters needed to describe a Galois

extension of group G.
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8 Introduction

This introduction to Galois cohomology does not pretend to be complete.

For example, we are aware that an historical introduction to the subject

is missing. The curious reader is referred to [30], p. 446-449, as well as

[58] and [59] for more information and numerous references. Moreover,

we tried to reduce the prerequisites necessary to read these notes to the

minimum. Only some basic knowledge on Galois theory and algebra

(definition of group, ring, field, k-algebra, notion of tensor product) is

required. Also it was impossible to cover all the ‘hot topics’ (such as

Serre’s conjecture II, Hasse principle, Rost invariants) or applications of

Galois cohomology. Once again, we refer to [30], [58] and [59]. More

advanced material on Galois cohomology may be found in [25],[26], [30]

or [58], each of these references focusing on a different aspect of the

theory: cohomological invariants (including the construction of Rost

invariants) and applications to Noether’s problem in [25], Merkurjev-

Suslin’s theorem in [26], algebras with involution in [30] or cohomology

of algebraic groups over fields of small cohomological dimension in [58].

This book is an extended version of notes of some postgraduate lectures

on Galois cohomology that we gave at the University of Southampton,

which included originally Chapters 1-7. The main goal of these lectures

was to introduce enough material on Galois cohomology to fully under-

stand the proof of Serre’s formula [61] aiming at an audience having a

minimal background in algebra, and to give applications to Galois em-

bedding problems. The method we chose to establish this formula differs

a bit from the original one. It was suggested as an alternative proof by

Serre himself in [61]. Moreover, it was a good occasion to introduce

classical tools such as exact sequences in cohomology, Galois descent,

Hilbert 90 and some standard results such as Springer’s cohomological

interpretation of the Hasse invariant. Consequently, the material intro-

duced in Part I is really basic, but is sufficient to obtain beautiful appli-

cations to inverse Galois theory or to the conjugacy problem. We also

took a particular care to make the first half of this book self-contained,

with an exception made for the section on infinite Galois theory and

for Proposition III.7.23. Let us also mention the existence of lectures

notes [2] presenting a shortened and simplified exposition of the material

introduced in Chapters II and III (in these notes, all Galois extensions

considered are finite, only the first cohomology set is presented and the

functorial aspect of the theory is not treated). The second part of the

book gives an insight of how Galois cohomology may be useful to solve

some algebraic problems, and presents active research topics, such as ra-
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Introduction 9

tionality questions or essential dimension of algebraic groups and often

requires more advanced material. Therefore, proofs of the most difficult

results are skipped. We hope that these notes will help the reader will-

ing to study more advanced books on this subject, such as those cited

above.

This book could not have been written without the encouragements

and the support of Gerhard Roerhle, and we would like to thank him

warmly. We are also grateful to our colleagues and friends Vincent Beck,

Jérôme Ducoat, Jean Fasel, Nicolas Grenier-Boley, Emmanuel Lequeu,

Frédérique Oggier, Gerhard Roerhle and Jean-Pierre Tignol, who took

time to read partly or integrally some earlier versions of the manuscript,

despite the fact they certainly had better things to do. Their careful

reading, judicious comments and remarks permitted to improve signifi-

cantly the exposition and to detect many misprints or inaccuracies. The

whole LATEX support team of Cambridge University Press deserves a

special mention for its efficiency and its patience. Finally, we would like

to thank Roger Astley, Caroline Brown and Clare Dennison for their

helpfulness in the whole editing process.
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