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Donsker’s Theorem, Metric Entropy,

and Inequalities

Let P be a probability measure on the Borel sets of the real line R with

distribution function F (x) := P ((2>, x]). Let X1, X2, . . . , be i.i.d. (indepen-

dent, identically distributed) random variables with distribution P . For each

n = 1, 2, . . . , and any Borel set A ¢ R, let Pn(A) := 1
n
"n

j=1·Xj
(A), where

·x(A) = 1A(x). For any given X1, . . . , Xn, Pn is a probability measure called

the empirical measure. Let Fn be the distribution function of Pn. Then Fn is

called the empirical distribution function.

Let U be the U [0, 1] distribution function U (x) = min(1, max(0, x)) for

all x, so that U (x) = x for 0 f x f 1, U (x) = 0 for x < 0 and U (x) = 1 for

x > 1. To relate F and U we have the following.

Proposition 1.1 For any distribution function F on R:

(a) For any y with 0 < y < 1, F±(y) := inf{x : F (x) g y} is well-defined

and finite.

(b) For any real x and any y with 0 < y < 1 we have F (x) g y if and only if

x g F±(y).

(c) If V is a random variable having U [0, 1] distribution, then F±(V ) has

distribution function F .

Proof. For (a), recall that F is nondecreasing, F (x) ³ 0 as x ³ 2>, and

F (x) ³ 1 as x ³ +>. So the set {x : F (x) g y} is nonempty and bounded

below, and has a finite infimum.

For (b), F (x) g y implies x g F±(y) by definition of F±(y). Conversely,

as F is continuous from the right, F (F±(y)) g y, and as F is nondecreasing,

x g F±(y) implies F (x) g y.

For (c), and any x, we have by (b)

Pr(F±(V ) f x) = Pr(V f F (x)) = U (F (x)) = F (x)
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2 1 Donsker’s Theorem and Inequalities

since 0 f F (x) f 1, so (c) holds. �

Recall that for any function f defined on the range of a function g, the

composition f ç g is defined by (f ç g)(x) := f (g(x)). We can then relate

empirical distribution functions Fn for any distribution function F to those Un

for U , as follows.

Proposition 1.2 For any distribution function F , and empirical distribution

functions Fn for F and Un for U , Un ç F have all the properties of Fn.

Proof. Let V1, . . . , Vn be i.i.d. U , so that Un(t) = 1
n

�n
j=1 1Vj ft for 0 f t f 1.

Thus for any x, by Proposition 1.1(b) and (c),

Un(F (x)) =
1

n

n
�

j=1

1Vj fF (x)

=
1

n

n
�

j=1

1F±(Vj )fx

=
1

n

n
�

j=1

1Xj fx

where Xj := F±(Vj ) are i.i.d. (F ). Thus Un(F (x)) has all properties of

Fn(x). �

The developments to be described in this book began (in 1933) with the

Glivenko–Cantelli theorem, a uniform law of large numbers. Probability dis-

tribution functions can converge pointwise but not uniformly: for example, as

n ³ >, 1[21/n,+>)(x) ³ 1[0,+>)(x) for all x but not uniformly.

Theorem 1.3 (Glivenko–Cantelli) For any distribution function F , almost

surely, supx |(Fn 2 F )(x)| ³ 0 as n ³ >.

Proof. By Proposition 1.2, and since U ç F c F , it suffices to prove this

for the U [0, 1] distribution U . Given ¸ > 0, take a positive integer k such

that 1/k < ¸/2. For each j = 0, 1, . . . , k, Un(j/k) ³ j/k as n ³ > with

probability 1 by the ordinary strong law of large numbers. Take n0 = n0(Ë)

such that for all n g n0 and all j = 0, 1, . . . , k, |Un(j/k) 2 j/k| < ¸/2. For t

outside [0, 1] we have Un(t) c U (t) = 0 or 1. For each t * [0, 1] there is at

least one j = 1, . . . , k such that (j 2 1)/k f t f j/k. Then for n g n0,

(j 2 1)/k 2 ¸/2 < Un((j 2 1)/k) f Un(t) f Un(j/k) < j/k + ¸/2.

It follows that |Un(t) 2 t | < ¸, and since t was arbitrary, the theorem

follows. �
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1 Donsker’s Theorem and Inequalities 3

The next step was to consider the limiting behavior of ³n := n1/2(Fn 2 F )

as n ³ >. For any fixed t , the central limit theorem in its most classical

form, for binomial distributions, says that ³n(t) converges in distribution to

N (0, F (t)(1 2 F (t))), in other words a normal (Gaussian) law, with mean 0

and variance F (t)(1 2 F (t)).

In what follows (as mentioned in the Note after the Preface), “RAP” will

mean the author’s book Real Analysis and Probability.

For any finite set T of values of t , the multidimensional central limit theorem

(RAP, Theorem 9.5.6) tells us that ³n(t) for t in T converges in distribution

as n ³ > to a normal law N (0, CF ) with mean 0 and covariance CF (s, t) =
F (s)(1 2 F (t)) for s f t .

The Brownian bridge (RAP, Section 12.1) is a stochastic process yt (Ë)

defined for 0 f t f 1 and Ë in some probability space �, such that for any

finite set S ¢ [0, 1], yt for t in S have distribution N (0, C), where C = CU

for the uniform distribution function U (t) = t, 0 f t f 1. So the empirical

process ³n converges in distribution to the Brownian bridge composed with F,

namely t �³ yF (t), at least when restricted to finite sets.

It was then natural to ask whether this convergence extends to infinite sets

or the whole interval or line. Kolmogorov (1933b) showed that when F is

continuous, the supremum supt ³n(t) and the supremum of absolute value,

supt |³n(t)|, converge in distribution to the laws of the same functionals of yF .

Then, these functionals of yF have the same distributions as for the Brownian

bridge itself, since F takes R onto an interval including (0, 1) and which

may or may not contain 0 or 1; this makes no difference to the suprema

since y0 c y1 c 0. Also, yt ³ 0 almost surely as t³0 or t ± 1 by sample

continuity; the suprema can be restricted to a countable dense set such as the

rational numbers in (0, 1) and are thus measurable.

To work with the Brownian bridge process it will help to relate it to the

well-known Brownian motion process xt , defined for t g 0, also called the

Wiener process. This process is such that for any any finite set T ¢ [0,+>),

the joint distribution of {xt }t*F is N (0, C) where C(s, t) = min(s, t). This

process has independent increments, namely, for any 0 = t0 < t1 < · · · < tk ,

the increments xtj 2 xtj21
for j = 1, . . . , k are jointly independent, with xt 2 xs

having distribution N (0, t 2 s) for 0 f s < t . Recall that for jointly Gaussian

(normal) random variables, joint independence, pairwise independence, and

having covariances equal to 0 are equivalent. Having independent increments

with the given distributions clearly implies that E(xsxt ) = min(s, t) and so is

equivalent to the definition of Brownian motion with that covariance.

Brownian motion can be taken to be sample continuous, i.e. such that t �³
xt (Ë) is continuous in t for all (or almost all) Ë. This theorem, proved by Norbert

Wiener in the 1920s, is Theorem 12.1.5 in RAP; a proof will be indicated here.
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4 1 Donsker’s Theorem and Inequalities

If Z has N (0, 1) distribution, then for any c > 0, Pr(Z g c) f exp(2c2/2)

(RAP, Lemma 12.1.6(b)). Thus if X has N (0, Ã 2) distribution for some Ã > 0,

then Pr(X g c) = Pr(X/Ã > c/Ã ) f exp(2c2/(2Ã 2)). It follows that for any

n = 1, 2, . . . and any j = 1, 2, . . . ,

Pr

�

�

�xj/2n 2 x(j21)/2n

�

� g
1

n2

�

f 2 exp
�

22n/(2n4)
�

.

It follows that for any integer K > 0, the probability of any of the above

events occurring for j = 1, . . . , 2nK is at most 2n+1K exp(22n/(2n4), which

approaches 0 very fast as n ³ >, because of the dominant factor 22n in the

exponent. Also, the series
�

n 1/n2 converges. It follows by the Borel–Cantelli

Lemma (RAP, Theorem 8.3.4) that with probability 1, for all t * [0,K], for

a sequence of dyadic rationals tn ³ t given by the binary expansion of t , xtn

will converge to some limit Xt , which equals xt almost surely. Specifically,

for t < K , let tn = (j 2 1)/2n for the unique j f 2nK such that (j 2 1)/2n f
t < t/2n. Then tn+1 = tn = 2j/2n+1 or tn+1 = (2j 2 1)/2n+1, so that tn+1 and

tn are either equal or are adjacent dyadic rationals with denominator 2n+1, and

the above bounds apply to the differences xtn+1
2 xtn .

The process Xt is sample-continuous and is itself a Brownian motion, as

desired. From here on, a “Brownian motion” will always mean a sample-

continuous one.

Here is a reflection principle for Brownian motion (RAP, 12.3.1). A proof

will be sketched.

Theorem 1.4 Let {xt }tg0 be a Brownian motion, b > 0 and c > 0. Then

Pr(sup{xt : t f b} g c) = 2 Pr(xb g c) = 2N (0, b)([c,+>)).

Sketch of proof : If sup{xt : t f b} g c, then by sample continuity there is a least

time Ä with 0 < Ä f b such that xÄ = c. The probability that Ä = b is 0, so we

can assume that Ä < b if it exists. Starting at time Ä , xb is equally likely to be > c

or < c. [This holds by an extension of the independent increment property or the

strong Markov property (RAP, Section 12.2); or via approximation by suitably

normalized simple symmetric random walks and the reflection principle for

them.] Thus

Pr(xb g c) =
1

2
Pr(sup{xt : t f b} g c),

which gives the conclusion. �

One way to write the Brownian bridge process yt in terms of Brownian

motion is yt = xt 2 tx1, 0 f t f 1. It is easily checked that this a Gaussian

process (yt for t in any finite subset of [0, 1] have a normal joint distribution,

with zero means) and that the covariance Eysyt = s(1 2 t) for 0 f s f t f 1,

fitting the definition of Brownian bridge. It follows that the Brownian bridge
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1 Donsker’s Theorem and Inequalities 5

process, on [0, 1], is also sample continuous, i.e., we can and will take it such

that t �³ yt (Ë) is continuous for almost all Ë.

Another relation is that yt is xt for 0 f t f 1 conditioned on x1 = 0 in a

suitable sense, namely, it has the limit of the distributions of {xt }0ftf1 given

|x1| < ¸ as ¸³0 (RAP, Proposition 12.3.2). A proof of this will also be sketched

here. Suppose we are given a Brownian bridge {yt }0ftf1. Let Z be a N (0, 1)

random variable independent of the yt process. Define ¿t = yt + tZ for 0 f t f
1. Then ¿t is a Gaussian stochastic process with mean 0 and covariance given,

for 0 f s f t f 1, by E¿s¿t = s(1 2 t) + 0 + 0 + st = s, so ¿t for 0 f t f 1

has the distribution of Brownian motion restricted to [0, 1]. The conditional

distribution of ¿t given |¿1| < ¸, in other words |Z| < ¸, is that of yt + tZ given

|Z| < ¸, and since Z is independent of {yt }0ftf1, this conditional distribution

clearly converges to that of {yt } as ¸³0, as claimed.

Kolmogorov evaluated the distributions of supt yt and supt |yt | explicitly.

For the first (1-sided) supremum this follows from a reflection principle (RAP,

Proposition 12.3.3) for yt whose proof will be sketched:

Theorem 1.5 For a Brownian bridge {yt }0ftf1 and any c > 0,

Pr( sup
0ftf1

yt > c) = exp(22c2).

Sketch of proof: The probability is, for a Brownian motion xt ,

lim
¸³0

Pr

�

sup
0ftf1

xt > c
�

�|x1| < ¸

�

= lim
¸³0

Pr

�

sup
0ftf1

xt > c and |x1| < ¸

�

/ Pr(|x1| < ¸)

= lim
¸³0

Pr

�

sup
0ftf1

xt > c and |x1 2 2c| < ¸

�

/ Pr(|x1| < ¸)

where the last equality is by reflection. For ¸ small enough, ¸ < c, and then

the last quotient becomes simply Pr(|x1 2 2c| < ¸)/ Pr(|x1| < ¸). Letting Ç

be the standard normal density function, the quotient is asymptotic as ¸³0 to

Ç(2c) · 2¸/(Ç(0) · 2¸) = exp(22c2) as stated. �

The distribution of sup0ftf1 |yt | is given by a series (RAP, Proposition

12.3.4) as follows:

Theorem 1.6 For any c > 0, and a Brownian bridge yt ,

Pr

�

sup
0ftf1

|yt | > c

�

= 2

>
�

j=1

(21)j21 exp(22j 2c2).
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6 1 Donsker’s Theorem and Inequalities

The proof is by iterated reflections: for example, a Brownian path which before

time 1 reaches +c, then later 2c, then returns to (near) 0 at time 1, corresponds

to a path which reaches c, then 3c, then (near) 4c, and so on.

Doob (1949) asked whether the convergence in distribution of empirical

processes to the Brownian bridges held for more general functionals (other

than the supremum and that of absolute value). Donsker (1952) stated and

proved (not quite correctly) a general extension. This book will present results

proved over the past few decades by many researchers, first in this chapter on

speed of convergence in the classical case. In the rest of the book, the collection

of half-lines (2>, x], x * R, will be replaced by much more general classes

of sets in, and functions on, general sample spaces, for example, the class of

all ellipsoids in R
3.

To motivate and illustrate the general theory, the first section will give a

revised formulation of Donsker’s theorem with a statement on rate of conver-

gence, to be proved in Section 1.4. Sections 1.2 on metric entropy and 1.3 on

inequalities provide concepts and facts to be used in the rest of the book.

1.1 Empirical Processes: The Classical Case

In this section, a form of Donsker’s theorem with rates of convergence will be

stated for the U [0, 1] distribution with distribution function U and empirical

distribution functions Un. This would imply a corresponding limit theorem for

a general distribution function F via Proposition 1.2. Let ³n := n1/2(Un 2 U )

on [0, 1]. It will be proved that as n ³ >, ³n converges in law (in a sense

to be made precise below) to a Brownian bridge process yt , 0 f t f 1 (RAP,

before Theorem 12.1.5).

Donsker in 1952 proved that the convergence in law of ³n to the Brownian

bridge holds, in a sense, with respect to uniform convergence in t on the whole

interval [0, 1]. How to define such convergence in law correctly, however, was

not clarified until much later. General definitions will be given in Chapter 3.

Here, a more special approach will be taken in order to state and prove an

accessible form of Donsker’s theorem.

For a function f on [0, 1] we have the sup norm

�f �sup := sup{|f (t)| : 0 f t f 1}.

Here is a formulation of Donsker’s theorem.

Theorem 1.7 For n = 1, 2, . . . , there exist probability spaces �n such that:

(a) On �n, there exist n i.i.d. random variables X1, . . . , Xn with uniform

distribution in [0, 1]. Let ³n be the nth empirical process based on these Xi;

www.cambridge.org/9780521738415
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1.2 Metric Entropy and Capacity 7

(b) On �n a sample-continuous Brownian bridge process Yn: (t, Ë) �³ Yn(t, Ë)

is defined;

(c) �³n 2 Yn�sup is measurable, and for all ¸ > 0, Pr(�³n 2 Yn�sup > ¸) ³ 0

as n ³ >.

The theorem just stated is a consequence of the following facts giving rates

of convergence. Komlós, Major, and Tusnády (1975) stated a sharp rate of

convergence in Donsker’s theorem, namely, that on some probability space

there exist Xi i.i.d. U [0, 1] and Brownian bridges Yn such that

P

�

sup
0ftf1

|(³n 2 Yn)(t)| >
x + c log n

:
n

�

< Ke2»x (1.1)

for all n = 1, 2, . . . and x > 0, where c,K, and » are positive absolute con-

stants. If we take x = a log n for some a > 0, so that the numerator of the

fraction remains of the order O(log n), the right side becomes Kn2»a , decreas-

ing as n ³ > as any desired negative power of n.

More specifically, Bretagnolle and Massart (1989) proved the following:

Theorem 1.8 (Bretagnolle and Massart) The approximation (1.1) of empi-

rical processes by Brownian bridges holds with c = 12, K = 2, and » = 1/6

for n g 2.

Bretagnolle and Massart’s theorem is proved in Section 1.4.

1.2 Metric Entropy and Capacity

The notions in this section will be applied in later chapters, first, to Gaussian

processes, then later in adapted forms, metric entropy with inclusion for sets, or

with bracketing for functions, as applied to empirical processes in later chapters.

The word “entropy” is applied to several concepts in mathematics. What

they have in common is apparently that they give some measure of the size or

complexity of some set or transformation and that their definitions involve loga-

rithms. Beyond this rather superficial resemblance, there are major differences.

What are here called “metric entropy” and “metric capacity” are measures

of the size of a metric space, which must be totally bounded (have compact

completion) in order for the metric entropy or capacity to be finite. Metric

entropy will provide a useful general technique for dealing with classes of sets

or functions in general spaces, as opposed to Markov (or martingale) methods.

The latter methods apply, as in the last section, when the sample space is R and

the class C of sets is the class of half-lines (2>, x], x * R, so that C with its

ordering by inclusion is isomorphic to R with its usual ordering.

www.cambridge.org/9780521738415
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-73841-5 — Uniform Central Limit Theorems
R. M. Dudley
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Donsker’s Theorem and Inequalities

Let (S, d) be a metric space and A a subset of S. Let ¸ > 0. A set F ¢ S

(not necessarily included in A) is called an ¸-net for A if and only if for each

x * A, there is a y * F with d(x, y) f ¸. Let N (¸,A, S, d) denote the minimal

number of points in an ¸-net in S for A.

For any set C ¢ S, define the diameter of C by

diam C := sup{d(x, y) : x, y * C}.

Let N (¸, C, d) be the smallest n such that C is the union of n sets of diameter

at most 2¸. Let D(¸,A, d) denote the largest n such that there is a subset F ¢ A

with F having n members and d(x, y) > ¸ whenever x �= y for x and y in F .

The three quantities just defined are related by the following inequalities:

Theorem 1.9 For any ¸ > 0 and set A in a metric space S with metric d,

D(2¸,A, d) f N (¸,A, d) f N (¸,A, S, d) f N (¸,A,A, d) f D(¸,A, d).

Proof. The first inequality holds since a set of diameter 2¸ can contain at

most one of a set of points more than 2¸ apart. The next holds because any

ball B(x, ¸) := {y : d(x, y) f ¸} is a set of diameter at most 2¸. The third

inequality holds since requiring centers to be in A is more restrictive. The last

holds because a set F of points more than ¸ apart, with maximal cardinality,

must be an ¸-net, since otherwise there would be a point more than ¸ away

from each point of F , which could be adjoined to F , a contradiction unless F

is infinite, but then the inequality holds trivially. �

It follows that as ¸³0, when all the functions in the Theorem go to > unless

S is a finite set, they have the same asymptotic behavior up to a factor of 2

in ¸. So it will be convenient to choose one of the four and make statements

about it, which will then yield corresponding results for the others. The choice

is somewhat arbitrary. Here are some considerations that bear on the choice.

The finite set of points, whether more than ¸ apart or forming an ¸-net, are

often useful, as opposed to the sets in the definition of N (¸,A, d). N (¸,A, S, d)

depends not only on A but also on the larger space S. Many workers, possibly for

these reasons, have preferred N (¸,A,A, d). But the latter may decrease when

the set A increases. For example, let A be the surface of a sphere of radius ¸

around 0 in a Euclidean space S and let B := A * {0}. Then N (¸, B,B, d) =
1 < N (¸,A,A, d). This was the reason, apparently, that Kolmogorov chose to

use N (¸,A, d).

In this book I adopt D(¸,A, d) as basic. It depends only on A, not on the

larger space S, and is nondecreasing in A. If D(¸,A, d) = n, then there are n

points which are more than ¸ apart and at the same time form an ¸-net.

Now, the ¸-entropy of the metric space (A, d) is defined as H (¸,A, d) :=
log N (¸,A, d), and the ¸-capacity as log D(¸,A, d). Some other authors take
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1.3 Inequalities 9

logarithms to the base 2, by analogy with information-theoretic entropy. In this

book logarithms will be taken to the usual base e, which fits, for example, with

bounds coming from moment generating functions as in the next section, and

with Gaussian measures as in Chapter 2. There are a number of interesting sets

of functions where N (¸,A, d) is of the order of magnitude exp(¸2r ) as ¸³0,

for some power r > 0, so that the ¸-entropy, and likewise the ¸-capacity, have

the simpler order ¸2r . But in other cases below, D(¸,A, d) is itself of the order

of a power of 1/¸.

1.3 Inequalities

This section collects several inequalities bounding the probabilities that ran-

dom variables, and specifically sums of independent random variables, are

large. Many of these follow from a basic inequality of S. Bernštein and P. L.

Chebyshev:

Theorem 1.10 For any real random variable X and t * R,

Pr(X g t) f inf
ug0

e2tuEeuX.

Proof. For any fixed u g 0, the indicator function of the set where X g t

satisfies 1{Xgt} f eu(X2t), so the inequality holds for a fixed u, then take

infug0 . �

For any independent real random variables X1, . . . , Xn, let Sn := X1 + · · ·
+ Xn.

Theorem 1.11 (Bernštein’s inequality) Let X1, X2, . . . , Xn be independent

real random variables with mean 0. Let 0 < M < > and suppose that |Xj | f
M almost surely for j = 1, . . . , n. Let Ã 2

j = var(Xj ) and Ä 2
n := var(Sn) =

Ã 2
1 + · · · + Ã 2

n . Then for any K > 0,

Pr{|Sn| g Kn1/2} f 2 · exp(2nK2/(2Ä 2
n + 2Mn1/2K/3)). (1.2)

Proof. We can assume that Ä 2
n > 0 since otherwise Sn = 0 a.s. and the inequality

holds. For any u g 0 and j = 1, . . . , n,

E exp(uXj ) = 1 + u2Ã 2
j Fj/2 f exp(Ã 2

j Fju
2/2) (1.3)

where Fj := 2Ã22
j

�>
r=2 ur22EXr

j/r!, or Fj = 0 if Ã 2
j = 0. For r g

2, |Xj |r f X2
jM

r22 a.s., so Fj f 2
�>

r=2 (Mu)r22/r! f
�>

r=2 (Mu/3)r22 =
1/(1 2 Mu/3) for all j = 1, . . . , n if 0 < u < 3/M .

Let v := Kn1/2 and u := v/(Ä 2
n + Mv/3), so that v = Ä 2

nu/(1 2 Mu/3).

Then 0 < u < 3/M . Thus, multiplying the factors on the right side of (1.3) by
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10 1 Donsker’s Theorem and Inequalities

independence, we have

E exp(uSn) f exp(Ä 2
nu2/2(1 2 Mu/3)) = exp(uv/2).

So by Theorem 1.10, Pr{Sn g v} f e2uv/2 and

e2uv/2 = exp(2v2/(2Ä 2
n + 2Mv/3)) = exp(2nK2/(2Ä 2

n + 2MKn1/2/3)). �

Here are some remarks on Bernštein’s inequality. Note that for fixed K and

M , if Xi are i.i.d. with variance Ã 2, then as n ³ >, the bound approaches the

normal bound 2. exp(2K2/(2Ã 2)), as given in RAP, Lemma 12.1.6. Moreover,

this is true even if M := Mn ³ > as n ³ > while K stays constant, provided

that Mn/n1/2 ³ 0. Sometimes, the inequality can be applied to unbounded

variables Xj , replacing them by truncated ones, say replacing Xj by fMn
(Xj )

where fM (x) := x1{|x|fM}. In that case the probability

Pr(|Xj | > Mn for some j f n) f
n

�

j=1

Pr(|Xj | > Mn)

needs to be small enough so that the inequality with this additional probability

added to the bound is still useful.

Next, let s1, s2, . . . , be i.i.d. variables with P (si = 1) = P (si = 21) = 1/2.

Such variables are called “Rademacher” variables. We have the following

inequality:

Proposition 1.12 (Hoeffding) For any t g 0, and real aj not all 0,
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Proof. Since 1/(2n)! f 22n/n! for n = 0, 1, . . . , we have cosh x c (ex +
e2x)/2 f exp(x2/2) for all x. Applying Theorem 1.10, the probability on the

left is bounded above by infu exp(2ut +
�n

j=1 a2
j u

2/2), which by calculus is

attained at u = t/
�n

j=1 a2
j , and the result follows. �

Proposition 1.12 can be applied as follows. Let Y1, Y2, . . . , be independent

variables which are symmetric, in other words Yj has the same distribution as

2Yj for all j . Let si be Rademacher variables independent of each other and of

all the Yj . Then the sequence {sjYj }{jg1} has the same distribution as {Yj }{jg1}.

Thus to bound the probability that
�n

j=1 Yj > K , for example, we can consider

the conditional probability for each Y1, . . . , Yn,

Pr{
�n

j=1 sjYj > K|Y1, . . . , Yn} f exp(2K2/(2
�n

j=1 Y 2
j ))
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