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1
The idea of bigraphs

In this chapter we develop the notion of a bigraph from the simple idea that it
consists of two independent structures on the same set of nodes.

To prepare for the formal Definitions 1.1-2.7, we start informally from two well-
known concepts: a forest is a set of rooted trees; and a hypergraph consists of a set
of nodes, together with a set of edges each linking any number of nodes.

Idea A bigraph with nodes V and edges E has a forest whose nodes are V'; it also
has a hypergraph with nodes V and edges E.

Let us call an entity with this structure a bare bigraph. We shall use F, G to stand
for bare bigraphs. Here is a bare bigraph G having nodes V' = {vg,...,v5} and
edges E = {ey, e1, e2}, with its forest and hypergraph:

bare bigraph G

forest of G

Vo V4
(/ 2 U5
U1
U3

The upper diagram presents both the forest and the hypergraph; it depicts the forest
by nesting. The lower two diagrams represent the two structures separately, in a
conventional manner. The children of each node are the nodes immediately below

3
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4 1 The idea of bigraphs

it in the forest (i.e. immediately within it, in the upper diagram). Thus v; and v
are children of vy, which is their parent.

An edge is represented by connected thin lines; G has two edges that each connect
three nodes, and one that connects two nodes. The points at which an edge impinges
on its nodes are called ports, shown as black blobs.!

We now add further structure to a bare bigraph. It will allow bigraphs to be
composed, and will allow one bigraph to be considered as a component of another.
Here is F, informally a ‘part’ of G, having only some of its nodes and with one
hyperlink broken. Can we call it a component of G?

bare bigraph F (N
U3

U1 e

€1

To make it so, we add interfaces to bare bigraphs, thus extending F and G into
bigraphs F' and G. This will allow us to represent the occurrence of F' as a com-
ponent of G by an equation G = H o F, where H is some ‘host’ or contextual
bigraph. We do this extension independently for forests and hypergraphs; a forest
with interfaces will be called a place graph, and a hypergraph with interfaces will
be called a link graph.

Let us illustrate with the bare bigraph F.A place graph interface will be a natural
number n, which we shall treat as a finite ordinal, the setn = {0, 1,...,n—1} whose
members are all preceding ordinals. A place graph’s outer and inner interfaces — or
faces as we shall call them — index respectively its roots and its sites. For the forest
of F we choose the outer face 3 = {0, 1, 2}, providing distinct roots as parents for
the nodes vy, v and v4. For the inner face of F we choose 0, i.e. it has no sites. This
extends the forest to a place graph F'7:0— 3, an arrow in a precategory? whose
objects are natural numbers. It is shown at the left of the diagram below.

1 By making ports explicit we permit distinct roles to be played by the edges impinging on a given node, just as
each argument of a given mathematical function plays a distinct role.

2 We shall define precategories in Chapter 2. For now, it is enough to know that a precategory has two kinds of
entity, objects and arrows; that each arrow goes from a tail to a head, both of which are objects; and that these
entities behave nicely together. Both objects and arrows may have all kinds of structure.
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The idea of bigraphs 5

roots ... () 1 2 outer names ... , T Y

place graph link graph 3 V4

FP.0-3 v FL 0 —{ay}
U1 V3 (%% “ 2]
Vs s

The outer and inner faces of a link graph are name-sets: respectively, its outer and
inner names. For the hypergraph of F we choose outer face {zy}, thus naming
the parts of the broken hyperlink, and inner face ().> This extends the hypergraph
to a link graph F“:() —{2y}, an arrow in a precategory whose objects are finite
name-sets. Names are drawn from a countably infinite vocabulary X'

Finally, a bigraph is a pair B = (B, B) of a place graph and a link graph;
these are its constituents. Its outer face is a pair (n,Y’), where n and Y are the
outer faces of BP and B' respectively. Similarly for its inner face (m, X). For
our example F' = (F'P FL) these pairs are (3, {zy}) and (0, () respectively. We
call the trivial interface ¢ = (0, ()) the origin. Thus F is extended to an arrow
F:e—(3,{xy}) in a precategory whose objects are such paired interfaces. F will
be drawn as follows:

bigraph
F:e— (3 {zy})

The rectangles in F' — sometimes called regions — are just a way of drawing its roots,
seen also in F'P. The link graph F- has four links. Two of these are the edges e;
and e», also called closed links; the other two are named x and y, and are called
open links.

Let us now add interfaces to the bare bigraph G, extending it into a bigraph G. It
has no open links, i.e. all its links are edges, so the name-set in its outer face will be
empty. Let us give it two roots; then, if G is placed in some larger context, vy and
vq may be in distinct places — i.e. may have distinct parents. The diagram below
shows G and its constituents. Note that there is no significance in where a link
‘crosses’ the boundary of a node or region in a bigraph; this is because the forest
and hypergraph structures are independent.

3 We use single letters for names, so we shall often write a set {x,y, ...} of names as {2y --- }, or even as
xy - - -, when there is no ambiguity.
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6 1 The idea of bigraphs

bigraph
G:e—(2,0)
roots ... (0 1 €o_—
vy U] v V0 ~, U4
place graph link graph d O D
GP:0—2 Us GL:0—0 20 ) =

m

€1 P Vs
1.530 o

We are now ready to construct a bigraph H such that G = H o F), illustrating
composition, which will later be defined formally. The inner face of H must be
(3,{zy}), the outer face of F’; to achieve this, H must have three sites 0,1 and
2, and inner names x and y. Here are H and its constituents, with sites shown as
shaded rectangles:

bigraph
H: (3, {zy}) —(2,0)

roots... () 1
place graph o link graph N 0
HP 352 v2 H-: {xy} =0 O
sites ... ‘() 1 2 inner names ... T Y

In the place graph, each site and node has a parent, a node or root; in the link graph,
each inner name and port belongs to a link, closed or open. Just as it is insignificant
where links ‘cross’ node or root boundaries, so it is insignificant where they ‘cross’
a site. We draw inner names below the bigraph and outer names above it; this is
merely a convention to indicate their status as inner or outer. A name may be both
inner and outer, whether or not in the same link.
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The idea of bigraphs 7

In general, let F': I — J and H : J — K be two bigraphs with disjoint nodes and
edges, where I = (k, X), J = (m,Y) and K = (n,Z). Then the composite
bigraph Ho F: I — K is just the pair of composites (H" o FP H' o FL), whose
constituents are constructed as follows (informally):

(i) To form the place graph H" o FP: k — n, for each i € m join the ith root
of F'P with the ith site of H;

(ii) To form the link graph H'o F': X — Z, for each y € Y join the link of
F' having the outer name y with the link of H" having the inner name .

Thus H and F' are joined at every place or link in their common face .J, which
ceases to exist. The reader may like to check these constructions for H and F' as
in our example.

In our formal treatment, operations on bigraphs will be defined in terms of their
constituent place and link graphs. But it is convenient, and even necessary for prac-
tical purposes, to have diagrams not only for the constituents but for the bigraphs
themselves, such as for ', G and H in the example above. Such a diagram must
be to some extent arbitrary, because we are trying to represent placing and linking,
which are independent, in two dimensions! In particular, note that we have drawn
outer names above the picture (in F' and G for example), and we have drawn inner
names below the picture (in H for example). Other conventions are possible.

It will be helpful to look now at Figure 1.2, at the end of this chapter, showing the
anatomical elements of bigraphs that will later be defined formally. In the present
chapter we give only one formal definition, which determines how to introduce
different kinds of node for different applications.

Definition 1.1 (basic signature) A basic signature takes the form (/C, ar). It has
a set K whose elements are kinds of node called controls, and a map ar: K — N
assigning an arity, a natural number, to each control. The signature is denoted by
KC when the arity is understood. A bigraph over K assigns to each node a control,
whose arity indexes the ports of a node, where links may be connected. o

A signature suitable for our example is L = {K:2, L:0, M: 1}. (Thus arities are
made explicit.) Here is our bigraph G : e —(2,()), with controls assigned to the
nodes:

bigraph G
with controls

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521738330
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-73833-0 - The Space and Motion of Communicating Agents
Robin Milner

Excerpt

More information

8 1 The idea of bigraphs

We have omitted node- and edge-identifiers, as we often shall when they are irrel-
evant. To end this chapter, let us look at a realistic (but simplified) example, which
indicates that bigraphs can go beyond the usual topics for process calculi.

Example 1.2 (a built environment) The next diagram shows a bare bigraph E
over the signature L = {A:2, B:1, C:2, R:0}, which classifies nodes as agents,
buildings, computers and rooms. The node-shapes are not significant, except to
indicate the purpose of each port. The figure represents a state which may change
because of the movement of agents, and perhaps other movements. Think of the
five agents as conducting a conference call (the long link). An agent in a room may
also be logged in (the short links) to a computer in the room, and the computers in
a building are linked to form a local area network. O

bare bigraph E

Bearing in mind our earlier example, the following exercise will be instructive.

EXERCISE 1.1

(1) Draw a bare bigraph D representing the three agents that are inside rooms.
Make this into a bigraph D by defining its outer face.

(2) Propose an outer face that makes E into a bigraph F, allowing the possi-
bility that the two buildings may be situated in different cities. Draw the
bigraph C, with sites, such that C'o D = E. O

Although the detailed study of dynamics is deferred to Part II, let us now illustrate
how bigraphs can reconfigure themselves. We are free to define different reconfig-
urations for each application. This is done by reaction rules each consisting of a
redex (the pattern to be changed) and a reactum (the changed pattern). Part of the
idea of bigraphs is that these changes may involve both placing and linking.

The redex and reactum of a rule are themselves bigraphs, and may match any
part of a larger bigraph. (This remark will be made precise in Part II.) Here are
three possible rules for built environments, such as the system F:
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The idea of bigraphs 9

Rule B1 is the simplest: an agent can leave a conference call. The redex — the
left-hand pattern — can match any agent; the out-pointing links mean that either of
her ports may at first be linked to zero or more other ports, in the same place or
elsewhere. If she is linked in a conference call to other agents, perhaps in other
buildings, the reaction by B1 will unlink her; any link to a computer is retained.

Rule B2 shows a computer connecting to an agent in the same place (presumably
a room). The redex insists that at first the agent is linked to no computer and the
computer is linked to no agent. Rules B1 and B2 change only the linking — not the
placing — in a bigraph, though the redex of B2 does insist on juxtaposition.

Rule B3, by contrast, changes the placing; an agent enters a room. Again, the
rule requires the agent and the room to be in the same place (presumably a build-
ing). The site (shaded) allows the room to contain other occupants, e.g. a computer
and other agents. The matching discipline allows these occupants to be linked
anywhere, either to each other or to nodes lying outside the room.

Another feature of B3 is that its redex allows the lower port of the agent to be
already linked to a computer somewhere, perhaps in another room. B3 retains any
such link. Equally, there may be no such link — the context in which the rule is
applied may close it off. Thus B3 can be applied to the system represented by E,
or I/, allowing an agent in the right-hand building to enter a room.

Taking this a step further, observe that in £ an agent and a computer are linked
only when they occupy the same room. Moreover, starting from £, our rules B1—
B3 will preserve this property, since only B3 creates such links, and only within
aroom. We therefore call the property an invariant for E in the system with this
rule-set. We now briefly discuss invariants.

Given a rule-set, we refer to the configurations that a system may adopt as states.
The rule-set determines a reaction relation —+ between states. The diagram below
shows the state F'3 adopted by F after three reactions

E—FE—>FEy—>FEs;

in the first, B1 is applied to the third agent from the left; in the second, B3 is
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10 1 The idea of bigraphs

applied to the fourth agent; this enables B2 to be applied to that agent in the third
reaction.

bigraph E3

We say that a property of states is (an) invariant for £ (under a given rule-set) if
it holds for all states reachable from E via reactions permitted by the rule-set, i.e.
it holds for all £’ such that E—> --- —» E’. For example, under the rule-set
B1-B3, the property ‘there are exactly five agents’ is invariant for F.

Of course, our present rule-set is very limited. The following exercise suggests
how to enrich this rule-set a little, and explores what invariants may then hold.

EXERCISE 1.2

(1) Add arule B4 to enable an agent linked with a computer to sever this link,
and another rule B5 to allow an agent unlinked to a computer to leave a
room. Give a few examples of invariants for £ under the rule-set B1-B5.

(2) Instead of B4 and B5, design a single rule B6 that allows an agent to leave
aroom, simultaneously severing any link with the computer. How does this
change affect your invariants? O

Our behavioural model of the occupants of a building is crude, of course. But
reaction rules of this kind, hardly more complex, are beginning to find realistic
application in biological modelling. A crucial refinement is to add stochastic in-
formation that determines which reactions are more likely to occur, and therefore
to preempt others. In the built environment, an interesting refinement is to allow
agents to discover who is where, and record this information via the computers;
these stories can then be combined so that the system becomes reflective, meaning
that it can represent (part of) itself, and answer questions such as ‘where is agent
Xr4

In another direction, bigraphs can model process calculi. In this case, the con-
trols of a bigraph represent the constructors of the calculus. As an example, we

4 These experimental applications are discussed, with citations, in Chapter 12.
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The idea of bigraphs 11

take the calculus of mobile ambients, which partly inspired the bigraph model. In
mobile ambients the main constructor is ‘amb’ with arity 1, representing an ambi-
ent — a region within which activity may occur; its single port allows an ambient to
be named. Other constructors represent commands, or capabilities.

v d
amb
amb

The above diagram shows two ambients, each with arbitrary content represented
by the sites; one ambient also contains an ‘in’ capability, which refers to the other
ambient by name. Let us use this example to illustrate the algebraic language for
bigraphs, which we shall develop in later chapters. Here is the algebraic term for
the above system:

amby,.(in,.do | d1) | amby.ds .

The combinator ‘|’ represents juxtaposition, and is commutative and associative;
the combinator °.” denotes nesting. We shall see in Chapter 3 that both combinators
are derived from the categorical operations of composition and tensor product. The
metavariables dg, d; and dy stand for parameters, i.e. arbitrary occupants of the
sites.

Let us now look at the dynamics of ambients. The above bigraph is, in fact, the
redex of one of the reaction rules for mobile ambients, three of which are shown in
Figure 1.1. In the first rule, the ‘in’ command causes its parent ambient named z,
together with all its other contents, to move inside the ambient named y. The ‘in’
command, having done its job, vanishes; this exposes its contents to reactions with
the ambient’s other occupants. Note that reconfiguration is permitted within an
‘amb’ node, but not within an ‘in’ node; the occupant of an ‘in’ node has a potential
for interaction, which becomes actual only when the node itself has vanished.

In the second rule, conversely, the ‘out’ command causes the exit of its parent
ambient from its own parent. These two rules provide our first example of moving
sub-bigraphs from one region to another.

Finally, in the third rule the ‘open’ command causes an ambient node to vanish,
exposing its contents to interactions in a wider region.

EXERCISE 1.3 Modify rule A3 to use a ‘send’ command instead of ‘open’. It
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