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Introduction

1.1 Introduction

The main purpose of writing this book is to convey to the general mathematical
audience the notion of a Zariski geometry with the whole spectrum of geomet-
ric ideas arising in model-theoretic context. The idea of a Zariski geometry is
intrinsically linked with algebraic geometry, as are many other model-theoretic
geometric ideas. However, there are also very strong links with combinatorial
geometries, such as matroids (pre-geometries) and abstract incidence systems.
Model theory developed a very general unifying point of view based on the
model-theoretic geometric analysis of mathematical structures as diverse as
compact complex manifolds and general algebraic varieties, differential fields,
difference fields, algebraic groups, and others. In all of these, Zariski geome-
tries have been detected and have proved crucial for the corresponding theory
and applications. In more recent works, this author has established a robust
connection to non-commutative algebraic geometry.

Model theory has always been interested in studying the relationship
between a mathematical structure, such as the field of complex numbers
(C,+, ·), and its description in a formal language, such as the finitary lan-
guage suggested by D. Hilbert: the first-order language. The best possible
relationship is when a structure M is the unique, up-to-isomorphism model of
the description Th(M): the theory of M. Unfortunately, for a first-order lan-
guage, this is the case only when M is finite because in the first order, it is
impossible to fix an infinite cardinality of (the universe of) M. So, the next
best relationship is when the isomorphism type of M is determined by Th(M)
and the cardinality λ of M (λ-categoricity), such as Th(C,+, ·) – the theory
of the field of complex numbers, in which ‘complex algebraic geometry lives’.
Especially interesting is the case when λ is uncountable and the description is
at most countable. In fact, in this case, Morley’s theorem (1965) states that the
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2 Introduction

theory Th(M) is not sensitive to a particular choice of λ; it has a unique model
in every uncountable cardinality.

The proof of Morley’s theorem marked the beginning of stability theory,
which studies categorical theories in uncountable cardinals and generalisations
(every categorical theory in uncountable cardinals is stable). Categoricity and
stability turned out to be amazingly effective classification principles. To sum
up the results of 40 years of research in a few lines, we lay out the following
conclusions:

1. There is a clear hierarchy of the ‘logical perfection’ of a theory in terms of
stability. Categorical theories and their models are at the top of this hierarchy.

2. The key feature of stability theory is dimension theory and, linked to it,
dependence theory resembling the dimension theory of algebraic geometry
and the theory of algebraic dependence in fields. In fact, algebraic geometry
and its related areas are the main sources of examples.

3. There has been considerable progress toward the classification of structures
with stable and, especially, uncountably categorical theories. The (fine)
classification theory makes use of certain geometric principles, both classical
and those specifically developed in model theory. These geometric principles
proved useful in applications, such as in Diophantine geometry.

In classical mathematics, three basic types of dependencies are known:

1. algebraic dependence in the theory of fields;
2. linear dependence in the theory of vector spaces; and
3. dependence of trivial (combinatorial) type (e.g. two vertices of a graph are

dependent if they belong to the same connected component).

One of the useful conjectures in fine classification theory was the trichotomy
principle, which states that every dependence in an uncountably categorical
theory is based on one of three classical types.

A more elaborate form of this conjecture implies that any uncountably cate-
gorical structure with a non-linear, non-trivial geometry comes from algebraic
geometry over an algebraically closed field. (It makes sense to call a depen-
dence type non-linear if it does not belong to types 2 and 3.) For example, a
special case of this conjecture has been known since 1975 and is still open (see
survey by Cherlin, 2002).

The algebraicity conjecture: Suppose (G, ·) is a simple group with Th(G)
categorical in uncountable cardinals. Then G = G(K) for some simple alge-
braic group G and an algebraically closed field K.
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1.1 Introduction 3

The trichotomy principle proved to be false in general (Hrushovski, 1988)
but nevertheless holds for many important classes. The notion of a Zariski
structure was designed primarily to identify all such classes.

Originally, the idea of a Zariski structure was a condition which would
isolate the ‘best’ possible classes on the top of the hierarchy of stable structures.
Because it has been realised that purely logical conditions are not sufficient
for the trichotomy principle to hold, it has also been realised that a topological
ingredient added to the definition of a categorical theory might suffice. In fact,
a very coarse topology similar to the Zariski topology in algebraic geometry
is sufficient. Along with the introduction of the topology, one also postulates
certain properties of it, mainly of how the topology interacts with the dimension
notion. One of the crucial properties of this kind is in fact a weak form of
smoothness of the geometry in question; in this book, it is called the pre-
smoothness property.

In more detail, a (Noetherian) Zariski structure is a structure M = (M, C),
on the universe M in the language given by the family of relations listed in C.

For each n, the subsets of Mn corresponding to relations from C form a
Noetherian topology. The topology is endowed with a dimension notion (e.g.
the Krull dimension). Dimension is well behaved with respect to projections
Mn+1 → Mn.

The structure M is said to be pre-smooth if for any two closed irreducible
S1, S2 ⊆ Mn, and for any irreducible component S0 of the set S1 ∩ S2,

dim S0 ≥ dim S1 + dim S2 − dim Mn.

It has been said already that the basic examples of pre-smooth Noetherian
Zariski structures come from algebraic geometry. Indeed, let M = M(K) be
the set of K-points of a smooth algebraic variety over an algebraically closed
field K. For C, take the family of Zariski closed subsets (relations) of Mn, all
n. Set dim S to be the Krull dimension. This is a pre-smooth Zariski structure
(geometry).

Another important class of examples is the class of compact complex man-
ifolds. Here M should be taken to be the underlying set of a manifold, and C
should be taken as the family of all analytic subsets of Mn, all n.

Proper analytic varieties in the sense of rigid analytic geometry (analogues
of compact complex manifolds for non-Archimedean valued fields) constitute
yet another class of Noetherian Zariski structures.

It follows from the general theory developed in these lectures that all
these structures (and Zariski structures in general) are at the top of the log-
ical hierarchy (i.e. they have finite Morley rank and in most important cases are
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4 Introduction

uncountably categorical). Interestingly, for the second and third classes, this is
hard to establish without first checking that the structures are Zariski.

So far, the main result of the general theory is the classification of one-
dimensional, pre-smooth, Noetherian Zariski geometries M:

If M is non-linear, then there is an algebraically closed field K, a quasi-
projective algebraic curve CM = CM (K), and a surjective map

p : M → CM

of a finite degree (i.e. p−1(a) ≤ d for each a ∈ CM ) such that for every closed
S ⊆Mn, the image p(S) is Zariski closed in Cn

M (in the sense of algebraic
geometry); if Ŝ ⊆Cn

M is Zariski closed, then p−1(Ŝ) is a closed subset of Mn

(in the sense of the Zariski structure M).

In other words, M is almost an algebraic curve. In fact, it is possible to
specify some extra geometric conditions for M which imply M is an exact
algebraic curve (see [HZ]).

The proof of the classification theorem proceeds as follows (Chapters 8
and 10):

First, for general Zariski structures, we develop an infinitesimal analysis
that culminates with the introduction of local multiplicities of covers (maps)
and intersections and the proof of the implicit function theorem.

Next, we focus on a specific configuration in a one-dimensional M given
by the two-dimensional pre-smooth ‘plane’ M2 and an n-dimensional (n ≥ 2)
pre-smooth family L of curves on M2. We use the local multiplicities of
intersections to define what it means to say that two curves are tangent at a
given point. This is well defined in non-singular points of the curves, but in
general we need a more subtle notion. This is a technically involved concept
of a branch of a curve at a point. Once this is properly defined, we develop a
theory of tangency for branches and prove, in particular, that tangency between
branches is an equivalence relationship.

Next, we treat branches of curves on the plane M2 as (graphs of) local
functions from an infinitesimal neighbourhood of a point on M onto another
infinitesimal neighbourhood. One can prove that the composition of such local
functions is well behaved with respect to tangency. In particular, with respect
to composition modulo tangency, local functions form a local group (pre-
group, or a ‘group-chunk’ in the terminology of A. Weil). A generalisation of a
known proof by Weil produces a pre-smooth Zariski group, more specifically
an Abelian group J of dimension 1.

We now replace the initial one-dimensional M by the more suitable Zariski
curve J and repeat the construction on the plane J 2. Again, we consider the
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1.1 Introduction 5

composition of local functions on J modulo tangency. However, this time we
take into account the existing group structure on J and find that our new group
operation interacts with the existing one in a nice way. More specifically, the
new group structure acts (locally) on the existing one by (local) endomorphisms.
Using again the generalisation of Weil’s pre-group theorem, we find a field K

with a Zariski structure on it.
Notice that at this stage we do not know if the Zariski structure on K is

the classical (algebraic) one. Obviously, it contains all algebraic Zariski closed
relations, but we need to see that there are no extra ones in the Zariski topology.
For this purpose, we undertake an analysis of projective spaces Pn(K). First,
we prove that Pn(K) are weakly complete in our Zariski topology, which is the
property analogous to the classical completeness in algebraic geometry. Then,
expanding the intersection theory of the first sections, we manage to prove
a generalisation of the Bezout theorem. This theorem is key in proving the
generalisation of the Chow theorem: every Zariski closed subset of Pn(K) is
algebraic. (Note that Pn(C) is a compact complex manifold and that every ana-
lytic subset of it is Zariski closed according to our definition.) This immediately
implies that the structure on K is purely algebraic.

It follows from the construction of K in M that there is a non-constant
Zariski-continuous map f : M → K, with the domain of definition open in
M. Such maps we call Z-meromorphic functions. Based on the generalisation
of Chow’s theorem, we prove that the inseparable closure of the field KZ(M)
of Z-meromorphic functions is isomorphic to the field of rational functions of
a smooth algebraic curve CM. By the same construction, we find a Zariski-
continuous map p : M → CM which satisfies the required properties. This
completes the proof of the classification theorem.

The classification theorem asserts that in the one-dimensional case, a non-
linear Zariski geometry is almost an algebraic curve. This statement is true
completely in algebraic geometry, compact complex manifolds, and proper
rigid analytic varieties; in the last two, this is due to the Riemann existence
theorem. However, in the general context of Noetherian Zariski geometries, the
adverb ‘almost’ cannot be omitted. In Section 5.1, we present a construction
that provides examples of non-classical Noetherian Zariski geometries, that is,
ones which are not definable in an algebraically closed field. We study a special
but typical example and look for a way to explain the geometry of M in terms
of co-ordinate functions to K and co-ordinate rings. We conclude that there are
just not enough of regular (definable Zariski-continuous) functions M → K

and that we need to use a larger class of functions, semi-definable coordinate
functions φ : M → K. We introduce a K-vector space H generated by these
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6 Introduction

functions and define linear operators on H corresponding to the actions by
G̃. These generate a non-commutative K-algebra A on H. Importantly, A is
determined uniquely (up to the choice of the language) in spite of the fact
that H is not. Also, a non-trivial, semi-definable function induces on K some
extra structure, which we call here ∗-data. Correspondingly, this adds some
extra structure to the K-algebra A, which eventually makes it a C∗-algebra.
Finally, we are able to recover the M from A. Namely, M is identified with the
set of eigenspaces of ‘self-adjoint’ operators of A with the Zariski topology
given by certain ideals of A. In other words, this new and more general class of
Zariski geometries can be appropriately explained in terms of non-commutative
co-ordinate rings.

We then discuss further links to non-commutative geometry. We show how,
given a typical quantum algebra A at roots of unity, one can associate a
Zariski geometry with A. This is similar to, although slightly different from,
the connection between M and A in the preceding discussion. Importantly, for a
typical non-commutative A, the geometry turns out to be non-classical, whereas
for a commutative one, it is equivalent to the classical affine variety Max A.

The final chapter introduces a generalisation of the notion of a Zariski struc-
ture. We call the more general structures analytic Zariski. The main difference
is that we no longer assume the Noetherianity of the topology. This makes
the definition more complicated because we now have to distinguish between
general closed subsets of Mn and the ones with better properties, which we call
analytic. The main reward for the generalisation is that now we have a much
wider class of classical structures (e.g. universal covers of some algebraic vari-
eties) that satisfy the definition. One hope (which has not been realised so far) is
to find a way to associate an analytic Zariski geometry with a generic quantum
algebra.

The theory of analytic Zariski geometries is still in its infancy. We do not
know if the algebraicity conjecture is true for analytic Zariski groups, which is
an interesting and important problem. One of the main results presented here is
the theorem stating that any compact, analytic Zariski structure is Noetherian,
that is, it satisfies the basic definition. We also prove some model-theoretic
properties of analytic Zariski structures, establishing their high level in the
logical hierarchy, but remarkably this is the non-elementary logic stability
hierarchy formulated in terms of Shelah’s abstract elementary classes. This
is a relatively new domain of model theory, and analytic Zariski structures
constitute a large class of examples for this theory.

We hope that these notes may be useful not only for model theorists but also
for people who have a more classical, geometric background. For this reason,
we start the notes with a crash course in model theory. It is really basic, and
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1.2 About model theory 7

the most important thing to learn in this section is the spirit of model theory.
The emphasis on the study of definability with respect to a formal language is
perhaps central to doing mathematics in a model-theoretic way.

1.2 About model theory

This section gives a very basic overview of model-theoretic notions and meth-
ods. We hope that the reader will be able to grasp the main ideas and the spirit
of the subject. We did not aim to give proofs in this section of every statement
we found useful, and even definitions are missing some detail. To compensate
for this, in Appendix A we give a detailed list of basic model-theoretic facts,
definitions, and proofs. Appendix B surveys geometric stability theory and
some more recent results relevant to the material in the main chapters.

Of course, there is a good selection of textbooks on model theory. The most
adequate for our purposes is Marker (2002), and a more universal book is
Hodges (1993).

The crucial feature of the model-theoretic approach to mathematics is the
attention paid to the formalism with which one considers particular mathemat-
ical structures.

A structure M is given by a set M, the universe (or the domain) of M, and
a family L of relations on M, called primitives of L or basic relations. One
often writes M = (M,L). L is called the language for M.

Each relation has a fixed name and arity, which allows us to consider classes
of L-structures of the form (N,L), where N is a universe and L is the collection
of relations on N with the names and arities fixed (by L). Each such structure
(N,L) represents an interpretation of the language L.

Recall that an n-ary relation S on M can be identified with a subset S ⊆Mn.

When S is just a singleton {s}, the name for S is often called a constant
symbol of the language. One can also express functions in terms of relations;
instead of saying f (x1, . . . , xn) = y, one says just that 〈x1, . . . , xn, y〉 satisfies
the (n + 1)-ary relation f (x1, . . . , xn) = y. There is no need to include special
function and constant symbols in L.

One always assumes that the binary relation = is in the language and is
interpreted canonically.

Definition 1.2.1. The following is an inductive definition of a definable set in
an L-structure M:

(i) a set S ⊆Mn interpreting a primitive S of the language L is definable;
(ii) given definable S1 ⊆Mn and S2 ⊆Mm, the set S1 × S2 ⊆Mn+m is definable

(here S1 × S2 = {x�y : x ∈ S1, y ∈ S2});
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8 Introduction

(iii) given definable S1, S2 ⊆Mn, the sets S1 ∩ S2, S1 ∪ S2, and Mn \ S1 are
definable; and

(iv) given definable S ⊆Mn and a projection pr : 〈x1, . . . , xn〉 
→ 〈xi1 , . . . ,

xim〉, pr : Mn → Mm, the image pr S ⊆Mm is definable.

Note that item (iv), for n = m, allows a permutation of variables.
The definition can also be applied to definable functions, definable relations,

and even definable points.
An alternative but equivalent definition is given by introducing the (first-

order) L-formulas. In this approach, we write S(x1, . . . , xn) instead of
〈x1, . . . , xn〉 ∈ S, starting from basic relations, and then we construct arbi-
trary formulas by induction using the logical connectives ∧,∨, and ¬ and the
quantifier ∃.

Now, given an L-formula ψ with n free variables, the set of the form

ψ(Mn) := {〈x1, . . . , xn〉 ∈ Mn : M � ψ(x1, . . . , xn)},
is said to be definable (by formula ψ).

The approach via formulas is more flexible because we may use formulas
to define sets with the same formal description, say ψ(Nn), in arbitrary L-
structures.

Moreover, if formula ψ has no free variables (then called a sentence), it
describes a property of the structure itself. In this way, classes of L-structures
can be defined by axioms in the form of L-formulas.

One says that N is elementarily equivalent to M (written N ≡ M) if for all
L-sentences ϕ

M � ϕ ⇔ N � ϕ.

Example 1.2.2. Groups can be considered L-structures where L has one con-
stant symbol e and one ternary relation symbol P (x, y, z), interpreted as
x · y = z. For example, the associativity property then can be written as

∀x, y, z, u, v,w, t (P (x, y, u) ∧P (u, z, v) ∧P (x,w, t) ∧P (y, z,w)→v = t) .

Here ∀x A means ¬∃x ¬A, and the meaning of B → C is ¬B ∨ C.

The centre of a group G can be defined as ϕ(G), where ϕ(x) is the formula

∀y, z (P (x, y, z) ↔ P (y, x, z)) .

Of course, this definable set can be described in line with Definition 1.2.1,
although this would be slightly longer description.
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1.2 About model theory 9

One important advantage of Definition 1.2.1 is that it provides a more
geometric description of the set. We use both approaches interchangeably.

One of the most useful types of model-theoretic results is a quantifier
elimination statement. One says that M (or more usually, the theory of M) has
quantifier elimination if any definable set S ⊆Mn is of the form S = ψ(Mn)
where ψ(x̄) is a quantifier-free formula, that is, one obtained from primitives
of the language using connectives but no quantifiers.

Example 1.2.3. Define the language LZar with primitives given by zero-sets of
polynomials over the prime subfield.

Theorem (Tarski, also Seidenberg and Chevalley). An algebraically closed
field has quantifier elimination in language LZar.

Recall that in algebraic geometry, a Boolean combination of zero-sets of
polynomials (Zariski closed sets) is called a constructible set. The theorem
says, in other words, that the class of definable sets in an algebraically closed
field is the same as the class of constructible sets.

Note that for each S, the fact that S = ψ(Mn) is expressible by the L-
sentence ∀x̄(S(x̄) ↔ ψ(x̄)). Hence, quantifier elimination holds in M if and
only if it holds in any structure elementarily equivalent to M.

Given a class of elementarily equivalent L-structures, the adequate notion
of embedding is that of an elementary embedding. We say that M = (M,L) is
an elementary substructure of M′ = (M ′, L) if M ⊆M ′ and for any L-formula
ψ(x̄) with free variables x̄ = 〈x1, . . . , xn〉 and any ā ∈ Mn,

M � ψ(ā) ⇔ M′ � ψ(ā).

More generally, elementary embedding of M into M′ means that M is isomor-
phic to an elementary substructure of M′. We write the elementary embedding
(elementary extension) as

M � M′.

Note that M � M′ always implies that M ≡ M′, because an elementary
embedding preserves all L-formulas, including sentences.

Example 1.2.4. Let Z be the additive group of integers in the group language
of Example 1.2.2. Obviously z 
→ 2z embeds Z into itself as 2Z. However, this
is not an elementary embedding because the formula ∃y y + y = x holds for
x = 2 in Z but does not hold in the substructure 2Z. On the other hand, for

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73560-5 - Zariski Geometries: Geometry from the Logician’s Point of View
Boris Zilber
Excerpt
More information

http://www.cambridge.org/9780521735605
http://www.cambridge.org
http://www.cambridge.org


10 Introduction

K ⊆K ′ algebraically closed fields in language LZar, the embedding is always
elementary. This is an immediate result of the quantifier elimination theorem.

A simple but useful technical fact is given by the following.

Exercise 1.2.5. Let

M1 ≺ · · · Mα ≺ Mα+1 ≺ · · ·
be an ascending sequence of elementary extensions, α ∈ I, and let

∗M =
⋃
α∈I

Mα

be the union. Then, for each α ∈ I, Mα ≺ ∗M.

When we want to specify an element in a structure M in terms of L, we
describe its type. Given ā ∈ Mn, the type of ā is the set of L-formulas with n

free variables x̄:

tp(ā) = {ψ(x̄) : M � ψ(ā)}.
Often we look for n-tuples, in M or its elementary extensions, that satisfy a
certain description in terms of L. For this purpose, one uses a more general
notion of a type.

Definition 1.2.6. An n-type in M is a set p of L-formulas ψ(x̄) (with free
variables x̄ = 〈x1, . . . , xn〉) satisfying the consistency condition:

ψ1(x̄), . . . , ψk(x̄) ∈ p ⇒ M � ∃x̄ ψ1(x̄) ∧ · · · ∧ ψk(x̄).

Obviously, the M in the consistency condition can be equivalently replaced
by any M′ elementarily equivalent to M.

Example 1.2.7. Let R be the field of reals in language LZar. Note that the
relation x ≤ y is expressible in R by the formula ∃u u2 + x = y. So, in the
language we can write down the type of a real positive infinitesimal,

p =
{

0 < x <
1

n
: n ∈ Z, n > 0

}
.

Obviously, this type is not realised in R itself, but there is R
′ � R, which

realises p.

Often, we have to consider L-formulas with parameters. For example, in
Example 1.2.3, the basic relations are given by polynomial equations over
the prime field, but one usually is interested in polynomial equations over K.

Clearly, this can be achieved within the same language if we use parameters:
if P (x1, . . . , xn, y1, . . . , ym) is a polynomial equation over the prime field and
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